1
|
Roy S, Pramanik P, Bhattacharya S. Exploring the Role of G-Quadruplex DNA, and their Structural Polymorphism, in Targeting Small Molecules for the Design of Anticancer Therapeutics: Progress, Challenges, and Future Directions. Biochimie 2025:S0300-9084(25)00068-9. [PMID: 40250703 DOI: 10.1016/j.biochi.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Selective stabilization of non-canonical G-quadruplex DNA structures by small molecules can be a potential target for anticancer therapeutics. The primary motivation for the molecular design of these G-quadruplex binders is to restrict the transcriptional machinery, which can impede cancer cell progression. This review article comprises the structural diversity of different G-quadruplex DNA, the design strategy for targeting these structures with small molecules, and various G-quadruplex binding ligands which have been expanded by the chemists and biologists over the past few decades. Further, the existence of G-quadruplex structures inside human cells, the significant challenges for designing these selective G-quadruplex binding ligands, current status, and progress towards achieving this goal have also been discussed.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pulakesh Pramanik
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India; Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517619, India.
| |
Collapse
|
2
|
Kafi AKM, Pokhrel P, Shen H, Mao H. Electroanalytical Quantification of DNA Chirality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24968-24977. [PMID: 39555753 DOI: 10.1021/acs.langmuir.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Although chirality is critical for molecular properties and functions, experimental quantification of chirality is lacking. Herein, we performed cyclic voltammetry (CV) under polarized magnetic fields to provide a unified scale to quantify and compare DNA chirality. We observed the largest electron spin polarization in DNA structures with opposite chiral senses, which is consistent with the effect of chiral-induced spin selectivity (CISS). Spin polarization is weaker among DNA topologies of the same chiral arrangement, with DNA triplexes exhibiting the strongest CISS. Within DNA duplexes, spin polarization is further reduced depending on the sequence, with fewer guanine-cytosine (GC) pairs displaying a weaker CISS likely due to localized variations in chirality. Surprisingly, spin polarization is vectorial along the DNA duplex while presenting the smallest variation when the transportation directions of electrons become opposite. The four factors, chiral sense, topology, sequence, and directionality of electron transportation, delineate hierarchical contributions to molecular chirality, with profound implications ranging from spintronics to molecular recognitions.
Collapse
Affiliation(s)
- A K M Kafi
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
3
|
Medoro A, Saso L, Scapagnini G, Davinelli S. NRF2 signaling pathway and telomere length in aging and age-related diseases. Mol Cell Biochem 2024; 479:2597-2613. [PMID: 37917279 PMCID: PMC11455797 DOI: 10.1007/s11010-023-04878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is well recognized as a critical regulator of redox, metabolic, and protein homeostasis, as well as the regulation of inflammation. An age-associated decline in NRF2 activity may allow oxidative stress to remain unmitigated and affect key features associated with the aging phenotype, including telomere shortening. Telomeres, the protective caps of eukaryotic chromosomes, are highly susceptible to oxidative DNA damage, which can accelerate telomere shortening and, consequently, lead to premature senescence and genomic instability. In this review, we explore how the dysregulation of NRF2, coupled with an increase in oxidative stress, might be a major determinant of telomere shortening and age-related diseases. We discuss the relevance of the connection between NRF2 deficiency in aging and telomere attrition, emphasizing the importance of studying this functional link to enhance our understanding of aging pathologies. Finally, we present a number of compounds that possess the ability to restore NRF2 function, maintain a proper redox balance, and preserve telomere length during aging.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy.
| |
Collapse
|
4
|
Ji J, Sharma A, Pokhrel P, Karna D, Pandey S, Zheng YR, Mao H. Dynamic Structures and Fast Transition Kinetics of Oxidized G-Quadruplexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400485. [PMID: 38678502 PMCID: PMC11357892 DOI: 10.1002/smll.202400485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Indexed: 05/01/2024]
Abstract
8-oxoguanines (8-oxoG) in cells form compromised G-quadruplexes (GQs), which may vary GQ mediated gene regulations. By mimicking molecularly crowded cellular environment using 40% DMSO or sucrose, here it is found that oxidized human telomeric GQs have stabilities close to the wild-type (WT) GQs. Surprisingly, while WT GQs show negative formation cooperativity between a Pt(II) binder and molecularly crowded environment, positive cooperativity is observed for oxidized GQ formation. Single-molecule mechanical unfolding reveals that 8-oxoG sequence formed more diverse and flexible structures with faster folding/unfolding transition kinetics, which facilitates the Pt(II) ligand to bind the best-fit structures with positive cooperativity. These findings offer new understanding on structures and properties of oxidized G-rich species in crowded environments. They also provide insights into the design of better ligands to target oxidized G-rich structures formed under oxidative cell stress.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Arpit Sharma
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Pravin Pokhrel
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Deepak Karna
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Yao-Rong Zheng
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
5
|
Lacen A, Symasek A, Gunter A, Lee HT. Slow G-Quadruplex Conformation Rearrangement and Accessibility Change Induced by Potassium in Human Telomeric Single-Stranded DNA. J Phys Chem B 2024; 128:5950-5965. [PMID: 38875355 PMCID: PMC11216195 DOI: 10.1021/acs.jpcb.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
The guanine-rich telomeric repeats can form G-quadruplexes (G4s) that alter the accessibility of the single-stranded telomeric overhang. In this study, we investigated the effects of Na+ and K+ on G4 folding and accessibility through cation introduction and exchange. We combined differential scanning calorimetry (DSC), circular dichroism (CD), and single molecule Förster resonance energy transfer (smFRET) to monitor the stability, conformational dynamics, and complementary strand binding accessibility of G4 formed by single-stranded telomeric DNA. Our data showed that G4 formed through heating and slow cooling in K+ solution exhibited fewer conformational dynamics than G4 formed in Na+ solution, which is consistent with the higher thermal stability of G4 in K+. Monitoring cation exchange with real time smFRET at room temperature shows that Na+ and K+ can replace each other in G4. When encountering high K+ at room or body temperature, G4 undergoes a slow conformational rearrangement process which is mostly complete by 2 h. The slow conformational rearrangement ends with a stable G4 that is unable to be unfolded by a complementary strand. This study provides new insights into the accessibility of G4 forming sequences at different time points after introduction to a high K+ environment in cells, which may affect how the nascent telomeric overhang interacts with proteins and telomerase.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| | - Andrew Symasek
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| | - Alan Gunter
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| | - Hui-Ting Lee
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| |
Collapse
|
6
|
Vaurs M, Dolu EB, Decottignies A. Mitochondria and telomeres: hand in glove. Biogerontology 2024; 25:289-300. [PMID: 37864609 DOI: 10.1007/s10522-023-10074-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Born as an endosymbiont, the bacteria engulfed by the proto-eukaryotic cell more than 1.45 billion years ago progressively evolved as an important organelle with multiple interactions with the host cell. In particular, strong connections between mitochondria and the chromosome ends, the telomeres, led to propose a new theory of ageing in which dysfunctional telomeres and mitochondria are the main actors of a vicious circle reducing cell fitness and promoting cellular ageing. We review the evidences that oxidative stress and dysfunctional mitochondria damage telomeres and further discuss the interrelationship between telomere biology and mitochondria through the lens of telomerase which shuttles between the nucleus and mitochondria. Finally, we elaborate on the possible role of the mitochondrial genome on the inheritance of human telomere length through the expression of mitochondrial gene variants.
Collapse
Affiliation(s)
- Mélina Vaurs
- de Duve Institute, UCLouvain, Avenue Hippocrate, 1200, Brussels, Belgium.
| | - Elif Beyza Dolu
- de Duve Institute, UCLouvain, Avenue Hippocrate, 1200, Brussels, Belgium
| | | |
Collapse
|
7
|
Johnson S, Paul T, Sanford S, Schnable BL, Detwiler A, Thosar S, Van Houten B, Myong S, Opresko P. BG4 antibody can recognize telomeric G-quadruplexes harboring destabilizing base modifications and lesions. Nucleic Acids Res 2024; 52:1763-1778. [PMID: 38153143 PMCID: PMC10939409 DOI: 10.1093/nar/gkad1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
BG4 is a single-chain variable fragment antibody shown to bind various G-quadruplex (GQ) topologies with high affinity and specificity, and to detect GQ in cells, including GQ structures formed within telomeric TTAGGG repeats. Here, we used ELISA and single-molecule pull-down (SiMPull) detection to test how various lengths and GQ destabilizing base modifications in telomeric DNA constructs alter BG4 binding. We observed high-affinity BG4 binding to telomeric GQ independent of telomere length, although three telomeric repeat constructs that cannot form stable intramolecular GQ showed reduced affinity. A single guanine substitution with 8-aza-7-deaza-G, T, A, or C reduced affinity to varying degrees depending on the location and base type, whereas two G substitutions in the telomeric construct dramatically reduced or abolished binding. Substitution with damaged bases 8-oxoguanine and O6-methylguanine failed to prevent BG4 binding although affinity was reduced depending on lesion location. SiMPull combined with FRET revealed that BG4 binding promotes folding of telomeric GQ harboring a G to T substitution or 8-oxoguanine. Atomic force microscopy revealed that BG4 binds telomeric GQ with a 1:1 stoichiometry. Collectively, our data suggest that BG4 can recognize partially folded telomeric GQ structures and promote telomeric GQ stability.
