1
|
Shen H, Li Y, Tang K, Liang H, Xu ZL, Liu Y, Liu W. Programmable AIESTA: All-in-One Isothermal Enzymatic Signal Transduction Amplifier for Portable Profiling. Anal Chem 2025; 97:8088-8097. [PMID: 40162959 DOI: 10.1021/acs.analchem.5c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Argonaute (Ago) protein exhibits high specificity in nucleic acid recognition and cleavage, making it highly promising for biosensing applications. Its potential is further enhanced by its independence from protospacer adjacent motif (PAM) requirements and the cost-effectiveness of using short DNA guides. Both Ago and CRISPR/Cas systems face challenges in signal amplification, which limit their ability to detect targets at ultralow concentrations. To overcome this limitation, a thermostable quadratic amplification system (T-QAS) was constructed by integrating a thermostable nicking-enzyme-mediated amplification (NEMA) strategy with TtAgo. The system leverages the high stability of T-QAS at elevated temperatures to enhance guide-target interactions and decrease false positives caused by nonspecific amplification. Additionally, nanozyme is integrated with T-QAS to construct the AIESTA platform (all-in-one isothermal enzymatic signal transduction amplifier), which is a single-tube visual sensing platform. Within the AIESTA system, T-QAS improves specificity through high operational temperatures and offers programmable functions, enabling the sensitive detection of miRNA and foodborne toxins. The combination of T-QAS and nanozyme makes AIESTA a candidate of point-of-care testing (POCT) field, showcasing the potential for biosensing in resource-limited and complex environments.
Collapse
Affiliation(s)
- Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yanling Li
- China Tobacco Hunan Industrial Co. Ltd., Changsha 41007, China
| | - Kangling Tang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Cheng K. Structure, function and evolution of the bacterial DinG-like proteins. Comput Struct Biotechnol J 2025; 27:1124-1139. [PMID: 40206346 PMCID: PMC11981726 DOI: 10.1016/j.csbj.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The damage-inducible G (DinG)-like proteins represent a widespread superfamily 2 (SF2) of DNA helicases, exhibiting remarkable diversity in domain architecture, substrate specificity, regulatory mechanisms, biological functions, interaction partners, and taxonomic distribution. Many characterized DinG-like proteins play critical roles in bacterial stress responses and immunity, including the SOS response, DNA repair, and phage interference. This review aims to provide a summary of bacterial DinG-like proteins, categorizing them into subgroups such as DinG, YoaA, CasDinG, CasDinG-HNH, ExoDinG, pExoDinG, EndoDinG, RadC-like DinG, sDinG, and others. This classification provides an analysis of sequence-structure-function relationships within this superfamily. Further sequence clustering revealed inter-cluster relationships and subgroup heterogeneity, suggesting potential functional divergence. Integrating sequence analysis, domain architecture, structural data, and genomic context enabled functional predictions for these DinG-like protein subgroups, shedding light on their evolutionary and biological significance.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
3
|
Li Y, Zhao L, Wang J, Ma L, Bai Y, Feng F. Argonaute-Based Nucleic Acid Detection Technology: Advantages, Current Status, Challenges, and Perspectives. ACS Sens 2024; 9:5665-5682. [PMID: 39526595 DOI: 10.1021/acssensors.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Rapid and accurate detection is a prerequisite for precise clinical diagnostics, ensuring food safety, and facilitating biotechnological applications. The Argonaute system, as a cutting-edge technique, has been successfully repurposed in biosensing beyond the CRISPR/Cas system (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins), which has been extensively researched, but recognition of PAM sequences remains restricted. Argonaute, as a programmable and target-activated nuclease, is repurposed for fabricating novel detection methods due to its unparalleled biological features. In this comprehensive review, we initially elaborate on the current methods for nucleic acid testing and programmable nucleases, followed by delving into the structure and nuclease activity of the Argonaute system. The advantages of Argonaute compared with the CRISPR/Cas system in nucleic acid detection are highlighted and discussed. Furthermore, we summarize the applications of Argonaute-based nucleic acid detection and provide an in-depth analysis of future perspectives and challenges. Recent research has demonstrated that Argonaute-based biosensing is an innovative and rapidly advancing technology that can overcome the limitations of existing methods and potentially replace them. In summary, the implementation of Argonaute and its integration with other technologies hold promise in developing customized and intelligent detection methods for nucleic acid testing across various aspects.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Jiali Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
4
|
Zhang J, Chen M, Jiang H, Sun H, Ren J, Yang X, Liu S, Wang D, Huang Z, Liu J, Ma D, Guo X, Luo G. Atom-Modified gDNA Enhances Cleavage Activity of TtAgo Enabling Ultra-Sensitive Nucleic Acid Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403120. [PMID: 38728591 PMCID: PMC11267260 DOI: 10.1002/advs.202403120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Indexed: 05/12/2024]
