1
|
Rizzi A, Mandelli D. High performance-oriented computer aided drug design approaches in the exascale era. Expert Opin Drug Discov 2025:1-10. [PMID: 39953911 DOI: 10.1080/17460441.2025.2468289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION In 2023, the first exascale supercomputer was opened to the public in the US. With a demonstrated 1.1 exaflops of performance, Frontier represents an unprecedented breakthrough in high-performance computing (HPC). Currently, more (and more powerful) machines are being installed worldwide. Computer-aided drug design (CADD) is one of the fields of computational science that can greatly benefit from exascale computing for the benefit of the whole society. However, scaling CADD approaches to exploit exascale machines require new algorithmic and software solutions. AREAS COVERED Here, the authors consider physics-based and machine learning (ML)-aided techniques for the design of small molecule binders capable of leveraging modern parallel computer architectures. Specifically, the authors focus on HPC-oriented large-scale applications from the past 3 years that were enabled by (pre)exascale supercomputers by running on up tothousands of accelerated nodes. EXPERT OPINION In the area of ML, exascale computers can enable the training of generative models with unprecedented predictive power to design novel ligands, provided large amounts of high-quality data are available. Exascale computers could also unlock the potential of accurate ML-aided physics-based methods to boost the success rate of structure-based drug design campaigns. Currently, however, methodological developments are still required to allow routine large-scale applications of such rigorous approaches.
Collapse
Affiliation(s)
- Andrea Rizzi
- Computational Biomedicine (INM-9), Forschungszentrum Jülich Gmbh, Wilhelm-Johnen Straße, Jülich, Germany
- Atomistic Simulations, Italian Institute of Technology, via Morego, Genova, Italy
| | - Davide Mandelli
- Computational Biomedicine (INM-9), Forschungszentrum Jülich Gmbh, Wilhelm-Johnen Straße, Jülich, Germany
| |
Collapse
|
2
|
Liu Y, Song D, Li S, Guo Z, Zheng P. Click Chemistry-Based Force Spectroscopy Revealed Enhanced Binding Dynamics of Phosphorylated HMGB1 to Cisplatin-DNA. J Am Chem Soc 2024; 146:13126-13132. [PMID: 38696488 DOI: 10.1021/jacs.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Cisplatin, a cornerstone in cancer chemotherapy, is known for its DNA-binding capacity and forms lesions that lead to cancer cell death. However, the repair of these lesions compromises cisplatin's effectiveness. This study investigates how phosphorylation of HMGB1, a nuclear protein, modifies its binding to cisplatin-modified DNA (CP-DNA) and thus protects it from repair. Despite numerous methods for detecting protein-DNA interactions, quantitative approaches for understanding their molecular mechanism remain limited. Here, we applied click chemistry-based single-molecule force spectroscopy, achieving high-precision quantification of the interaction between phosphorylated HMGB1 and CP-DNA. This method utilizes a synergy of click chemistry and enzymatic ligation for precise DNA-protein immobilization and interaction in the system. Our results revealed that HMGB1 binds to CP-DNA with a significantly high rupture force of ∼130 pN, stronger than most natural DNA-protein interactions and varying across different DNA sequences. Moreover, Ser14 is identified as the key phosphorylation site, enhancing the interaction's kinetic stability by 35-fold. This increase in stability is attributed to additional hydrogen bonding suggested by molecular dynamics (MD) simulations. Our findings not only reveal the important role of phosphorylated HMGB1 in potentially improving cisplatin's therapeutic efficacy but also provide a precise method for quantifying protein-DNA interactions.
