1
|
Yu C, Tigano M, Seifert EL. PDE12 mediated pruning of the poly-A tail of mitochondrial DNA-encoded tRNAs is essential for survival. EMBO Mol Med 2025; 17:3-5. [PMID: 39567836 PMCID: PMC11730969 DOI: 10.1038/s44321-024-00171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
E Seifert, M Tigano, and C Yu discuss the study from Haute et al, published in this issue of EMBO Mol Med , that reports the first pathogenic variants in the human PDE12 gene causing neonatal mitochondrial disease.
Collapse
Affiliation(s)
- Chenxiao Yu
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Marco Tigano
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Erin L Seifert
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 2022; 23:606-623. [PMID: 35459860 DOI: 10.1038/s41576-022-00480-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.
Collapse
|
4
|
Human Mitochondrial RNA Processing and Modifications: Overview. Int J Mol Sci 2021; 22:ijms22157999. [PMID: 34360765 PMCID: PMC8348895 DOI: 10.3390/ijms22157999] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/29/2023] Open
Abstract
Mitochondria, often referred to as the powerhouses of cells, are vital organelles that are present in almost all eukaryotic organisms, including humans. They are the key energy suppliers as the site of adenosine triphosphate production, and are involved in apoptosis, calcium homeostasis, and regulation of the innate immune response. Abnormalities occurring in mitochondria, such as mitochondrial DNA (mtDNA) mutations and disturbances at any stage of mitochondrial RNA (mtRNA) processing and translation, usually lead to severe mitochondrial diseases. A fundamental line of investigation is to understand the processes that occur in these organelles and their physiological consequences. Despite substantial progress that has been made in the field of mtRNA processing and its regulation, many unknowns and controversies remain. The present review discusses the current state of knowledge of RNA processing in human mitochondria and sheds some light on the unresolved issues.
Collapse
|
5
|
Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 2021; 22:307-325. [PMID: 33594280 DOI: 10.1038/s41580-021-00332-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.
Collapse
|
6
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Toompuu M, Tuomela T, Laine P, Paulin L, Dufour E, Jacobs HT. Polyadenylation and degradation of structurally abnormal mitochondrial tRNAs in human cells. Nucleic Acids Res 2019. [PMID: 29518244 PMCID: PMC6007314 DOI: 10.1093/nar/gky159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RNA 3' polyadenylation is known to serve diverse purposes in biology, in particular, regulating mRNA stability and translation. Here we determined that, upon exposure to high levels of the intercalating agent ethidium bromide (EtBr), greater than those required to suppress mitochondrial transcription, mitochondrial tRNAs in human cells became polyadenylated. Relaxation of the inducing stress led to rapid turnover of the polyadenylated tRNAs. The extent, kinetics and duration of tRNA polyadenylation were EtBr dose-dependent, with mitochondrial tRNAs differentially sensitive to the stress. RNA interference and inhibitor studies indicated that ongoing mitochondrial ATP synthesis, plus the mitochondrial poly(A) polymerase and SUV3 helicase were required for tRNA polyadenylation, while polynucleotide phosphorylase counteracted the process and was needed, along with SUV3, for degradation of the polyadenylated tRNAs. Doxycycline treatment inhibited both tRNA polyadenylation and turnover, suggesting a possible involvement of the mitoribosome, although other translational inhibitors had only minor effects. The dysfunctional tRNALeu(UUR) bearing the pathological A3243G mutation was constitutively polyadenylated at a low level, but this was markedly enhanced after doxycycline treatment. We propose that polyadenylation of structurally and functionally abnormal mitochondrial tRNAs entrains their PNPase/SUV3-mediated destruction, and that this pathway could play an important role in mitochondrial diseases associated with tRNA mutations.