Abstract
The DNA-guided (gDNA) Argonaute from Thermus thermophilus (TtAgo) has little potential for nucleic acid detection and gene editing due to its poor dsDNA cleavage activity at relatively low temperature. Herein, the dsDNA cleavage activity of TtAgo is enhanced by using 2'-fluorine (2'F)-modified gDNA and developes a novel nucleic acid testing strategy. This study finds that the gDNA with 2'F-nucleotides at the 3'-end (2'F-gDNA) can promote the assembly of the TtAgo-guide-target ternary complex significantly by increasing its intermolecular force to target DNA and TtAgo, thereby providing ≈40-fold activity enhancement and decreasing minimum reaction temperature from 65 to 60 °C. Based on this outstanding advance, a novel nucleic acid testing strategy is proposed, termed FAST, which is performed by using the 2'F-gDNA/TtAgo for target recognition and combining it with Bst DNA polymerase for nucleic acid amplification. By integrating G-quadruplex and Thioflavin T, the FAST assay achieves one-pot real-time fluorescence analysis with ultra-sensitivity, providing a limit of detection up to 5 copies (20 µL reaction mixture) for miR-21 detection. In summary, an atom-modification-based strategy has been developed for enhancing the cleavage activity of TtAgo efficiently, thereby improving its practicability and establishing a TtAgo-based nucleic acid testing technology with ultra-sensitivity and high-specificity.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeSchool of Laboratory Medicine & Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchong637000China
- Key Laboratory of Bio‐Resource and Eco‐environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuan610064China
| | - Miaomiao Chen
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeSchool of Laboratory Medicine & Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchong637000China
| | - Huan Jiang
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeSchool of Laboratory Medicine & Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchong637000China
| | - Huifang Sun
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeSchool of Laboratory Medicine & Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchong637000China
| | - Jianing Ren
- Department of Oncology & Department of Rheumatology and ImmunologyAffiliated Hospital of North Sichuan Medical CollegeNanchong637000China
| | - Xin Yang
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeSchool of Laboratory Medicine & Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchong637000China
| | - Shanshan Liu
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeSchool of Laboratory Medicine & Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchong637000China
| | - Dongsheng Wang
- Department of Clinical LaboratorySichuan Cancer HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610041China
| | - Zhen Huang
- Key Laboratory of Bio‐Resource and Eco‐environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuan610064China
| | - Jianping Liu
- Department of Oncology & Department of Rheumatology and ImmunologyAffiliated Hospital of North Sichuan Medical CollegeNanchong637000China
| | - Daiyuan Ma
- Department of Oncology & Department of Rheumatology and ImmunologyAffiliated Hospital of North Sichuan Medical CollegeNanchong637000China
| | - Xiaolan Guo
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeSchool of Laboratory Medicine & Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchong637000China
| | - Guangcheng Luo
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeSchool of Laboratory Medicine & Translational Medicine Research CenterNorth Sichuan Medical CollegeNanchong637000China
| |
Collapse
|
5
|
Zhen X, Xu X, Ye L, Xie S, Huang Z, Yang S, Wang Y, Li J, Long F, Ouyang S. Structural basis of antiphage immunity generated by a prokaryotic Argonaute-associated SPARSA system. Nat Commun 2024; 15:450. [PMID: 38200015 PMCID: PMC10781750 DOI: 10.1038/s41467-023-44660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Argonaute (Ago) proteins are ubiquitous across all kingdoms of life. Eukaryotic Agos (eAgos) use small RNAs to recognize transcripts for RNA silencing in eukaryotes. In contrast, the functions of prokaryotic counterparts (pAgo) are less well known. Recently, short pAgos in conjunction with the associated TIR or Sir2 (SPARTA or SPARSA) were found to serve as antiviral systems to combat phage infections. Herein, we present the cryo-EM structures of nicotinamide adenine dinucleotide (NAD+)-bound SPARSA with and without nucleic acids at resolutions of 3.1 Å and 3.6 Å, respectively. Our results reveal that the APAZ (Analogue of PAZ) domain and the short pAgo form a featured architecture similar to the long pAgo to accommodate nucleic acids. We further identified the key residues for NAD+ binding and elucidated the structural basis for guide RNA and target DNA recognition. Using structural comparisons, molecular dynamics simulations, and biochemical experiments, we proposed a putative mechanism for NAD+ hydrolysis in which an H186 loop mediates nucleophilic attack by catalytic water molecules. Overall, our study provides mechanistic insight into the antiphage role of the SPARSA system.