Collapse
Affiliation(s)
- Yutong Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Senmiao Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Gillespie KP, Pirnie R, Mesaros C, Blair IA. Cisplatin Dependent Secretion of Immunomodulatory High Mobility Group Box 1 (HMGB1) Protein from Lung Cancer Cells. Biomolecules 2023; 13:1335. [PMID: 37759736 PMCID: PMC10526420 DOI: 10.3390/biom13091335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
High mobility group box 1 (HMGB1) is secreted from activated immune cells, necrotic cells, and certain cancers. Previous studies have reported that different patterns of post-translational modification, particularly acetylation and oxidation, mediate HMGB1 release and confer distinct extracellular HMGB1 signaling activity. Here we report that cisplatin but not carboplatin induces secretion of HMGB1 from human A549 non-small cell lung cancer (NSCLC) cells. Cisplatin-mediated HMGB1 secretion was dose-dependent and was regulated by nuclear exportin 1 (XPO1) also known as chromosomal maintenance 1 (CRM1) rather than adenosine diphosphate (ADP)-ribosylation, acetylation, or oxidation. HMGB1, as well as lysine acetylation and cysteine disulfide oxidation of secreted HMGB1, were monitored by sensitive and specific assays using immunoprecipitation, stable isotope dilution, differential alkylation, and nano liquid chromatography parallel reaction monitoring/high-resolution mass spectrometry (nano-LC-PRM/HRMS). A major fraction of the HMGB1 secreted by low-dose cisplatin treatment of A549 NSCLC cells was found to be in the fully reduced form. In contrast, mainly oxidized forms of HMGB1 were secreted by dimethyl sulfoxide (DMSO)-mediated apoptosis. These findings suggest that inhibition of XPO1 could potentiate the anti-tumor activity of cisplatin by increasing the nuclear accumulation of HMGB1 protein, an inhibitor of cisplatin DNA-adduct repair. Furthermore, low-dose cisplatin therapy could modulate the immune response in NSCLC through the established chemokine activity of extracellular reduced HMGB1. This could potentially enhance the efficacy of subsequent immunotherapy treatment.
Collapse
Affiliation(s)
| | | | | | - Ian A. Blair
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Weigle AT, Feng J, Shukla D. Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Phys Chem Chem Phys 2022; 24:26371-26397. [PMID: 36285789 PMCID: PMC9704509 DOI: 10.1039/d2cp02883b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation. While experimental advances have enabled improved PTM identification capabilities, the same throughput for characterizing how structural changes caused by PTMs equate to altered physiological function has not been maintained. In this Perspective, we cover the history of computational modeling and molecular dynamics simulations which have characterized the structural implications of PTMs. We distinguish results from different molecular dynamics studies based upon the timescales simulated and analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for modern research efforts on in silico PTM characterization may proceed given current state-of-the-art computing capabilities and methodological advancements.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jiangyan Feng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
5
|
Bolnykh V, Rossetti G, Rothlisberger U, Carloni P. Expanding the boundaries of ligand–target modeling by exascale calculations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Viacheslav Bolnykh
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
- Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich Jülich Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation University Hospital Aachen RWTH Aachen University Aachen Germany
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS‐5/INM‐9) “Computational Biomedicine” Forschungszentrum Jülich Jülich Germany
- JARA‐Institute INM‐11 “Molecular Neuroscience and Neuroimaging” Forschungszentrum Jülich Jülich Germany
| |
Collapse
|
6
|
Li C, Chen S, Huang T, Zhang F, Yuan J, Chang H, Li W, Han W. Conformational Changes of Glutamine 5'-Phosphoribosylpyrophosphate Amidotransferase for Two Substrates Analogue Binding: Insight from Conventional Molecular Dynamics and Accelerated Molecular Dynamics Simulations. Front Chem 2021; 9:640994. [PMID: 33718330 PMCID: PMC7953260 DOI: 10.3389/fchem.2021.640994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Glutamine 5′-phosphoribosylpyrophosphate amidotransferase (GPATase) catalyzes the synthesis of phosphoribosylamine, pyrophosphate, and glutamate from phosphoribosylpyrophosphate, as well as glutamine at two sites (i.e., glutaminase and phosphoribosylpyrophosphate sites), through a 20 Å NH3 channel. In this study, conventional molecular dynamics (cMD) simulations and enhanced sampling accelerated molecular dynamics (aMD) simulations were integrated to characterize the mechanism for coordination catalysis at two separate active sites in the enzyme. Results of cMD simulations illustrated the mechanism by which two substrate analogues, namely, DON and cPRPP, affect the structural stability of GPATase from the perspective of dynamic behavior. aMD simulations obtained several key findings. First, a comparison of protein conformational changes in the complexes of GPATase–DON and GPATase–DON–cPRPP showed that binding cPRPP to the PRTase flexible loop (K326 to L350) substantially effected the formation of the R73-DON salt bridge. Moreover, only the PRTase flexible loop in the GPATase–DON–cPRPP complex could remain closed and had sufficient space for cPRPP binding, indicating that binding of DON to the glutamine loop had an impact on the PRTase flexible loop. Finally, both DON and cPRPP tightly bonded to the two domains, thereby inducing the glutamine loop and the PRTase flexible loop to move close to each other. This movement facilitated the transfer of NH3 via the NH3 channel. These theoretical results are useful to the ongoing research on efficient inhibitors related to GPATase.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Siao Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Tianci Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Fangning Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Jiawei Yuan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Hao Chang