Collapse
Affiliation(s)
- Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Brittani L Schnable
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| |
Collapse
|
8
|
Barcenilla BB, Kundel I, Hall E, Hilty N, Ulianich P, Cook J, Turley J, Yerram M, Min JH, Castillo-González C, Shippen DE. Telomere dynamics and oxidative stress in Arabidopsis grown in lunar regolith simulant. FRONTIERS IN PLANT SCIENCE 2024; 15:1351613. [PMID: 38434436 PMCID: PMC10908177 DOI: 10.3389/fpls.2024.1351613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Xu Y, Komiyama M. G-Quadruplexes in Human Telomere: Structures, Properties, and Applications. Molecules 2023; 29:174. [PMID: 38202757 PMCID: PMC10780218 DOI: 10.3390/molecules29010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
G-quadruplexes, intricate four-stranded structures composed of G-tetrads formed by four guanine bases, are prevalent in both DNA and RNA. Notably, these structures play pivotal roles in human telomeres, contributing to essential cellular functions. Additionally, the existence of DNA:RNA hybrid G-quadruplexes adds a layer of complexity to their structural diversity. This review provides a comprehensive overview of recent advancements in unraveling the intricacies of DNA and RNA G-quadruplexes within human telomeres. Detailed insights into their structural features are presented, encompassing the latest developments in chemical approaches designed to probe these G-quadruplex structures. Furthermore, this review explores the applications of G-quadruplex structures in targeting human telomeres. Finally, the manuscript outlines the imminent challenges in this evolving field, setting the stage for future investigations.
Collapse
Affiliation(s)
- Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
10
|
Vukašinović A, Klisic A, Ostanek B, Kafedžić S, Zdravković M, Ilić I, Sopić M, Hinić S, Stefanović M, Bogavac-Stanojević N, Marc J, Nešković AN, Kotur-Stevuljević J. Redox Status and Telomere-Telomerase System Biomarkers in Patients with Acute Myocardial Infarction Using a Principal Component Analysis: Is There a Link? Int J Mol Sci 2023; 24:14308. [PMID: 37762611 PMCID: PMC10531660 DOI: 10.3390/ijms241814308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In the present study, we examined redox status parameters in arterial and venous blood samples, its potential to predict the prognosis of acute myocardial infarction (AMI) patients assessed through its impact on the comprehensive grading SYNTAX score, and its clinical accuracy. Potential connections between common blood biomarkers, biomarkers of redox status, leukocyte telomere length, and telomerase enzyme activity in the acute myocardial infarction burden were assessed using principal component analysis (PCA). This study included 92 patients with acute myocardial infarction. Significantly higher levels of advanced oxidation protein products (AOPP), superoxide anion (O2•-), ischemia-modified albumin (IMA), and significantly lower levels of total oxidant status (TOS) and total protein sulfhydryl (SH-) groups were found in arterial blood than in the peripheral venous blood samples, while biomarkers of the telomere-telomerase system did not show statistical significance in the two compared sample types (p = 0.834 and p = 0.419). To better understand the effect of the examined biomarkers in the AMI patients on SYNTAX score, those biomarkers were grouped using PCA, which merged them into the four the most contributing factors. The "cholesterol-protein factor" and "oxidative-telomere factor" were independent predictors of higher SYNTAX score (OR = 0.338, p = 0.008 and OR = 0.427, p = 0.035, respectively), while the ability to discriminate STEMI from non-STEMI patients had only the "oxidative-telomere factor" (AUC = 0.860, p = 0.008). The results show that traditional cardiovascular risk factors, i.e., high total cholesterol together with high total serum proteins and haemoglobin, are associated with severe disease progression in much the same way as a combination of redox biomarkers (pro-oxidant-antioxidant balance, total antioxidant status, IMA) and telomere length.
Collapse
Affiliation(s)
- Aleksandra Vukašinović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.V.); (M.S.); (N.B.-S.); (J.K.-S.)
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.O.); (J.M.)
| | - Srdjan Kafedžić
- Department of Cardiology, Clinical Hospital Center Zemun, 11070 Belgrade, Serbia; (S.K.); (I.I.); (M.S.); (A.N.N.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Marija Zdravković
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Department of Cardiology, Clinical Hospital Center Bezanijska Kosa, 11070 Belgrade, Serbia;
| | - Ivan Ilić
- Department of Cardiology, Clinical Hospital Center Zemun, 11070 Belgrade, Serbia; (S.K.); (I.I.); (M.S.); (A.N.N.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.V.); (M.S.); (N.B.-S.); (J.K.-S.)
| | - Saša Hinić
- Department of Cardiology, Clinical Hospital Center Bezanijska Kosa, 11070 Belgrade, Serbia;
| | - Milica Stefanović
- Department of Cardiology, Clinical Hospital Center Zemun, 11070 Belgrade, Serbia; (S.K.); (I.I.); (M.S.); (A.N.N.)
| | - Nataša Bogavac-Stanojević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.V.); (M.S.); (N.B.-S.); (J.K.-S.)
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.O.); (J.M.)
| | - Aleksandar N. Nešković
- Department of Cardiology, Clinical Hospital Center Zemun, 11070 Belgrade, Serbia; (S.K.); (I.I.); (M.S.); (A.N.N.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.V.); (M.S.); (N.B.-S.); (J.K.-S.)
| |
Collapse
|
11
|
Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A. Exploring the Causal Relationship Between Telomere Biology and Alzheimer's Disease. Mol Neurobiol 2023; 60:4169-4183. [PMID: 37046137 PMCID: PMC10293431 DOI: 10.1007/s12035-023-03337-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Telomeres, also known as the "protective caps" of our chromosomes, shorten with each cell cycle due to the end replication problem. This process, termed telomere attrition, is associated with many age-related disorders, such as Alzheimer's disease (AD). Despite the numerous studies conducted in this field, the role of telomere attrition in the onset of the disease remains unclear. To investigate the causal relationship between short telomeres and AD, this review aims to highlight the primary factors that regulate telomere length and maintain its integrity, with an additional outlook on the role of oxidative stress, which is commonly associated with aging and molecular damage. Although some findings thus far might be contradictory, telomere attrition likely plays a crucial role in the progression of AD due to its close association with oxidative stress. The currently available treatments for AD are only symptomatic without affecting the progression of the disease. The components of telomere biology discussed in this paper have previously been studied as an alternative treatment option for several diseases and have exhibited promising in vitro and in vivo results. Hence, this should provide a basis for future research to develop a potential therapeutic strategy for AD. (Created with BioRender.com).