Collapse
Affiliation(s)
- Xiangkai Zhen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaolong Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Le Ye
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Song Xie
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China
| | - Zhijie Huang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Sheng Yang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yanhui Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, 350116, Fuzhou, China.
| | - Feng Long
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China Wuhan University, Wuhan, 430071, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
6
|
Beskrovnaia M, Agapov A, Makasheva K, Zharkov DO, Esyunina D, Kulbachinskiy A. Sensing of DNA modifications by pAgo proteins in vitro. Biochimie 2023; 220:39-47. [PMID: 38128776 DOI: 10.1016/j.biochi.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Many prokaryotic Argonaute (pAgo) proteins act as programmable nucleases that use small guide DNAs for recognition and cleavage of complementary target DNA. Recent studies suggested that pAgos participate in cell defense against invader DNA and may also be involved in other genetic processes, including DNA replication and repair. The ability of pAgos to recognize specific targets potentially make them an invaluable tool for DNA manipulations. Here, we demonstrate that DNA-guided DNA-targeting pAgo nucleases from three bacterial species, DloAgo from Dorea longicatena, CbAgo from Clostridium butyricum and KmAgo from Kurthia massiliensis, can sense site-specific modifications in the target DNA, including 8-oxoguanine, thymine glycol, ethenoadenine and pyrimidine dimers. The effects of DNA modifications on the activity of pAgos strongly depend on their positions relative to the site of cleavage and are comparable to or exceed the effects of guide-target mismatches at corresponding positions. For all tested pAgos, the strongest effects are observed when DNA lesions are located at the cleavage position. The results demonstrate that DNA cleavage by pAgos is strongly affected by DNA modifications, thus making possible their use as sensors of DNA damage.
Collapse
Affiliation(s)
| | - Aleksei Agapov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Kristina Makasheva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
| | - Daria Esyunina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | |
Collapse
|
7
|
Wu Z, Yu L, Shi W, Ma J. Argonaute protein-based nucleic acid detection technology. Front Microbiol 2023; 14:1255716. [PMID: 37744931 PMCID: PMC10515653 DOI: 10.3389/fmicb.2023.1255716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
It is vital to diagnose pathogens quickly and effectively in the research and treatment of disease. Argonaute (Ago) proteins are recently discovered nucleases with nucleic acid shearing activity that exhibit specific recognition properties beyond CRISPR-Cas nucleases, which are highly researched but restricted PAM sequence recognition. Therefore, research on Ago protein-mediated nucleic acid detection technology has attracted significant attention from researchers in recent years. Using Ago proteins in developing nucleic acid detection platforms can enable efficient, convenient, and rapid nucleic acid detection and pathogen diagnosis, which is of great importance for human life and health and technological development. In this article, we introduce the structure and function of Argonaute proteins and discuss the latest advances in their use in nucleic acid detection.
Collapse
Affiliation(s)
- Zhiyun Wu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jinhong Ma
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Wang Z, Wang Z, Zhang F, Wu L. Thermus thermophilus Argonaute-based signal amplifier for highly sensitive and specific microRNA detection. Front Bioeng Biotechnol 2023; 11:1221943. [PMID: 37583711 PMCID: PMC10424790 DOI: 10.3389/fbioe.2023.1221943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
The prokaryote-derived gene defense system as a new generation of nucleic acid detection tool exhibits impressive performance in the field of molecular diagnosis. Prokaryotic Argonaute (Ago) is a CRISPR-associated protein that is guided by a short DNA (gDNA) and then efficiently cleaves gDNA-complementary nucleic acids and presents unique characteristics that are different from the CRISPR/Cas system. However, the application of Ago in biosensing is still relatively scarce, and many properties of Ago need to be further clarified. In this study, we aim to systematically explore the properties of Thermus thermophilus Argonaute (TtAgo), including the dependence of TtAgo activity on guide DNA (gDNA) length, substrates' length, and the position of gDNA complementary region on the substrate. Based on these properties, we constructed an exonuclease III-assisted target-recycled amplification system (exoAgo) for sensitive miRNA detection. The result showed that exoAgo can be used for miRNA profiling with a detection limit of 12.2 pM and single-base-resolution and keep good performance for the detection of complex samples, which indicates that Ago has great application potential in the detection of nucleic acids. In conclusion, this study will provide guidance for further development and utilization of Ago in the field of biosensing.