Collapse
Affiliation(s)
- Marina Toompuu
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Pia Laine
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland.,Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| |
Collapse
|
8
|
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0162. [PMID: 30397099 PMCID: PMC6232586 DOI: 10.1098/rstb.2018.0162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, almost all RNA species are processed at their 3′ ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Vladyslava Liudkovska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
9
|
Reinhard L, Sridhara S, Hällberg BM. The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res 2017; 45:12469-12480. [PMID: 29040705 PMCID: PMC5716156 DOI: 10.1093/nar/gkx902] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial polycistronic transcripts are extensively processed to give rise to functional mRNAs, rRNAs and tRNAs; starting with the release of tRNA elements through 5′-processing by RNase P (MRPP1/2/3-complex) and 3′-processing by RNase Z (ELAC2). Here, we show using in vitro experiments that MRPP1/2 is not only a component of the mitochondrial RNase P but that it retains the tRNA product from the 5′-processing step and significantly enhances the efficiency of ELAC2-catalyzed 3′-processing for 17 of the 22 tRNAs encoded in the human mitochondrial genome. Furthermore, MRPP1/2 retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA-adding enzyme. Thus, in addition to being an essential component of the RNase P reaction, MRPP1/2 serves as a processing platform for several down-stream tRNA maturation steps in human mitochondria. These findings are of fundamental importance for our molecular understanding of disease-related mutations in MRPP1/2, ELAC2 and mitochondrial tRNA genes.
Collapse
Affiliation(s)
- Linda Reinhard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - Sagar Sridhara
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| |
Collapse
|
10
|
Kuznetsova I, Siira SJ, Shearwood AMJ, Ermer JA, Filipovska A, Rackham O. Simultaneous processing and degradation of mitochondrial RNAs revealed by circularized RNA sequencing. Nucleic Acids Res 2017; 45:5487-5500. [PMID: 28201688 PMCID: PMC5435911 DOI: 10.1093/nar/gkx104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Mammalian mitochondrial RNAs are unique as they are derived from primary transcripts that encompass almost the entire mitochondrial genome. This necessitates extensive processing to release the individual mRNAs, rRNAs and tRNAs required for gene expression. Recent studies have revealed many of the proteins required for mitochondrial RNA processing, however the rapid turnover of precursor RNAs has made it impossible to analyze their composition and the hierarchy of processing. Here, we find that circularization of RNA prior to deep sequencing enables the discovery and characterization of unprocessed RNAs. Using this approach, we identify the most stable processing intermediates and the presence of intermediate processing products that are partially degraded and polyadenylated. Analysis of libraries constructed using RNA from mice lacking the nuclease subunit of the mitochondrial RNase P reveals the identities of stalled processing intermediates, their order of cleavage, and confirms the importance of RNase P in generating mature mitochondrial RNAs. Using RNA circularization prior to library preparation should provide a generally useful approach to studying RNA processing in many different biological systems.
Collapse
Affiliation(s)
- Irina Kuznetsova
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Stefan J. Siira
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Anne-Marie J. Shearwood
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Judith A. Ermer
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
- To whom correspondence should be addressed. Tel: +61 8 6151 0735; Fax: +61 8 9463 1469;
| |
Collapse
|
11
|
Pearce SF, Rorbach J, Haute LV, D’Souza AR, Rebelo-Guiomar P, Powell CA, Brierley I, Firth AE, Minczuk M. Maturation of selected human mitochondrial tRNAs requires deadenylation. eLife 2017; 6:e27596. [PMID: 28745585 PMCID: PMC5544427 DOI: 10.7554/elife.27596] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
Human mitochondria contain a genome (mtDNA) that encodes essential subunits of the oxidative phosphorylation system. Expression of mtDNA entails multi-step maturation of precursor RNA. In other systems, the RNA life cycle involves surveillance mechanisms, however, the details of RNA quality control have not been extensively characterised in human mitochondria. Using a mitochondrial ribosome profiling and mitochondrial poly(A)-tail RNA sequencing (MPAT-Seq) assay, we identify the poly(A)-specific exoribonuclease PDE12 as a major factor for the quality control of mitochondrial non-coding RNAs. The lack of PDE12 results in a spurious polyadenylation of the 3' ends of the mitochondrial (mt-) rRNA and mt-tRNA. While the aberrant adenylation of 16S mt-rRNA did not affect the integrity of the mitoribosome, spurious poly(A) additions to mt-tRNA led to reduced levels of aminoacylated pool of certain mt-tRNAs and mitoribosome stalling at the corresponding codons. Therefore, our data uncover a new, deadenylation-dependent mtRNA maturation pathway in human mitochondria.