Collapse
Affiliation(s)
- Xi-Yuen Kuan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Nurul Syahira Ahmad Fauzi
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
12
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
13
|
Wu S, Jiang L, Lei L, Fu C, Huang J, Hu Y, Dong Y, Chen J, Zeng Q. Crosstalk between G-quadruplex and ROS. Cell Death Dis 2023; 14:37. [PMID: 36653351 PMCID: PMC9849334 DOI: 10.1038/s41419-023-05562-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The excessive production of reactive oxygen species (ROS) can lead to single nucleic acid base damage, DNA strand breakage, inter- and intra-strand cross-linking of nucleic acids, and protein-DNA cross-linking involved in the pathogenesis of cancer, neurodegenerative diseases, and aging. G-quadruplex (G4) is a stacked nucleic acid structure that is ubiquitous across regulatory regions of multiple genes. Abnormal formation and destruction of G4s due to multiple factors, including cations, helicases, transcription factors (TFs), G4-binding proteins, and epigenetic modifications, affect gene replication, transcription, translation, and epigenetic regulation. Due to the lower redox potential of G-rich sequences and unique structural characteristics, G4s are highly susceptible to oxidative damage. Additionally, the formation, stability, and biological regulatory role of G4s are affected by ROS. G4s are involved in regulating gene transcription, translation, and telomere length maintenance, and are therefore key players in age-related degeneration. Furthermore, G4s also mediate the antioxidant process by forming stress granules and activating Nrf2, which is suggestive of their involvement in developing ROS-related diseases. In this review, we have summarized the crosstalk between ROS and G4s, and the possible regulatory mechanisms through which G4s play roles in aging and age-related diseases.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Yumeng Dong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, 410013, Changsha, Hunan, PR China.
| |
Collapse
|
14
|
Noguera JC, da Silva A, Velando A. Egg corticosterone can stimulate telomerase activity and promote longer telomeres during embryo development. Mol Ecol 2022; 31:6252-6260. [PMID: 33065771 DOI: 10.1111/mec.15694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 01/31/2023]
Abstract
It is often assumed that the transfer of maternal glucocorticoids (GCs; e.g., corticosterone or cortisol) to offspring is an inevitable cost associated with adverse or stressful conditions experienced by mothers. However, recent evidence indicates that maternal GCs may adaptively programme particular physiological and molecular pathways during development to enhance offspring fitness. In this context, an important mechanism through which maternal GCs may lastingly affect offspring phenotypic quality and survival is via effects on embryo telomerase activity and so on offspring postnatal telomere length. Here, using a field experimental design for which we manipulated the corticosterone content in yellow-legged gull (Larus michahellis) eggs, we show that embryos from corticosterone-injected eggs not only had a higher telomerase activity but also longer telomeres just after hatching. A complementary analysis further revealed that gull hatchlings with longer telomeres had a higher survival probability during the period when most of the chick mortality occurs. Given the important role that telomere length and its restoring mechanisms have on ageing trajectories and disease risk, our findings provide a new mechanistic link by which mothers may presumably shape offspring life-history trajectories and phenotype.
Collapse
Affiliation(s)
- José Carlos Noguera
- Grupo de Ecología Animal (GEA), Centro de Investigacion Mariña (CIM), Universidad de Vigo, Vigo, 36310, Spain
| | - Alberto da Silva
- Grupo de Ecología Animal (GEA), Centro de Investigacion Mariña (CIM), Universidad de Vigo, Vigo, 36310, Spain
| | - Alberto Velando
- Grupo de Ecología Animal (GEA), Centro de Investigacion Mariña (CIM), Universidad de Vigo, Vigo, 36310, Spain
| |
Collapse
|
15
|
Moazamian A, Gharagozloo P, Aitken RJ, Drevet JR. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Sperm telomeres, oxidative stress, and infertility. Reproduction 2022; 164:F125-F133. [PMID: 35938805 DOI: 10.1530/rep-22-0189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
In brief Oxidative stress is recognized as an underlying driving factor of both telomere dysfunction and human subfertility/infertility. This review briefly reassesses telomere integrity as a fertility biomarker before proposing a novel, mechanistic rationale for the role of oxidative stress in the seemingly paradoxical lengthening of sperm telomeres with aging. Abstract The maintenance of redox balance in the male reproductive tract is critical to sperm health and function. Physiological levels of reactive oxygen species (ROS) promote sperm capacitation, while excess ROS exposure, or depleted antioxidant defenses, yields a state of oxidative stress which disrupts their fertilizing capacity and DNA structural integrity. The guanine moiety is the most readily oxidized of the four DNA bases and gets converted to the mutagenic lesion 8-hydroxy-deoxyguanosine (8-OHdG). Numerous studies have also confirmed oxidative stress as a driving factor behind accelerated telomere shortening and dysfunction. Although a clear consensus has not been reached, clinical studies also appear to associate telomere integrity with fertility outcomes in the assisted reproductive technology setting. Intriguingly, while sperm cellular and molecular characteristics make them more susceptible to oxidative insult than any other cell type, they are also the only cell type in which telomere lengthening accompanies aging. This article focuses on the oxidative stress response pathways to propose a mechanism for the explanation of this apparent paradox.
Collapse
Affiliation(s)
- Aron Moazamian
- CellOxess LLC, Ewing, New Jersey, USA.,Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| | | | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Joël R Drevet
- Université Clermont Auvergne, GReD Institute, CNRS-INSERM, Clermont-Ferrand, France
| |
Collapse
|
16
|
Noguera JC, Velando A. Maternal testosterone affects offspring telomerase activity in a long-lived seabird. Ecol Evol 2022; 12:e9281. [PMID: 36110870 PMCID: PMC9465397 DOI: 10.1002/ece3.9281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Androgens are a group of steroid hormones that have long been proposed as a mechanism underpinning intergenerational plasticity. In birds, maternally allocated egg testosterone, one of the main androgens in vertebrates, affects a wide variety of offspring phenotypic traits but the mechanisms underlying this form of intergenerational plasticity are not yet well understood. Recent in vitro and animal model studies have shown that telomerase expression and activity are important targets of androgen signaling. The telomerase enzyme is known for its repair function on telomeres, the DNA-protein complexes at the ends of chromosomes that are involved in genomic integrity and cell aging. However, the role of maternal testosterone in influencing offspring telomerase levels in natural populations and its consequences on telomere length and potentially on offspring development is still unknown. Here, by experimentally modifying the level of egg testosterone in a natural population of yellow-legged gull (Larus michahellis), we show that chicks hatched from testosterone-treated eggs had higher average levels of telomerase and faster growth than controls during the first week of life. While testosterone-treated chicks also tended to have longer telomeres than controls at hatching this difference disappeared by day 6 of age. Overall, our results suggest that maternal testosterone may have a potential adaptive value by promoting offspring growth and presumably telomerase levels, as this enzyme plays other important physiological functions (e.g., stress resistance, cell signaling, or tissue genesis) besides telomere lengthening. Nonetheless, our knowledge of the potential adaptive function of telomerase in natural populations is scarce and so the potential pathways linking maternal hormones, offspring telomerase, and fitness should be further investigated.
Collapse
Affiliation(s)
- Jose C. Noguera
- Grupo de Ecología Animal (GEA), Centro de Investigación Marina (CIM)Universidad de VigoVigoSpain
| | - Alberto Velando
- Grupo de Ecología Animal (GEA), Centro de Investigación Marina (CIM)Universidad de VigoVigoSpain
| |
Collapse
|
17
|
Chen J, Hickey BL, Gao Z, Raz AAP, Hooley RJ, Zhong W. Sensing Base Modifications in Non-Canonically Folded DNA with an Optimized Host:Guest Sensing Array. ACS Sens 2022; 7:2164-2169. [PMID: 35917160 DOI: 10.1021/acssensors.2c00839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An arrayed host:guest fluorescence sensor system can discriminate DNA G-quadruplex structures that differ only in the presence of single oxidation or methylation modification in the guanine base. These small modifications make subtle changes to G4 folding that are often not detectable by CD but induce differential fluorescence responses in the array. The sensing is functional in diluted serum and is capable of distinguishing individual modifications in DNA mixtures, providing a powerful method of detecting folding changes caused by DNA damage.
Collapse
|
18
|
Choi BE, Lee HT. DNA-RNA hybrid G-quadruplex tends to form near the 3' end of telomere overhang. Biophys J 2022; 121:2962-2980. [PMID: 35769005 PMCID: PMC9388385 DOI: 10.1016/j.bpj.2022.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/14/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Telomeric repeat-containing RNA (TERRA) has been suggested to participate in telomere maintenance. TERRA consisting of UUAGGG repeats is capable of forming an intermolecular G-quadruplex (GQ) with single-stranded TTAGGG-repeat DNA in the telomere 3' overhang. To explore the structural features and potential functions of this DNA-RNA hybrid GQ (HGQ), we used single-molecule FRET to study the folding patterns of DNA with four to seven telomeric tandem repeats annealed with a short RNA consisting of two or five telomeric repeats. Our data highlight that RNA prefers to form DNA-RNA HGQ near the 3' end of telomeric DNA. Furthermore, the unfolding of secondary structures by a complementary C-rich sequence was observed for DNA GQ but not for DNA-RNA HGQ, which demonstrated the enhanced stability of the telomere 3' end via hybridization with RNA. These conformational and physical properties of telomeric DNA-RNA HGQ suggest that TERRA might limit access to the 3' end of the telomeric DNA overhang, which is known to be critical for the interaction with telomerase and other telomere-associated proteins.