Collapse
Affiliation(s)
- Ziqi Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Zitong Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Fan Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Lingyi Wu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
9
|
Li B, Yang S, Long J, Chen X, Zhang Q, Ning L, He B, Chen H, Huang J. AGODB: a comprehensive domain annotation database of argonaute proteins. Database (Oxford) 2022; 2022:6693399. [PMID: 36068786 PMCID: PMC9448894 DOI: 10.1093/database/baac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Argonaute (Ago) proteins are widely expressed in almost all organisms. Eukaryotic Ago (eAgo) proteins bind small RNA guides forming RNA-induced silencing complex that silence gene expression, and prokaryotic Ago (pAgo) proteins defend against invading nucleic acids via binding small RNAs or DNAs. pAgo proteins have shown great potential as a candidate ‘scissors’ for gene editing. Protein domains are fundamental units of protein structure, function and evolution; however, the domains of Ago proteins are not well annotated/curated currently. Therefore, full functional domain annotation of Ago proteins is urgently needed for researchers to understand the function and mechanism of Ago proteins. Herein, we constructed the first comprehensive domain annotation database of Ago proteins (AGODB). The database curates detailed information of 1902 Ago proteins, including 1095 eAgos and 807 pAgos. Especially for long pAgo proteins, all six domains are annotated and curated. Gene Ontology (GO) enrichment analysis revealed that Ago genes in different species were enriched in the following GO terms: biological processes (BPs), molecular function and cellular compartment. GO enrichment analysis results were integrated into AGODB, which provided insights into the BP that Ago genes may participate in. AGODB also allows users to search the database with a variety of options and download the search results. We believe that the AGODB will be a useful resource for understanding the function and domain components of Ago proteins. This database is expected to cater to the needs of scientific community dedicated to the research of Ago proteins.
Collapse
Affiliation(s)
- Bowen Li
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Shanshan Yang
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Jinjin Long
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Xue Chen
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Qianyue Zhang
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Lin Ning
- School of Health Care Technology, Chengdu Neusoft University , Chengdu, Sichuan 611844, China
| | - Bifang He
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Heng Chen
- Medical College, Guizhou University , Guiyang, Guizhou 550025, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China , Chengdu, Sichuan 611731, China
| |
Collapse
|
10
|
Ober-Reynolds B, Becker WR, Jouravleva K, Jolly SM, Zamore PD, Greenleaf WJ. High-throughput biochemical profiling reveals functional adaptation of a bacterial Argonaute. Mol Cell 2022; 82:1329-1342.e8. [PMID: 35298909 PMCID: PMC9158488 DOI: 10.1016/j.molcel.2022.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/10/2022] [Accepted: 02/16/2022] [Indexed: 12/29/2022]
Abstract
Argonautes are nucleic acid-guided proteins that perform numerous cellular functions across all domains of life. Little is known about how distinct evolutionary pressures have shaped each Argonaute's biophysical properties. We applied high-throughput biochemistry to characterize how Thermus thermophilus Argonaute (TtAgo), a DNA-guided DNA endonuclease, finds, binds, and cleaves its targets. We found that TtAgo uses biophysical adaptations similar to those of eukaryotic Argonautes for rapid association but requires more extensive complementarity to achieve high-affinity target binding. Using these data, we constructed models for TtAgo association rates and equilibrium binding affinities that estimate the nucleic acid- and protein-mediated components of the target interaction energies. Finally, we showed that TtAgo cleavage rates vary widely based on the DNA guide, suggesting that only a subset of guides cleaves targets on physiologically relevant timescales.
Collapse
Affiliation(s)
| | - Winston R Becker
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Karina Jouravleva
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Samson M Jolly
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Hauptmann J, Hehne V, Balzer M, Bethge L, Wikstrom Lindholm M. Engineering miRNA features into siRNAs: Guide-strand bulges are compatible with gene repression. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:1116-1126. [PMID: 35251767 PMCID: PMC8881630 DOI: 10.1016/j.omtn.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/06/2022] [Indexed: 11/22/2022]
Abstract
Synthetic siRNA guide strands are typically designed with perfect complementarity to the passenger strand and the target mRNA. We examined whether siRNAs with intentional guide-strand bulges are functional in vitro and in vivo. Importantly, this was done by systematic shortening of the passenger strand, evaluating identical 19-mer guide-strand sequences but forcing them into conformations with 1- to 4-nt bulges after annealing. We demonstrate that guide-strand bulges can be well tolerated at several positions of unmodified and modified siRNAs. Beyond that, we show that GalNAc-conjugated siRNAs with bulges at certain positions of the guide strand repress transthyretin in murine primary hepatocytes and in vivo in mice. In vivo, a GalNAc-conjugated siRNA with a 1-nt bulge at position 14 of the guide strand was as active as the perfectly complementary siRNA. Finally, in a luciferase reporter system, mRNA target sequences were systematically shortened so that RNA-induced silencing complex activity could only occur with a guide-strand bulge. Here, luciferase reporters were repressed when 1- and 2-nt deletions of the reporter were applied to the edges of the sequence. We conclude that some guide-strand bulges versus target transcript can result in target repression and therefore should be evaluated as off-target risks.