Collapse
Affiliation(s)
- Sarah F Pearce
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Joanna Rorbach
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Aaron R D’Souza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Christopher A Powell
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Polyadenylation and degradation of RNA in the mitochondria. Biochem Soc Trans 2017; 44:1475-1482. [PMID: 27911729 DOI: 10.1042/bst20160126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Abstract
Mitochondria have their own gene expression machinery and the relative abundance of RNA products in these organelles in animals is mostly dictated by their rate of degradation. The molecular mechanisms regulating the differential accumulation of the transcripts in this organelle remain largely elusive. Here, we summarize the present knowledge of how RNA is degraded in human mitochondria and describe the coexistence of stable poly(A) tails and the nonabundant tails, which have been suggested to play a role in the RNA degradation process.
Collapse
|
13
|
Bruni F, Lightowlers RN, Chrzanowska-Lightowlers ZM. Human mitochondrial nucleases. FEBS J 2017; 284:1767-1777. [PMID: 27926991 PMCID: PMC5484287 DOI: 10.1111/febs.13981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are cytosolic organelles that have many essential roles including ATP production via oxidative phosphorylation, apoptosis, iron‐sulfur cluster biogenesis, heme and steroid synthesis, calcium homeostasis, and regulation of cellular redox state. One of the unique features of these organelles is the presence of an extrachromosomal mitochondrial genome (mtDNA), together with all the machinery required to replicate and transcribe mtDNA. The accurate maintenance of mitochondrial gene expression is essential for correct organellar metabolism, and is in part dependent on the levels of mtDNA and mtRNA, which are regulated by balancing synthesis against degradation. It is clear that although a number of mitochondrial nucleases have been identified, not all those responsible for the degradation of DNA or RNA have been characterized. Recent investigations, however, have revealed the contribution that mutations in the genes coding for these enzymes has made to causing pathogenic mitochondrial diseases.
Collapse
Affiliation(s)
- Francesco Bruni
- The Wellcome Trust Centre for Mitochondrial Research, The Medical School, Newcastle University, UK
| | - Robert N Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, The Medical School, Newcastle University, UK
| | | |
Collapse
|
14
|
Shokolenko IN, Alexeyev MF. Mitochondrial transcription in mammalian cells. Front Biosci (Landmark Ed) 2017; 22:835-853. [PMID: 27814650 DOI: 10.2741/4520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As a consequence of recent discoveries of intimate involvement of mitochondria with key cellular processes, there has been a resurgence of interest in all aspects of mitochondrial biology, including the intricate mechanisms of mitochondrial DNA maintenance and expression. Despite four decades of research, there remains a lot to be learned about the processes that enable transcription of genetic information from mitochondrial DNA to RNA, as well as their regulation. These processes are vitally important, as evidenced by the lethality of inactivating the central components of mitochondrial transcription machinery. Here, we review the current understanding of mitochondrial transcription and its regulation in mammalian cells. We also discuss key theories in the field and highlight controversial subjects and future directions as we see them.