Collapse
Affiliation(s)
- Bok-Eum Choi
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hui-Ting Lee
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
19
|
Paul T, Opresko PL, Ha T, Myong S. Vectorial folding of telomere overhang promotes higher accessibility. Nucleic Acids Res 2022; 50:6271-6283. [PMID: 35687089 PMCID: PMC9226509 DOI: 10.1093/nar/gkac401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Human telomere overhang composed of tandem repeats of TTAGGG folds into G-quadruplex (G4). Unlike in an experimental setting in the test tube in which the entire length is allowed to fold at once, inside the cell, the overhang is expected to fold as it is synthesized directionally (5' to 3') and released segmentally by a specialized enzyme, the telomerase. To mimic such vectorial G4 folding process, we employed a superhelicase, Rep-X which can unwind DNA to release the TTAGGG repeats in 5' to 3' direction. We demonstrate that the folded conformation achieved by the refolding of full sequence is significantly different from that of the vectorial folding for two to eight TTAGGG repeats. Strikingly, the vectorially folded state leads to a remarkably higher accessibility to complementary C-rich strand and the telomere binding protein POT1, reflecting a less stably folded state resulting from the vectorial folding. Importantly, our study points to an inherent difference between the co-polymerizing and post-polymerized folding of telomere overhang that can impact telomere architecture and downstream processes.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer Center, Pittsburgh, PA15213, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
20
|
Castillo-González C, Barbero Barcenilla B, Young PG, Hall E, Shippen DE. Quantification of 8-oxoG in Plant Telomeres. Int J Mol Sci 2022; 23:ijms23094990. [PMID: 35563379 PMCID: PMC9102096 DOI: 10.3390/ijms23094990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Chemical modifications in DNA impact gene regulation and chromatin structure. DNA oxidation, for example, alters gene expression, DNA synthesis and cell cycle progression. Modification of telomeric DNA by oxidation is emerging as a marker of genotoxic damage and is associated with reduced genome integrity and changes in telomere length and telomerase activity. 8-oxoguanine (8-oxoG) is the most studied and common outcome of oxidative damage in DNA. The G-rich nature of telomeric DNA is proposed to make it a hotspot for oxidation, but because telomeres make up only a tiny fraction of the genome, it has been difficult to directly test this hypothesis by studying dynamic DNA modifications specific to this region in vivo. Here, we present a new, robust method to differentially enrich telomeric DNA in solution, coupled with downstream methods for determination of chemical modification. Specifically, we measure 8-oxoG in Arabidopsis thaliana telomeres under normal and oxidative stress conditions. We show that telomere length is unchanged in response to oxidative stress in three different wild-type accessions. Furthermore, we report that while telomeric DNA comprises only 0.02–0.07% of the total genome, telomeres contribute between 0.2 and 15% of the total 8-oxoG. That is, plant telomeres accumulate 8-oxoG at levels approximately 100-fold higher than the rest of the genome under standard growth conditions. Moreover, they are the primary targets of further damage upon oxidative stress. Interestingly, the accumulation of 8-oxoG in the chromosome body seems to be inversely proportional to telomere length. These findings support the hypothesis that telomeres are hotspots of 8-oxoG and may function as sentinels of oxidative stress in plants.
Collapse
|
21
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
22
|
Paul T, Liou W, Cai X, Opresko PL, Myong S. TRF2 promotes dynamic and stepwise looping of POT1 bound telomeric overhang. Nucleic Acids Res 2021; 49:12377-12393. [PMID: 34850123 PMCID: PMC8643667 DOI: 10.1093/nar/gkab1123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Human telomeres are protected by shelterin proteins, but how telomeres maintain a dynamic structure remains elusive. Here, we report an unexpected activity of POT1 in imparting conformational dynamics of the telomere overhang, even at a monomer level. Strikingly, such POT1-induced overhang dynamics is greatly enhanced when TRF2 engages with the telomere duplex. Interestingly, TRF2, but not TRF2ΔB, recruits POT1-bound overhangs to the telomere ds/ss junction and induces a discrete stepwise movement up and down the axis of telomere duplex. The same steps are observed regardless of the length of the POT1-bound overhang, suggesting a tightly regulated conformational dynamic coordinated by TRF2 and POT1. TPP1 and TIN2 which physically connect POT1 and TRF2 act to generate a smooth movement along the axis of the telomere duplex. Our results suggest a plausible mechanism wherein telomeres maintain a dynamic structure orchestrated by shelterin.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Liou
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xinyi Cai
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, Hillman Cancer Center, 5117 Centre Avenue, Suite 2.6a, Pittsburgh, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
23
|
Linke R, Limmer M, Juranek SA, Heine A, Paeschke K. The Relevance of G-Quadruplexes for DNA Repair. Int J Mol Sci 2021; 22:12599. [PMID: 34830478 PMCID: PMC8620898 DOI: 10.3390/ijms222212599] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.
Collapse
Affiliation(s)
- Rebecca Linke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaela Limmer
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Stefan A. Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| |
Collapse
|
24
|
Sanford SL, Welfer GA, Freudenthal BD, Opresko PL. How DNA damage and non-canonical nucleotides alter the telomerase catalytic cycle. DNA Repair (Amst) 2021; 107:103198. [PMID: 34371388 PMCID: PMC8526386 DOI: 10.1016/j.dnarep.2021.103198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
Telomeres at the ends of linear chromosomes are essential for genome maintenance and sustained cellular proliferation, but shorten with each cell division. Telomerase, a specialized reverse transcriptase with its own integral RNA template, compensates for this by lengthening the telomeric 3' single strand overhang. Mammalian telomerase has the unique ability to processively synthesize multiple GGTTAG repeats, by translocating along its product and reiteratively copying the RNA template, termed repeat addition processivity (RAP). This unusual form of processivity is distinct from the nucleotide addition processivity (NAP) shared by all other DNA polymerases. In this review, we focus on the minimally active human telomerase catalytic core consisting of the telomerase reverse transcriptase (TERT) and the integral RNA (TR), which catalyzes DNA synthesis. We review the mechanisms by which oxidatively damaged nucleotides, and anti-viral and anti-cancer nucleotide drugs affect the telomerase catalytic cycle. Finally, we offer perspective on how we can leverage telomerase's unique properties, and advancements in understanding of telomerase catalytic mechanism, to selectively manipulate telomerase activity with therapeutics, particularly in cancer treatment.
Collapse
Affiliation(s)
- Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Griffin A Welfer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, UPMC Hillman Cancer Center, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
25
|
Marilovtseva EV, Studitsky VM. Guanine Quadruplexes in Cell Nucleus Metabolism. Mol Biol 2021. [DOI: 10.1134/s0026893321040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Chatain J, Hatem G, Delagoutte E, Riou JF, Alberti P, Saintomé C. Multiple hPOT1-TPP1 cooperatively unfold contiguous telomeric G-quadruplexes proceeding from 3' toward 5', a feature due to a 3'-end binding preference and to structuring of telomeric DNA. Nucleic Acids Res 2021; 49:10735-10746. [PMID: 34534331 PMCID: PMC8501996 DOI: 10.1093/nar/gkab768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/04/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Telomeres are DNA repeated sequences that associate with shelterin proteins and protect the ends of eukaryotic chromosomes. Human telomeres are composed of 5'TTAGGG repeats and ends with a 3' single-stranded tail, called G-overhang, that can be specifically bound by the shelterin protein hPOT1 (human Protection of Telomeres 1). In vitro studies have shown that the telomeric G-strand can fold into stable contiguous G-quadruplexes (G4). In the present study we investigated how hPOT1, in complex with its shelterin partner TPP1, binds to telomeric sequences structured into contiguous G4 in potassium solutions. We observed that binding of multiple hPOT1-TPP1 preferentially proceeds from 3' toward 5'. We explain this directionality in terms of two factors: (i) the preference of hPOT1-TPP1 for the binding site situated at the 3' end of a telomeric sequence and (ii) the cooperative binding displayed by hPOT1-TPP1 in potassium. By comparing binding in K+ and in Li+, we demonstrate that this cooperative behaviour does not stem from protein-protein interactions, but from structuring of the telomeric DNA substrate into contiguous G4 in potassium. Our study suggests that POT1-TPP1, in physiological conditions, might preferentially cover the telomeric G-overhang starting from the 3'-end and proceeding toward 5'.