- Jilin Province TeyiFood Biotechnology Company Limited, Changchun, China
| | - Wannan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
7
|
Wang S, Guan Y, Li T. The Potential Therapeutic Role of the HMGB1-TLR Pathway in Epilepsy. Curr Drug Targets 2021; 22:171-182. [PMID: 32729417 DOI: 10.2174/1389450121999200729150443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Epilepsy is one of the most common serious neurological disorders, affecting over 70 million people worldwide. For the treatment of epilepsy, antiepileptic drugs (AEDs) and surgeries are widely used. However, drug resistance and adverse effects indicate the need to develop targeted AEDs based on further exploration of the epileptogenic mechanism. Currently, many efforts have been made to elucidate the neuroinflammation theory in epileptogenesis, which may show potential in the treatment of epilepsy. In this respect, an important target protein, high mobility group box 1 (HMGB1), has received increased attention and has been developed rapidly. HMGB1 is expressed in various eukaryotic cells and localized in the cell nucleus. When HMGB1 is released by injuries or diseases, it participates in inflammation. Recent studies suggest that HMGB1 via Toll-like receptor (TLR) pathways can trigger inflammatory responses and play an important role in epilepsy. In addition, studies of HMGB1 have shown its potential in the treatment of epilepsy. Herein, the authors analyzed the experimental and clinical evidence of the HMGB1-TLR pathway in epilepsy to summarize the theory of epileptogenesis and provide insights into antiepileptic therapy in this novel field.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
8
|
Janoš P, Spinello A, Magistrato A. All-atom simulations to studying metallodrugs/target interactions. Curr Opin Chem Biol 2020; 61:1-8. [PMID: 32781390 DOI: 10.1016/j.cbpa.2020.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022]
Abstract
Metallodrugs are extensively used to treat and diagnose distinct disease types. The unique physical-chemical properties of metal ions offer tantalizing opportunities to tailor effective scaffolds for selectively targeting specific biomolecules. Modern experimental techniques have collected a large body of structural data concerning the interactions of metallodrugs with their biomolecular targets, although being unable to exhaustively assess the molecular basis of their mechanism of action. In this scenario, the complementary use of accurate computational methods allows uncovering the minutiae of metallodrugs/targets interactions and their underlying mechanism of action at an atomic-level of detail. This knowledge is increasingly perceived as an invaluable requirement to rationally devise novel and selective metallodrugs. Building on literature studies, selected largely from the last 2 years, this compendium encompasses a cross-section of the current role, advances, and challenges met by computer simulations to decipher the mechanistic intricacies of prototypical metallodrugs.
Collapse
Affiliation(s)
- Pavel Janoš
- CNR-IOM c/o SISSA, Via Bonomea 265, 34136, Trieste, Italy
| | | | | |
Collapse
|
9
|
Bera I, Payghan PV. Use of Molecular Dynamics Simulations in Structure-Based Drug Discovery. Curr Pharm Des 2020; 25:3339-3349. [PMID: 31480998 DOI: 10.2174/1381612825666190903153043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traditional drug discovery is a lengthy process which involves a huge amount of resources. Modern-day drug discovers various multidisciplinary approaches amongst which, computational ligand and structure-based drug designing methods contribute significantly. Structure-based drug designing techniques require the knowledge of structural information of drug target and drug-target complexes. Proper understanding of drug-target binding requires the flexibility of both ligand and receptor to be incorporated. Molecular docking refers to the static picture of the drug-target complex(es). Molecular dynamics, on the other hand, introduces flexibility to understand the drug binding process. OBJECTIVE The aim of the present study is to provide a systematic review on the usage of molecular dynamics simulations to aid the process of structure-based drug design. METHOD This review discussed findings from various research articles and review papers on the use of molecular dynamics in drug discovery. All efforts highlight the practical grounds for which molecular dynamics simulations are used in drug designing program. In summary, various aspects of the use of molecular dynamics simulations that underline the basis of studying drug-target complexes were thoroughly explained. RESULTS This review is the result of reviewing more than a hundred papers. It summarizes various problems that use molecular dynamics simulations. CONCLUSION The findings of this review highlight how molecular dynamics simulations have been successfully implemented to study the structure-function details of specific drug-target complexes. It also identifies the key areas such as stability of drug-target complexes, ligand binding kinetics and identification of allosteric sites which have been elucidated using molecular dynamics simulations.