Collapse
|
12
|
Kropocheva EV, Lisitskaya LA, Agapov AA, Musabirov AA, Kulbachinskiy AV, Esyunina DM. Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Mol Biol 2022; 56:854-873. [PMID: 36060308 PMCID: PMC9427165 DOI: 10.1134/s0026893322060103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Programmable nucleases are the most important tool for manipulating the genes and genomes of both prokaryotes and eukaryotes. Since the end of the 20th century, many approaches were developed for specific modification of the genome. The review briefly considers the advantages and disadvantages of the main genetic editors known to date. The main attention is paid to programmable nucleases from the family of prokaryotic Argonaute proteins. Argonaute proteins can recognize and cleave DNA sequences using small complementary guide molecules and play an important role in protecting prokaryotic cells from invading DNA. Argonaute proteins have already found applications in biotechnology for targeted cleavage and detection of nucleic acids and can potentially be used for genome editing.
Collapse
Affiliation(s)
- E. V. Kropocheva
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - L. A. Lisitskaya
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Agapov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Musabirov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. V. Kulbachinskiy
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - D. M. Esyunina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
13
|
Jin S, Zhan J, Zhou Y. Argonaute proteins: structures and their endonuclease activity. Mol Biol Rep 2021; 48:4837-4849. [PMID: 34117606 DOI: 10.1007/s11033-021-06476-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/05/2021] [Indexed: 01/12/2023]
Abstract
Argonaute proteins are highly conserved and widely expressed in almost all organisms. They not only play a critical role in the biogenesis of small RNAs but also defend against invading nucleic acids via small RNA or DNA-mediated gene silencing pathways. One functional mechanism of Argonaute proteins is acting as a nucleic-acid-guided endonuclease, which can cleave targets complementary to DNA or RNA guides. The cleavage then leads to translational silencing directly or indirectly by recruiting additional silencing proteins. Here, we summarized the latest research progress in structural and biological studies of Argonaute proteins and pointed out their potential applications in the field of gene editing.
Collapse
Affiliation(s)
- Shujuan Jin
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jian Zhan
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Yaoqi Zhou
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia.
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Durica-Mitic S, Göpel Y, Amman F, Görke B. Adaptor protein RapZ activates endoribonuclease RNase E by protein-protein interaction to cleave a small regulatory RNA. RNA (NEW YORK, N.Y.) 2020; 26:1198-1215. [PMID: 32424019 PMCID: PMC7430671 DOI: 10.1261/rna.074047.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In Escherichia coli, endoribonuclease RNase E initiates degradation of many RNAs and represents a hub for post-transcriptional regulation. The tetrameric adaptor protein RapZ targets the small regulatory RNA GlmZ to degradation by RNase E. RapZ binds GlmZ through a domain located at the carboxyl terminus and interacts with RNase E, promoting GlmZ cleavage in the base-pairing region. When necessary, cleavage of GlmZ is counteracted by the homologous small RNA GlmY, which sequesters RapZ through molecular mimicry. In the current study, we addressed the molecular mechanism employed by RapZ. We show that RapZ mutants impaired in RNA-binding but proficient in binding RNase E are able to stimulate GlmZ cleavage in vivo and in vitro when provided at increased concentrations. In contrast, a truncated RapZ variant retaining RNA-binding activity but incapable of contacting RNase E lacks this activity. In agreement, we find that tetrameric RapZ binds the likewise tetrameric RNase E through direct interaction with its large globular domain within the catalytic amino terminus, independent of RNA. Although RapZ stimulates cleavage of at least one non-cognate RNA by RNase E in vitro, its activity is restricted to GlmZ in vivo as revealed by RNA sequencing, suggesting that certain features within the RNA substrate are also required for cleavage. In conclusion, RapZ boosts RNase E activity through interaction with its catalytic domain, which represents a novel mechanism of RNase E activation. In contrast, RNA-binding has a recruiting role, increasing the likelihood that productive RapZ/GlmZ/RNase E complexes form.
Collapse
Affiliation(s)
- Svetlana Durica-Mitic
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Fabian Amman
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Theoretical Biochemistry, University of Vienna, 1090 Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
15
|
Song J, Hegge JW, Mauk MG, Chen J, Till JE, Bhagwat N, Azink LT, Peng J, Sen M, Mays J, Carpenter EL, van der Oost J, Bau HH. Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonaute with applications in cancer diagnostics. Nucleic Acids Res 2020; 48:e19. [PMID: 31828328 PMCID: PMC7038991 DOI: 10.1093/nar/gkz1165] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Detection of disease-associated, cell-free nucleic acids in body fluids enables early diagnostics, genotyping and personalized therapy, but is challenged by the low concentrations of clinically significant nucleic acids and their sequence homology with abundant wild-type nucleic acids. We describe a novel approach, dubbed NAVIGATER, for increasing the fractions of Nucleic Acids of clinical interest Via DNA-Guided Argonaute from Thermus thermophilus (TtAgo). TtAgo cleaves specifically guide-complementary DNA and RNA with single nucleotide precision, greatly increasing the fractions of rare alleles and, enhancing the sensitivity of downstream detection methods such as ddPCR, sequencing, and clamped enzymatic amplification. We demonstrated 60-fold enrichment of the cancer biomarker KRAS G12D and ∼100-fold increased sensitivity of Peptide Nucleic Acid (PNA) and Xenonucleic Acid (XNA) clamp PCR, enabling detection of low-frequency (<0.01%) mutant alleles (∼1 copy) in blood samples of pancreatic cancer patients. NAVIGATER surpasses Cas9-based assays (e.g. DASH, Depletion of Abundant Sequences by Hybridization), identifying more mutation-positive samples when combined with XNA-PCR. Moreover, TtAgo does not require targets to contain any specific protospacer-adjacent motifs (PAM); is a multi-turnover enzyme; cleaves ssDNA, dsDNA and RNA targets in a single assay; and operates at elevated temperatures, providing high selectivity and compatibility with polymerases.