Collapse
Affiliation(s)
- Jean Chatain
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Georges Hatem
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Emmanuelle Delagoutte
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Jean-François Riou
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Patrizia Alberti
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France
| | - Carole Saintomé
- Structure et Instabilité des Génomes, Muséum national d'Histoire naturelle, CNRS, INSERM, 43 rue Cuvier, F-75005 Paris, France.,Sorbonne Université, UFR927, F-75005 Paris, France
| |
Collapse
|
27
|
Baddock H, Newman J, Yosaatmadja Y, Bielinski M, Schofield C, Gileadi O, McHugh P. A phosphate binding pocket is a key determinant of exo- versus endo-nucleolytic activity in the SNM1 nuclease family. Nucleic Acids Res 2021; 49:9294-9309. [PMID: 34387694 PMCID: PMC8450094 DOI: 10.1093/nar/gkab692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
The SNM1 nucleases which help maintain genome integrity are members of the metallo-β-lactamase (MBL) structural superfamily. Their conserved MBL-β-CASP-fold SNM1 core provides a molecular scaffold forming an active site which coordinates the metal ions required for catalysis. The features that determine SNM1 endo- versus exonuclease activity, and which control substrate selectivity and binding are poorly understood. We describe a structure of SNM1B/Apollo with two nucleotides bound to its active site, resembling the product state of its exonuclease reaction. The structure enables definition of key SNM1B residues that form contacts with DNA and identifies a 5' phosphate binding pocket, which we demonstrate is important in catalysis and which has a key role in determining endo- versus exonucleolytic activity across the SNM1 family. We probed the capacity of SNM1B to digest past sites of common endogenous DNA lesions and find that base modifications planar to the nucleobase can be accommodated due to the open architecture of the active site, but lesions axial to the plane of the nucleobase are not well tolerated due to constriction around the altered base. We propose that SNM1B/Apollo might employ its activity to help remove common oxidative lesions from telomeres.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | | | - Marcin Bielinski
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| |
Collapse
|
28
|
Bandyopadhyay D, Mishra PP. Decoding the Structural Dynamics and Conformational Alternations of DNA Secondary Structures by Single-Molecule FRET Microspectroscopy. Front Mol Biosci 2021; 8:725541. [PMID: 34540899 PMCID: PMC8446445 DOI: 10.3389/fmolb.2021.725541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
In addition to the canonical double helix form, DNA is known to be extrapolated into several other secondary structural patterns involving themselves in inter- and intramolecular type hydrogen bonding. The secondary structures of nucleic acids go through several stages of multiple, complex, and interconvertible heterogeneous conformations. The journey of DNA through these conformers has significant importance and has been monitored thoroughly to establish qualitative and quantitative information about the transition between the unfolded, folded, misfolded, and partially folded states. During this structural interconversion, there always exist specific populations of intermediates, which are short-lived or sometimes even do not accumulate within a heterogeneous population and are challenging to characterize using conventional ensemble techniques. The single-molecule FRET(sm-FRET) microspectroscopic method has the advantages to overcome these limitations and monitors biological phenomena transpiring at a measurable high rate and balanced stochastically over time. Thus, tracing the time trajectory of a particular molecule enables direct measurement of the rate constant of each transition step, including the intermediates that are hidden in the ensemble level due to their low concentrations. This review is focused on the advantages of the employment of single-molecule Forster's resonance energy transfer (sm-FRET), which is worthwhile to access the dynamic architecture and structural transition of various secondary structures that DNA adopts, without letting the donor of one molecule to cross-talk with the acceptor of any other. We have emphasized the studies performed to explore the states of folding and unfolding of several nucleic acid secondary structures, for example, the DNA hairpin, Holliday junction, G-quadruplex, and i-motif.
Collapse
Affiliation(s)
- Debolina Bandyopadhyay
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| | - Padmaja P. Mishra
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
- HBNI, Mumbai, India
| |
Collapse
|
29
|
Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103633. [PMID: 33711516 DOI: 10.1016/j.etap.2021.103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
30
|
Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The Roles of mitochondrial dysfunction and Reactive Oxygen Species in Aging and Senescence. Curr Mol Med 2021; 22:37-49. [PMID: 33602082 DOI: 10.2174/1566524021666210218112616] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
The aging process deteriorates organs' function at different levels, causing its progressive decline to resist stress, damage, and disease. In addition to alterations in metabolic control and gene expression, the rate of aging has been connected with the generation of high amounts of Reactive Oxygen Species (ROS). The essential perspective in free radical biology is that reactive oxygen species (ROS) and free radicals are toxic, mostly cause direct biological damage to targets, and are thus a major cause of oxidative stress. Different enzymatic and non-enzymatic compounds in the cells have roles in neutralizing this toxicity. Oxidative damage in aging is mostly high in particular molecular targets, such as mitochondrial DNA and aconitase, and oxidative stress in mitochondria can cause tissue aging across intrinsic apoptosis. Mitochondria's function and morphology are impaired through aging, following a decrease in the membrane potential by an increase in peroxide generation and size of the organelles. Telomeres may be the significant trigger of replicative senescence. Oxidative stress accelerates telomere loss, whereas antioxidants slow it down. Oxidative stress is a crucial modulator of telomere shortening, and that telomere-driven replicative senescence is mainly a stress response. The age-linked mitochondrial DNA mutation and protein dysfunction aggregate in some organs like the brain and skeletal muscle, thus contributing considerably to these post-mitotic tissues' aging. The aging process is mostly due to accumulated damage done by harmful species in some macromolecules such proteins, DNA, and lipids. The degradation of non-functional, oxidized proteins is a crucial part of the antioxidant defenses of cells, in which the clearance of these proteins occurs through autophagy in the cells, which is known as mitophagy for mitochondria.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran. Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand. Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
31
|
Kumari N, Raghavan SC. G-quadruplex DNA structures and their relevance in radioprotection. Biochim Biophys Acta Gen Subj 2021; 1865:129857. [PMID: 33508382 DOI: 10.1016/j.bbagen.2021.129857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND DNA, the genetic material of most of the organisms, is the crucial element of life. Integrity of DNA needs to be maintained for transmission of genetic material from one generation to another. All organisms are constantly challenged by the environmental conditions which can lead to the induction of DNA damage. Ionizing radiation (IR) has been known to induce DNA damage and IR sensitivity varies among different organisms. The causes for differential radiosensitivity among various organisms have not been studied in great detail. SCOPE OF REVIEW We discuss DNA secondary structure formation, GC content of the genome, role of G-quadruplex formation, and its relationship with radiosensitivity of the genome. MAJOR CONCLUSION In Deinococcus radiodurans, the bacterium that exhibits maximum radio resistance, multiple G-quadruplex forming motifs are reported. In human cells, G-quadruplex formation led to differential radiosensitivity. In this article, we have discussed, the role of secondary DNA structure formation like G-quadruplex in shielding the genome from radiation and its implications in understanding evolution of radio protective effect of an organism. We also discuss role of GC content and its correlation with radio resistance. GENERAL SIGNIFICANCE This review provides an insight into the role of G-quadruplexes in providing differential radiosensitivity at different site of the genome and in different organisms. It further discusses the possibility of higher GC content contributing towards reduced radiosensitivity in different organisms, evolution of radiosensitivity, and regulation of multiple cellular processes.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
32
|
Nastasi C, Mannarino L, D’Incalci M. DNA Damage Response and Immune Defense. Int J Mol Sci 2020; 21:E7504. [PMID: 33053746 PMCID: PMC7588887 DOI: 10.3390/ijms21207504] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
DNA damage is the cause of numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. The DNA damage response (DDR), in turn, coordinates DNA damage checkpoint activation and promotes the removal of DNA lesions. In recent years, several studies have shown how the DDR and the immune system are tightly connected, revealing an important crosstalk between the two of them. This interesting interplay has opened up new perspectives in clinical studies for immunological diseases as well as for cancer treatment. In this review, we provide an overview, from cellular to molecular pathways, on how DDR and the immune system communicate and share the crucial commitment of maintaining the genomic fitness.