Collapse
Affiliation(s)
- Inna N Shokolenko
- University of South Alabama, Patt Capps Covey College of Allied Health Professions, Biomedical Sciences Department, 5721 USA Drive N, HAHN 4021, Mobile, AL 36688-0002, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Dr. North, MSB3074, Mobile, AL 36688, USA,
| |
Collapse
|
15
|
Abstract
The removal of transcriptional 5' and 3' extensions is an essential step in tRNA biogenesis. In some bacteria, tRNA 5'- and 3'-end maturation require no further steps, because all their genes encode the full tRNA sequence. Often however, the ends are incomplete, and additional maturation, repair or editing steps are needed. In all Eukarya, but also many Archaea and Bacteria, e.g., the universal 3'-terminal CCA is not encoded and has to be added by the CCA-adding enzyme. Apart from such widespread "repair/maturation" processes, tRNA genes in some cases apparently cannot give rise to intact, functional tRNA molecules without further, more specific end repair or editing. Interestingly, the responsible enzymes as far as identified appear to be polymerases usually involved in regular tRNA repair after damage. Alternatively, enzymes are recruited from other non-tRNA pathways; e.g., in animal mitochondria, poly(A) polymerase plays a crucial role in the 3'-end repair/editing of tRNAs. While these repair/editing pathways apparently allowed peculiar tRNA-gene overlaps or mismatching mutations in the acceptor stem to become genetically fixed in some present-day organisms, they may have also driven some global changes in tRNA maturation on a greater evolutionary scale.
Collapse
Affiliation(s)
- Christiane Rammelt
- a Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Walter Rossmanith
- b Center for Anatomy & Cell Biology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
16
|
Bratic A, Clemente P, Calvo-Garrido J, Maffezzini C, Felser A, Wibom R, Wedell A, Freyer C, Wredenberg A. Mitochondrial Polyadenylation Is a One-Step Process Required for mRNA Integrity and tRNA Maturation. PLoS Genet 2016; 12:e1006028. [PMID: 27176048 PMCID: PMC4866704 DOI: 10.1371/journal.pgen.1006028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022] Open
Abstract
Polyadenylation has well characterised roles in RNA turnover and translation in a variety of biological systems. While polyadenylation on mitochondrial transcripts has been suggested to be a two-step process required to complete translational stop codons, its involvement in mitochondrial RNA turnover is less well understood. We studied knockdown and knockout models of the mitochondrial poly(A) polymerase (MTPAP) in Drosophila melanogaster and demonstrate that polyadenylation of mitochondrial mRNAs is exclusively performed by MTPAP. Further, our results show that mitochondrial polyadenylation does not regulate mRNA stability but protects the 3' terminal integrity, and that despite a lack of functioning 3' ends, these trimmed transcripts are translated, suggesting that polyadenylation is not required for mitochondrial translation. Additionally, loss of MTPAP leads to reduced steady-state levels and disturbed maturation of tRNACys, indicating that polyadenylation in mitochondria might be important for the stability and maturation of specific tRNAs. The polyadenylation of cellular RNAs is a well-studied signal for gene expression, with a defined function in either RNA turnover or translation, in the majority of systems. In mammalian mitochondria the role of polyadenylation is less clear, and can to date only be attributed to completing the translational stop signal on several mitochondrial transcripts. Previous work though demonstrated that mitochondrial polyadenylation requires a certain length and shortening of the poly(A) tail signal has detrimental effects on mitochondrial function. In this study we deleted the mitochondrial polymerase responsible for polyadenylation in the fly, Drosophila melanogaster, and demonstrate that the mitochondrial poly(A) tail is essential for preserving the 3’ ends of mitochondrial transcripts, with no other enzyme capable of completing stop signals. Our study also shows that polyadenylation does not regulate transcript stability nor is it required for translation, but might be involved in the maturation of certain mitochondrial tRNAs. We therefore conclude that besides completing translational stop signals, mitochondrial polyadenylation protects the 3’ termini from degradation.
Collapse
Affiliation(s)
- Ana Bratic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Paula Clemente
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Javier Calvo-Garrido
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Maffezzini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Felser
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| |
Collapse
|