Collapse
Affiliation(s)
- Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Jorrit W Hegge
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University,The Netherlands
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Junman Chen
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Jacob E Till
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neha Bhagwat
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lotte T Azink
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University,The Netherlands
| | - Jing Peng
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Moen Sen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jazmine Mays
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica L Carpenter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University,The Netherlands
| | - Haim H Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
16
|
Kuzmenko A, Yudin D, Ryazansky S, Kulbachinskiy A, Aravin AA. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Nucleic Acids Res 2019; 47:5822-5836. [PMID: 31114878 PMCID: PMC6582412 DOI: 10.1093/nar/gkz379] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Argonaute (Ago) proteins are key players in RNA interference in eukaryotes, where they function as RNA-guided RNA endonucleases. Prokaryotic Argonautes (pAgos) are much more diverse than their eukaryotic counterparts but their cellular functions and mechanisms of action remain largely unknown. Some pAgos were shown to use small DNA guides for endonucleolytic cleavage of complementary DNA in vitro. However, previously studied pAgos from thermophilic prokaryotes function at elevated temperatures, which limits their potential use as a tool in genomic applications. Here, we describe two pAgos from mesophilic bacteria, Clostridium butyricum (CbAgo) and Limnothrix rosea (LrAgo), that act as DNA-guided DNA nucleases at physiological temperatures. In comparison with previously studied pAgos, CbAgo and LrAgo do not show strong preferences for the 5′-nucleotide in guide DNA and can use not only 5′-phosphorylated but also 5′-hydroxyl DNA guides. Both CbAgo and LrAgo can tolerate guide/target mismatches in the seed region, but are sensitive to mismatches in the 3′-guide region. Both pAgos can perform programmable endonucleolytic cleavage of double-stranded DNA substrates, showing enhanced activity at AT-rich regions and at elevated temperatures. The biochemical characterization of mesophilic pAgo proteins paves the way for their use for DNA manipulations both in vitro and in vivo.
Collapse
Affiliation(s)
- Anton Kuzmenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Denis Yudin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Department of Molecular Biology, Biological Faculty, Moscow State University, Moscow 119991, Russia
| | - Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Department of Molecular Biology, Biological Faculty, Moscow State University, Moscow 119991, Russia
| | - Alexei A Aravin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
17
|
Valdés JJ, Miller AD. New opportunities for designing effective small interfering RNAs. Sci Rep 2019; 9:16146. [PMID: 31695077 PMCID: PMC6834666 DOI: 10.1038/s41598-019-52303-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Small interfering RNAs (siRNAs) that silence genes of infectious diseases are potentially potent drugs. A continuing obstacle for siRNA-based drugs is how to improve their efficacy for adequate dosage. To overcome this obstacle, the interactions of antiviral siRNAs, tested in vivo, were computationally examined within the RNA-induced silencing complex (RISC). Thermodynamics data show that a persistent RISC cofactor is significantly more exothermic for effective antiviral siRNAs than their ineffective counterparts. Detailed inspection of viral RNA secondary structures reveals that effective antiviral siRNAs target hairpin or pseudoknot loops. These structures are critical for initial RISC interactions since they partially lack intramolecular complementary base pairing. Importing two temporary RISC cofactors from magnesium-rich hairpins and/or pseudoknots then kickstarts full RNA hybridization and hydrolysis. Current siRNA design guidelines are based on RNA primary sequence data. Herein, the thermodynamics of RISC cofactors and targeting magnesium-rich RNA secondary structures provide additional guidelines for improving siRNA design.
Collapse
MESH Headings
- Argonaute Proteins/chemistry
- Argonaute Proteins/metabolism
- Base Pairing
- Crystallography, X-Ray
- Drug Design
- Humans
- Hydrolysis
- Magnesium
- Molecular Docking Simulation
- Monte Carlo Method
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- RNA Interference
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/chemistry
- RNA-Induced Silencing Complex
- Structure-Activity Relationship
- Thermodynamics
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- James J Valdés
- Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovska 1160/31, CZ-37005, České Budějovice, Czech Republic.
| | - Andrew D Miller
- Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic.