Collapse
Affiliation(s)
- Claudia Nastasi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | | | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| |
Collapse
|
33
|
Piekna-Przybylska D, Bambara RA, Maggirwar SB, Dewhurst S. G-quadruplex ligands targeting telomeres do not inhibit HIV promoter activity and cooperate with latency reversing agents in killing latently infected cells. Cell Cycle 2020; 19:2298-2313. [PMID: 32807015 DOI: 10.1080/15384101.2020.1796268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Altered telomere maintenance mechanism (TMM) is linked to increased DNA damage at telomeres and telomere uncapping. We previously showed that HIV-1 latent cells have altered TMM and are susceptible to ligands that target G-quadruplexes (G4) at telomeres. Susceptibility of latent cells to telomere targeting could potentially be used to support approaches to eradicate HIV reservoirs. However, G4 ligands also target G-quadruplexes in promoters blocking gene transcription. Since HIV promoter sequence can form G-quadruplexes, we investigated whether G4 ligands interfere with HIV-1 promoter activity and virus reactivation from latency, and whether telomere targeting could be combined with latency reversing agents (LRAs) to promote elimination of HIV reservoirs. Our results indicate that Sp1 binding region in HIV-1 promoter can adopt G4 structures in duplex DNA, and that in vitro binding of Sp1 to G-quadruplex is blocked by G4 ligand, suggesting that agents targeting telomeres interfere with virus reactivation. However, our studies show that G4 agents do not affect HIV-1 promoter activity in cell culture, and do not interfere with latency reversal. Importantly, primary memory CD4 + T cells infected with latent HIV-1 are more susceptible to combined treatment with LRAs and G4 ligands, indicating that drugs targeting TMM may enhance killing of HIV reservoirs. Using a cell-based DNA repair assay, we also found that HIV-1 infected cells have reduced efficiency of DNA mismatch repair (MMR), and base excision repair (BER), suggesting that altered TMM in latently infected cells could be associated with accumulation of DNA damage at telomeres and changes in telomeric caps.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA
| | - Robert A Bambara
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University , Washington, DC, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester , Rochester, NY, USA
| |
Collapse
|
34
|
Bryan TM. G-Quadruplexes at Telomeres: Friend or Foe? Molecules 2020; 25:molecules25163686. [PMID: 32823549 PMCID: PMC7464828 DOI: 10.3390/molecules25163686] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Telomeres are DNA-protein complexes that cap and protect the ends of linear chromosomes. In almost all species, telomeric DNA has a G/C strand bias, and the short tandem repeats of the G-rich strand have the capacity to form into secondary structures in vitro, such as four-stranded G-quadruplexes. This has long prompted speculation that G-quadruplexes play a positive role in telomere biology, resulting in selection for G-rich tandem telomere repeats during evolution. There is some evidence that G-quadruplexes at telomeres may play a protective capping role, at least in yeast, and that they may positively affect telomere maintenance by either the enzyme telomerase or by recombination-based mechanisms. On the other hand, G-quadruplex formation in telomeric DNA, as elsewhere in the genome, can form an impediment to DNA replication and a source of genome instability. This review summarizes recent evidence for the in vivo existence of G-quadruplexes at telomeres, with a focus on human telomeres, and highlights some of the many unanswered questions regarding the location, form, and functions of these structures.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
35
|
Paudel BP, Moye AL, Abou Assi H, El-Khoury R, Cohen SB, Holien JK, Birrento ML, Samosorn S, Intharapichai K, Tomlinson CG, Teulade-Fichou MP, González C, Beck JL, Damha MJ, van Oijen AM, Bryan TM. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. eLife 2020; 9:56428. [PMID: 32723475 PMCID: PMC7426096 DOI: 10.7554/elife.56428] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.
Collapse
Affiliation(s)
- Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Aaron Lavel Moye
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Scott B Cohen
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| | - Jessica K Holien
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
| | - Monica L Birrento
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Kamthorn Intharapichai
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, Madrid, Spain
| | - Jennifer L Beck
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawara Health and Medical Research Institute, Wollongong, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, University of Sydney, Westmead, Australia
| |
Collapse
|
36
|
Paul T, Voter AF, Cueny RR, Gavrilov M, Ha T, Keck J, Myong S. E. coli Rep helicase and RecA recombinase unwind G4 DNA and are important for resistance to G4-stabilizing ligands. Nucleic Acids Res 2020; 48:6640-6653. [PMID: 32449930 PMCID: PMC7337899 DOI: 10.1093/nar/gkaa442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
G-quadruplex (G4) DNA structures can form physical barriers within the genome that must be unwound to ensure cellular genomic integrity. Here, we report unanticipated roles for the Escherichia coli Rep helicase and RecA recombinase in tolerating toxicity induced by G4-stabilizing ligands in vivo. We demonstrate that Rep and Rep-X (an enhanced version of Rep) display G4 unwinding activities in vitro that are significantly higher than the closely related UvrD helicase. G4 unwinding mediated by Rep involves repetitive cycles of G4 unfolding and refolding fueled by ATP hydrolysis. Rep-X and Rep also dislodge G4-stabilizing ligands, in agreement with our in vivo G4-ligand sensitivity result. We further demonstrate that RecA filaments disrupt G4 structures and remove G4 ligands in vitro, consistent with its role in countering cellular toxicity of G4-stabilizing ligands. Together, our study reveals novel genome caretaking functions for Rep and RecA in resolving deleterious G4 structures.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew F Voter
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Rachel R Cueny
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Momčilo Gavrilov
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
- Howard Hughes Medical Institute, Johns Hopkins University, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
37
|
Rogers CM, Lee CY, Parkins S, Buehler NJ, Wenzel S, Martínez-Márquez F, Takagi Y, Myong S, Bochman ML. The yeast Hrq1 helicase stimulates Pso2 translesion nuclease activity and thereby promotes DNA interstrand crosslink repair. J Biol Chem 2020; 295:8945-8957. [PMID: 32371399 PMCID: PMC7335788 DOI: 10.1074/jbc.ra120.013626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
DNA interstrand crosslink (ICL) repair requires a complex network of DNA damage response pathways. Removal of the ICL lesions is vital, as they are physical barriers to essential DNA processes that require the separation of duplex DNA, such as replication and transcription. The Fanconi anemia (FA) pathway is the principal mechanism for ICL repair in metazoans and is coupled to DNA replication. In Saccharomyces cerevisiae, a vestigial FA pathway is present, but ICLs are predominantly repaired by a pathway involving the Pso2 nuclease, which is hypothesized to use its exonuclease activity to digest through the lesion to provide access for translesion polymerases. However, Pso2 lacks translesion nuclease activity in vitro, and mechanistic details of this pathway are lacking, especially relative to FA. We recently identified the Hrq1 helicase, a homolog of the disease-linked enzyme RecQ-like helicase 4 (RECQL4), as a component of Pso2-mediated ICL repair. Here, using genetic, biochemical, and biophysical approaches, including single-molecule FRET (smFRET)- and gel-based nuclease assays, we show that Hrq1 stimulates the Pso2 nuclease through a mechanism that requires Hrq1 catalytic activity. Importantly, Hrq1 also stimulated Pso2 translesion nuclease activity through a site-specific ICL in vitro We noted that stimulation of Pso2 nuclease activity is specific to eukaryotic RecQ4 subfamily helicases, and genetic and biochemical data suggest that Hrq1 likely interacts with Pso2 through their N-terminal domains. These results advance our understanding of FA-independent ICL repair and establish a role for the RecQ4 helicases in the repair of these detrimental DNA lesions.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Samuel Parkins
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicholas J Buehler
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Francisco Martínez-Márquez
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
38
|
Lee HT, Sanford S, Paul T, Choe J, Bose A, Opresko PL, Myong S. Position-Dependent Effect of Guanine Base Damage and Mutations on Telomeric G-Quadruplex and Telomerase Extension. Biochemistry 2020; 59:2627-2639. [PMID: 32578995 DOI: 10.1021/acs.biochem.0c00434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Telomeres are hot spots for mutagenic oxidative and methylation base damage due to their high guanine content. We used single-molecule fluorescence resonance energy transfer detection and biochemical assays to determine how different positions and types of guanine damage and mutations alter telomeric G-quadruplex structure and telomerase activity. We compared 15 modifications, including 8-oxoguanine (8oxoG), O-6-methylguanine (O6mG), and all three possible point mutations (G to A, T, and C) at the 3' three terminal guanine positions of a telomeric G-quadruplex, which is the critical access point for telomerase. We found that G-quadruplex structural instability was induced in the order C < T < A ≤ 8oxoG < O6mG, with the perturbation caused by O6mG far exceeding the perturbation caused by other base alterations. For all base modifications, the central G position was the most destabilizing among the three terminal guanines. While the structural disruption by 8oxoG and O6mG led to concomitant increases in telomerase binding and extension activity, the structural perturbation by point mutations (A, T, and C) did not, due to disrupted annealing between the telomeric overhang and the telomerase RNA template. Repositioning the same mutations away from the terminal guanines caused both G-quadruplex structural instability and elevated telomerase activity. Our findings demonstrate how a single-base modification drives structural alterations and telomere lengthening in a position-dependent manner. Furthermore, our results suggest a long-term and inheritable effect of telomeric DNA damage that can lead to telomere lengthening, which potentially contributes to oncogenesis.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Samantha Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania 15261, United States
| | - Tapas Paul
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joshua Choe
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Arindam Bose
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania 15261, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania 15261, United States
| | - Sua Myong
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Wieczór M, Czub J. Telomere uncapping by common oxidative guanine lesions: Insights from atomistic models. Free Radic Biol Med 2020; 148:162-169. [PMID: 31926882 DOI: 10.1016/j.freeradbiomed.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Oxidative damage to DNA is widely known to contribute to aging and disease. This relationship has been extensively studied for telomeres - structures that cap chromosome ends - due to their role in cell proliferation and senescence, and exceptional susceptibility to oxidation. Indeed, the repetitive telomeric DNA sequence contains the 5'-GGG-3' motif that has the lowest ionization potential of all trinucleotides. Accordingly, experiments consistently show that telomeric oxidative lesions are more abundant and persistent than elsewhere in the genome. This led to a hypothesis that telomeres act as sensors of prolonged oxidative stress and prevent carcinogenesis, as disruption of telomeric integrity triggers senescence or apoptosis. Here, we use atomistic alchemical Molecular Dynamics simulations to perform a combinatorial assessment of changes in DNA binding affinity of telomeric proteins induced by oxidative guanine lesions. We rank lesions by their effect on telomere integrity, as well as telomeric proteins by their sensitivity to DNA oxidation. While the binding of most proteins is abolished by DNA oxidation, HOT1 emerges as a notable exception, suggesting its potential role in sensing of oxidative damage. Through statistical analysis and free energy decomposition, we also identify common trends in structural responses of protein-DNA complexes that contribute to decreased binding affinity.