- KP Therapeutics Ltd, 86 Deansgate, Manchester, M3 2ER, UK.
| |
Collapse
|
18
|
Becker WR, Ober-Reynolds B, Jouravleva K, Jolly SM, Zamore PD, Greenleaf WJ. High-Throughput Analysis Reveals Rules for Target RNA Binding and Cleavage by AGO2. Mol Cell 2019; 75:741-755.e11. [PMID: 31324449 PMCID: PMC6823844 DOI: 10.1016/j.molcel.2019.06.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/23/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022]
Abstract
Argonaute proteins loaded with microRNAs (miRNAs) or small interfering RNAs (siRNAs) form the RNA-induced silencing complex (RISC), which represses target RNA expression. Predicting the biological targets, specificity, and efficiency of both miRNAs and siRNAs has been hamstrung by an incomplete understanding of the sequence determinants of RISC binding and cleavage. We applied high-throughput methods to measure the association kinetics, equilibrium binding energies, and single-turnover cleavage rates of mouse AGO2 RISC. We find that RISC readily tolerates insertions of up to 7 nt in its target opposite the central region of the guide. Our data uncover specific guide:target mismatches that enhance the rate of target cleavage, suggesting novel siRNA design strategies. Using these data, we derive quantitative models for RISC binding and target cleavage and show that our in vitro measurements and models predict knockdown in an engineered cellular system.
Collapse
Affiliation(s)
- Winston R Becker
- Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | | | - Karina Jouravleva
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Samson M Jolly
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Foss DV, Schirle NT, MacRae IJ, Pezacki JP. Structural insights into interactions between viral suppressor of RNA silencing protein p19 mutants and small RNAs. FEBS Open Bio 2019; 9:1042-1051. [PMID: 31021526 PMCID: PMC6551489 DOI: 10.1002/2211-5463.12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022] Open
Abstract
Viral suppressors of RNA silencing (VSRSs) are a diverse group of viral proteins that have evolved to disrupt eukaryotic RNA silencing pathways, thereby contributing to viral pathogenicity. The p19 protein is a VSRS that selectively binds to short interfering RNAs (siRNAs) over microRNAs (miRNAs). Mutational analysis has identified single amino acid substitutions that reverse this selectivity through new high-affinity interactions with human miR-122. Herein, we report crystal structures of complexed p19-T111S (2.6 Å), p19-T111H (2.3 Å) and wild-type p19 protein (2.2 Å) from the Carnation Italian ringspot virus with small interfering RNA (siRNA) ligands. Structural comparisons reveal that these mutations do not lead to major changes in p19 architecture, but instead promote subtle rearrangement of residues and solvent molecules along the p19 midline. These observations suggest p19 uses many small interactions to distinguish siRNAs from miRNAs and perturbing these interactions can create p19 variants with novel RNA-recognition properties. DATABASE: Model data are deposited in the PDB database under the accession numbers 6BJG, 6BJH and 6BJV.
Collapse
Affiliation(s)
- Dana V Foss
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Nicole T Schirle
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| |
Collapse
|
20
|
Lisitskaya L, Aravin AA, Kulbachinskiy A. DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. Nat Commun 2018; 9:5165. [PMID: 30514832 PMCID: PMC6279821 DOI: 10.1038/s41467-018-07449-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Recognition and repression of RNA targets by Argonaute proteins guided by small RNAs is the essence of RNA interference in eukaryotes. Argonaute proteins with diverse structures are also found in many bacterial and archaeal genomes. Recent studies revealed that, similarly to their eukaryotic counterparts, prokaryotic Argonautes (pAgos) may function in cell defense against foreign genetic elements but, in contrast, preferably act on DNA targets. Many crucial details of the pAgo action, and the roles of a plethora of pAgos with non-conventional architecture remain unknown. Here, we review available structural and biochemical data on pAgos and discuss their possible functions in host defense and other genetic processes in prokaryotic cells. In this review, Aravin and colleagues examine bacterial and archaeal Argonaute proteins, discuss their diverse architectures and their possible roles in host defense, proposing additional functions for Argonaute proteins in prokaryotic cells.