Collapse
Affiliation(s)
- Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology, Gdańsk, Poland.
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdańsk, Poland.
| |
Collapse
|
40
|
Abstract
Guanine-rich DNA sequences can fold into four-stranded, noncanonical secondary structures called G-quadruplexes (G4s). G4s were initially considered a structural curiosity, but recent evidence suggests their involvement in key genome functions such as transcription, replication, genome stability, and epigenetic regulation, together with numerous connections to cancer biology. Collectively, these advances have stimulated research probing G4 mechanisms and consequent opportunities for therapeutic intervention. Here, we provide a perspective on the structure and function of G4s with an emphasis on key molecules and methodological advances that enable the study of G4 structures in human cells. We also critically examine recent mechanistic insights into G4 biology and protein interaction partners and highlight opportunities for drug discovery.
Collapse
Affiliation(s)
- Jochen Spiegel
- Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Santosh Adhikari
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Shankar Balasubramanian
- Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| |
Collapse
|
41
|
Sonugür FG, Akbulut H. The Role of Tumor Microenvironment in Genomic Instability of Malignant Tumors. Front Genet 2019; 10:1063. [PMID: 31737046 PMCID: PMC6828977 DOI: 10.3389/fgene.2019.01063] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic instability is an essential feature of cancer cells. The somatic mutation theory suggests that along with inherited ones, the changes in DNA caused by environmental factors may cause cancer. Although approximately 50–60 mutations per tumor are observed in established cancer tissue, it is known that not all of these mutations occur at the beginning of carcinogenesis but also occur later in the disease progression. The high frequency of somatic mutations referring to genomic instability contributes to the intratumoral genetic heterogeneity and treatment resistance. The contribution of the tumor microenvironment to the mutations observed following the acquirement of essential malignant characteristics of a cancer cell is one of the topics that have been extensively investigated in recent years. The frequency of mutations in hematologic tumors is generally less than solid tumors. Although it is a hematologic tumor, multiple myeloma is more similar to solid tumors in terms of the high number of chromosomal abnormalities and genetic heterogeneity. In multiple myeloma, bone marrow microenvironment also plays a role in genomic instability that occurs in the very early stages of the disease. In this review, we will briefly summarize the role of the tumor microenvironment and bone marrow microenvironment in the genomic instability seen in solid tumors and multiple myeloma.
Collapse
Affiliation(s)
- F Gizem Sonugür
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey.,Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey
| | - Hakan Akbulut
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey.,Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey
| |
Collapse
|
42
|
Barbero Barcenilla B, Shippen DE. Back to the future: The intimate and evolving connection between telomere-related factors and genotoxic stress. J Biol Chem 2019; 294:14803-14813. [PMID: 31434740 DOI: 10.1074/jbc.aw119.008145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The conversion of circular genomes to linear chromosomes during molecular evolution required the invention of telomeres. This entailed the acquisition of factors necessary to fulfill two new requirements: the need to fully replicate terminal DNA sequences and the ability to distinguish chromosome ends from damaged DNA. Here we consider the multifaceted functions of factors recruited to perpetuate and stabilize telomeres. We discuss recent theories for how telomere factors evolved from existing cellular machineries and examine their engagement in nontelomeric functions such as DNA repair, replication, and transcriptional regulation. We highlight the remarkable versatility of protection of telomeres 1 (POT1) proteins that was fueled by gene duplication and divergence events that occurred independently across several eukaryotic lineages. Finally, we consider the relationship between oxidative stress and telomeres and the enigmatic role of telomere-associated proteins in mitochondria. These findings point to an evolving and intimate connection between telomeres and cellular physiology and the strong drive to maintain chromosome integrity.
Collapse
Affiliation(s)
- Borja Barbero Barcenilla
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
43
|
Jackson MR, Bavelaar BM, Waghorn PA, Gill MR, El-Sagheer AH, Brown T, Tarsounas M, Vallis KA. Radiolabeled Oligonucleotides Targeting the RNA Subunit of Telomerase Inhibit Telomerase and Induce DNA Damage in Telomerase-Positive Cancer Cells. Cancer Res 2019; 79:4627-4637. [PMID: 31311806 PMCID: PMC7611324 DOI: 10.1158/0008-5472.can-18-3594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/01/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Telomerase is expressed in the majority (>85%) of tumors, but has restricted expression in normal tissues. Long-term telomerase inhibition in malignant cells results in progressive telomere shortening and reduction in cell proliferation. Here we report the synthesis and characterization of radiolabeled oligonucleotides that target the RNA subunit of telomerase, hTR, simultaneously inhibiting enzymatic activity and delivering radiation intracellularly. Oligonucleotides complementary (Match) and noncomplementary (Scramble or Mismatch) to hTR were conjugated to diethylenetriaminepentaacetic dianhydride (DTPA), allowing radiolabeling with the Auger electron-emitting radionuclide indium-111 (111In). Match oligonucleotides inhibited telomerase activity with high potency, which was not observed with Scramble or Mismatch oligonucleotides. DTPA-conjugation and 111In-labeling did not change telomerase inhibition. In telomerase-positive cancer cells, unlabeled Match oligonucleotides had no effect on survival, however, 111In-labeled Match oligonucleotides significantly reduced clonogenic survival and upregulated the DNA damage marker γH2AX. Minimal radiotoxicity and DNA damage was observed in telomerase-negative cells exposed to 111In-Match oligonucleotides. Match oligonucleotides localized in close proximity to nuclear Cajal bodies in telomerase-positive cells. In comparison with Match oligonucleotides, 111In-Scramble or 111In-Mismatch oligonucleotides demonstrated reduced retention and negligible impact on cell survival. This study indicates the therapeutic activity of radiolabeled oligonucleotides that specifically target hTR through potent telomerase inhibition and DNA damage induction in telomerase-expressing cancer cells and paves the way for the development of novel oligonucleotide radiotherapeutics targeting telomerase-positive cancers. SIGNIFICANCE: These findings present a novel radiolabeled oligonucleotide for targeting telomerase-positive cancer cells that exhibits dual activity by simultaneously inhibiting telomerase and promoting radiation-induced genomic DNA damage.