Collapse
Affiliation(s)
- Lidiya Lisitskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Alexei A Aravin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia. .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
21
|
Liu Y, Esyunina D, Olovnikov I, Teplova M, Kulbachinskiy A, Aravin AA, Patel DJ. Accommodation of Helical Imperfections in Rhodobacter sphaeroides Argonaute Ternary Complexes with Guide RNA and Target DNA. Cell Rep 2018; 24:453-462. [PMID: 29996105 PMCID: PMC6269105 DOI: 10.1016/j.celrep.2018.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/11/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Prokaryotic Argonaute (Ago) proteins were recently shown to target foreign genetic elements, thus making them a perfect model for studies of interference mechanisms. Here, we study interactions of Rhodobacter sphaeroides Ago (RsAgo) with guide RNA (gRNA) and fully complementary or imperfect target DNA (tDNA) using biochemical and structural approaches. We show that RsAgo can specifically recognize both the first nucleotide in gRNA and complementary nucleotide in tDNA, and both interactions contribute to nucleic acid binding. Non-canonical pairs and bulges on the target strand can be accommodated by RsAgo with minimal perturbation of the duplex but significantly reduce RsAgo affinity to tDNA. Surprisingly, mismatches between gRNA and tDNA induce dissociation of the guide-target duplex from RsAgo. Our results reveal plasticity in the ability of Ago proteins to accommodate helical imperfections, show how this might affect the efficiency of RNA silencing, and suggest a potential mechanism for guide release and Ago recycling.
Collapse
Affiliation(s)
- Yiwei Liu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daria Esyunina
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Ivan Olovnikov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianna Teplova
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
22
|
Liu Y, Yu Z, Zhu J, Wang S, Xu D, Han W. Why Is a High Temperature Needed by Thermus thermophilus Argonaute During mRNA Silencing: A Theoretical Study. Front Chem 2018; 6:223. [PMID: 29967763 PMCID: PMC6016274 DOI: 10.3389/fchem.2018.00223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022] Open
Abstract
Thermus thermophiles Argonaute (TtAgo) is a complex, which is consisted of 5′-phosphorylated guide DNA and a series of target DNA with catalytic activities at high temperatures. To understand why high temperatures are needed for the catalytic activities, three molecular dynamics simulations and binding free energy calculations at 310, 324, and 338K were performed for the TtAgo-DNA complex to explore the conformational changes between 16-mer guide DNA/15-mer target DNA and TtAgo at different temperatures. The simulation results indicate that a collapse of a small β-strand (residues 507–509) at 310 K caused Glu512 to move away from the catalytic residues Asp546 and Asp478, resulting in a decrease in catalytic activity, which was not observed in the simulations at 324 and 338 K. The nucleic acid binding channel became enlarged at 324 and 338K, thereby facilitating the DNA to slide in. Binding free energy calculations and hydrogen bond occupancy indicated that the interaction between TtAgo and the DNA was more stable at 324K and 338K than at 310 K. The DNA binding pocket residues Lys575 and Asn590 became less solvent accessible at 324 and 338K than at 310 K to influence hydrophilic interaction with DNA. Our simulation studies shed some light on the mechanism of TtAgo and explained why a high temperature was needed by TtAgo during gene editing of CRISPR.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Zhengfei Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Song Wang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Dong Xu
- Department of Electric Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,College of Computer Science and Technology, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
23
|
Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, Tang TH. Bacterial regulatory RNAs: complexity, function, and putative drug targeting. Crit Rev Biochem Mol Biol 2018; 53:335-355. [PMID: 29793351 DOI: 10.1080/10409238.2018.1473330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, RNA-deep sequencing has uncovered copious non-protein coding RNAs (npcRNAs) in bacteria. Many of them are key players in the regulation of gene expression, taking part in various regulatory circuits, such as metabolic responses to different environmental stresses, virulence, antibiotic resistance, and host-pathogen interactions. This has contributed to the high adaptability of bacteria to changing or even hostile environments. Their mechanisms include the regulation of transcriptional termination, modulation of translation, and alteration of messenger RNA (mRNA) stability, as well as protein sequestration. Here, the mechanisms of gene expression by regulatory bacterial npcRNAs are comprehensively reviewed and supplemented with well-characterized examples. This class of molecules and their mechanisms of action might be useful targets for the development of novel antibiotics.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Carsten A Raabe
- b Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany.,c Brandenburg Medical School (MHB) , Neuruppin , Germany.,d Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation , University of Münster , Münster , Germany
| | - Li-Pin Lee
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Timofey S Rozhdestvensky
- e Medical Faculty, Transgenic Mouse and Genome Engineering Model Core Facility (TRAM) , University of Münster , Münster , Germany
| | - Marimuthu Citartan
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Siti Aminah Ahmed
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| | - Thean-Hock Tang
- a Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia , Kepala Batas , Malaysia
| |
Collapse
|
24
|
Dzowo YK, Wolfbrandt C, Resendiz MJE, Wang H. Modeling of canonical and C2′- O-thiophenylmethyl modified hexamers of RNA. Insights into the nature of structural changes and thermal stability. NEW J CHEM 2018. [DOI: 10.1039/c8nj01739e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Modification of the C2′-O-position with thiophenylmethyl groups on both strands leads to thermal stabilization of the duplex. Predicting the effects that modifications will have on structure of RNA is of importance in the development of new RNA technologies.
Collapse
Affiliation(s)
| | | | | | - Haobin Wang
- Department of Chemistry
- University of Colorado Denver
- Denver
- USA
| |
Collapse
|