Collapse
Affiliation(s)
- Mark R Jackson
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Bas M Bavelaar
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip A Waghorn
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Martin R Gill
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Tom Brown
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Madalena Tarsounas
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Katherine A Vallis
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
44
|
Raju K L, Haragannavar VC, Patil S, Rao RS, Nagaraj T, Augustine D, Venkatesiah SS, Nambiar S. Expression of hTERT in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma – an Immunohistochemical Analysis. Pathol Oncol Res 2019; 26:1573-1582. [DOI: 10.1007/s12253-019-00700-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
|
45
|
Oxidative Stress: Role and Response of Short Guanine Tracts at Genomic Locations. Int J Mol Sci 2019; 20:ijms20174258. [PMID: 31480304 PMCID: PMC6747389 DOI: 10.3390/ijms20174258] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Over the decades, oxidative stress has emerged as a major concern to biological researchers. It is involved in the pathogenesis of various lifestyle-related diseases such as hypertension, diabetes, atherosclerosis, and neurodegenerative diseases. The connection between oxidative stress and telomere shortening via oxidative guanine lesion is well documented. Telomeres are confined to guanine rich ends of chromosomes. Owing to its self-association properties, it adopts G-quadruplex structures and hampers the overexpression of telomerase in the cancer cells. Guanine, being the most oxidation prone nucleobase, when structured in G-quadruplex entity, is found to respond peculiarly towards oxidative stress. Interestingly, this non-Watson-Crick structural feature exists abundantly in promoters of various oncogenes, exons and other genomic locations. The involvement of G-quadruplex architecture in oncogene promoters is well recognized in gene regulation processes. Development of small molecules aimed to target G-quadruplex structures, have found to alter the overexpression of oncogenes. The interaction may lead to the obstruction of diseased cell having elevated level of reactive oxygen species (ROS). Thus, presence of short guanine tracts (Gn) forming G-quadruplexes suggests its critical role in oxidative genome damage. Present review is a modest attempt to gain insight on the association of oxidative stress and G-quadruplexes, in various biological processes.
Collapse
|
46
|
Tanpaisankit M, Hongsaprabhas C, Chareonlap C, Honsawek S. Relative telomere length and oxidative stress in musculoskeletal tumors. Mol Biol Rep 2019; 46:4009-4016. [PMID: 31069615 DOI: 10.1007/s11033-019-04847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/30/2019] [Indexed: 11/29/2022]
Abstract
Telomeres are capped at the end of the chromosome and gradually shorten when the cell divides. When there is an oxidative stress, it can cause the DNA to be damaged. Hence, 8-hydroxy-2'-deoxyguanosine (8-OHdG) has been shown to be an indicator for oxidative DNA damage. This study aimed to determine the relative telomere length (RTL) and 8-OHdG levels in neoplastic tissues, adjacent non-neoplastic tissues, and blood leukocytes of musculoskeletal (MS) tumor patients. Neoplastic tissues were compared to adjacent non-neoplastic tissues in MS tumor patients (n = 46). Peripheral blood leukocytes (PBLs) of MS tumor subjects were compared to those of age-matched healthy controls (n = 107). RTL was evaluated by quantitative real-time polymerase chain reaction and 8-OHdG levels were quantified by enzyme-linked immunosorbent assay. The RTL in neoplastic tissues was significantly shorter than that in non-neoplastic tissues [1.12 (0.86-1.46) vs 1.45 (1.25-1.65), P = 0.001]. PBLs had lower RTL than non-neoplastic tissues in MS tumor patients [1.04 (0.85-1.13) vs 1.45 (1.25-1.65), P < 0.001]. However, there was no significant difference between RTL in PBLs and in neoplastic tissues. In addition, PBLs of MS tumor patients had higher RTL than those of the controls [1.04 (0.85-1.13) versus 0.78 (0.68-0.90), P < 0.001]. The 8-OHdG levels in neoplastic tissues were remarkably higher than those in non-neoplastic tissues [8.14 (6.81-11.37) nM/μg/μl vs. 3.79 (2.53-6.17) nM/μg/μl, P < 0.001]. Furthermore, plasma 8-OHdG levels in MS tumor patients were markedly greater than those in the controls [102.50 (73.16-133.50) nM vs. 41.09 (6.81-11.37) nM, P < 0.001]. Area under the curve (AUC) was 0.7536 (95% confident interval (CI) 0.6602-0.8469) when the cut-off value of RTL in PBLs was 0.97. Also, plasma 8-OHdG levels depicted that when the cut-off value was 38.67 nM, the AUC was 0.7723 (95% CI 0.6920-0.8527). Moreover, ROC curve analysis showed that both RTL and 8-OHdG appeared to improve the sensitivity (85.68%) and specificity (70.91%) with the AUC 0.8639 (95% CI 0.7500-0.9500). This study suggested that blood leukocyte RTL and plasma 8-OHdG could serve as promising non-invasive biomarkers to differentiate between MS tumor patients and healthy controls. Additionally, telomere attrition and increased oxidative DNA damage might play contributory roles in the pathogenesis of MS tumors.
Collapse
Affiliation(s)
- Montira Tanpaisankit
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chindanai Hongsaprabhas
- Department of Orthopaedics, Faculty of Medicine, Vinai Parkpian Orthopaedic Research Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chris Chareonlap
- Department of Orthopaedics, Faculty of Medicine, Vinai Parkpian Orthopaedic Research Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand. .,Department of Orthopaedics, Faculty of Medicine, Vinai Parkpian Orthopaedic Research Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand. .,Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, 1873 Rama IV Road Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
47
|
Tippana R, Chen MC, Demeshkina NA, Ferré-D'Amaré AR, Myong S. RNA G-quadruplex is resolved by repetitive and ATP-dependent mechanism of DHX36. Nat Commun 2019; 10:1855. [PMID: 31015431 PMCID: PMC6478676 DOI: 10.1038/s41467-019-09802-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/18/2019] [Indexed: 12/27/2022] Open
Abstract
DHX36 is a DEAH-box helicase that resolves parallel G-quadruplex structures formed in DNA and RNA. The recent co-crystal structure of DHX36 bound G4-DNA revealed an intimate contact, but did not address the role of ATP hydrolysis in G4 resolving activity. Here, we demonstrate that unlike on G4-DNA, DHX36 displays ATP-independent unfolding of G4-RNA followed by ATP-dependent refolding, generating a highly asymmetric pattern of activity. Interestingly, DHX36 refolds G4-RNA in several steps, reflecting the discrete steps in forming the G4 structure. We show that the ATP-dependent activity of DHX36 arises from the RNA tail rather than the G4. Mutations that perturb G4 contact result in quick dissociation of the protein from RNA upon ATP hydrolysis, while mutations that interfere with binding the RNA tail induce dysregulated activity. We propose that the ATP-dependent activity of DHX36 may be useful for dynamically resolving various G4-RNA structures in cells.
Collapse
Affiliation(s)
- Ramreddy Tippana
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael C Chen
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1TN, UK.,Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Natalia A Demeshkina
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
48
|
Davinelli S, Trichopoulou A, Corbi G, De Vivo I, Scapagnini G. The potential nutrigeroprotective role of Mediterranean diet and its functional components on telomere length dynamics. Ageing Res Rev 2019; 49:1-10. [PMID: 30448616 DOI: 10.1016/j.arr.2018.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
The Mediterranean diet (MD) is a gold standard for nutrition and the most evidence-based diet to delay the onset of age-associated pathologies. Telomeres are the heterochromatic repeat regions found at the ends of eukaryotic chromosomes, whose length is considered a reliable hallmark of biological ageing. Telomere shortening is, at least in part, a modifiable factor and there is evidence that adherence to the MD is associated with longer telomeres. Data from several studies indicate an association between "inflammatory/oxidative status" and telomere length (TL). The MD, as a complex exposome with thousands of nutrients and phytochemicals, may positively influence telomere attrition by reducing inflammation and oxidative stress. However, it is unclear whether the protective effects on TL provided by the MD result from its individual constituents or some combination of these. Furthermore, these properties of the MD and its components are not yet fully validated by clinical endpoints in randomized trials or observational studies. Here, we summarize the data from experimental and population-based studies on the effects of the MD on TL maintenance. We will both highlight the possible role of the MD in the prevention of age-associated diseases, and attempt to identify certain aspects of the diet that are particularly important for telomere maintenance.
Collapse
|
49
|
Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev 2019; 177:37-45. [PMID: 29604323 PMCID: PMC6162185 DOI: 10.1016/j.mad.2018.03.013] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.
Collapse
|
50
|
Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet 2018; 35:129-144. [PMID: 30527765 DOI: 10.1016/j.tig.2018.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
The role of non-duplex DNA, the guanine-quadruplex structure in particular, is becoming widely appreciated. Increasing evidence in the last decade implicates quadruplexes in important processes such as transcription and replication. Interestingly, more recent work suggests roles for quadruplexes, in association with quadruplex-interacting proteins, in epigenetics through both DNA and histone modifications. Here, we review the effect of the quadruplex structure on post-replication epigenetic memory and quadruplex-induced promoter DNA/histone modifications. Furthermore, we highlight the epigenetic state of the telomerase promoter where quadruplexes could play a key regulatory role. Finally, we discuss the possibility that DNA structures such as quadruplexes, within a largely duplex DNA background, could act as molecular anchors for locally induced epigenetic modifications.
Collapse
|