Collapse
Affiliation(s)
- Indrani Bera
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, United States
| | - Pavan V Payghan
- Structural Biology and Bioinformatics Department, CSIR-IICB, Kolkata, India.,Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, United States
| |
Collapse
|
10
|
Cheng L, Li C, Xi Z, Wei K, Yuan S, Arnesano F, Natile G, Liu Y. Cisplatin reacts with histone H1 and the adduct forms a ternary complex with DNA. Metallomics 2020; 11:556-564. [PMID: 30672544 DOI: 10.1039/c8mt00358k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cisplatin is an anticancer drug widely used in clinics; it induces the apoptosis of cancer cells by targeting DNA. However, its interaction with proteins has been found to be crucial in modulating the pre and post-target activity. Nuclear DNA is tightly assembled with histone proteins to form nucleosomes in chromatin; this can impede the drug to access DNA. On the other hand, the linker histone H1 is considered 'the gate to nucleosomal DNA' due to its exposed location and dynamic conformation; therefore, this protein can influence the platination of DNA. In this study, we performed a reaction of cisplatin with histone H1 and investigated the interaction of the H1/cisplatin adduct with DNA. The reactions were conducted on the N-terminal domains of H1.4 (sequence 1-90, H1N90) and H1.0 (sequence 1-7, H1N7). The results show that H1 readily reacts with cisplatin and generates bidentate and tridentate adducts, with methionine and glutamate residues as the preferential binding sites. Chromatographic and NMR analyses show that the platination rate of H1 is slightly higher than that of DNA and the platinated H1 can form H1-cisplatin-DNA ternary complexes. Interestingly, cisplatin is more prone to form H1-Pt-DNA ternary complexes than trans-oriented platinum agents. The formation of H1-cisplatin-DNA ternary complexes and their preference for cis- over trans-oriented platinum agents suggest an important role of histone H1 in the mechanism of action of cisplatin.
Collapse
Affiliation(s)
- Lanjun Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fassi EMA, Sgrignani J, D'Agostino G, Cecchinato V, Garofalo M, Grazioso G, Uguccioni M, Cavalli A. Oxidation State Dependent Conformational Changes of HMGB1 Regulate the Formation of the CXCL12/HMGB1 Heterocomplex. Comput Struct Biotechnol J 2019; 17:886-894. [PMID: 31333815 PMCID: PMC6617219 DOI: 10.1016/j.csbj.2019.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
High-mobility Group Box 1 (HMGB1) is an abundant protein present in all mammalian cells and involved in several processes. During inflammation or tissue damage, HMGB1 is released in the extracellular space and, depending on its redox state, can form a heterocomplex with CXCL12. The heterocomplex acts exclusively via the chemokine receptor CXCR4 enhancing leukocyte recruitment. Here, we used multi-microsecond molecular dynamics (MD) simulations to elucidate the effect of the disulfide bond on the structure and dynamics of HMGB1. The results of the MD simulations show that the presence or lack of the disulfide bond between Cys23 and Cys45 modulates the conformational space explored by HMGB1, making the reduced protein more suitable to form a complex with CXCL12.
Collapse
Key Words
- CXCL12
- CXCL12, C-X-C motif chemokine 12
- CXCR4, C-X-C chemokine receptor type 4
- Conformational ensemble
- HMGB1
- HMGB1, High-mobility Group Box 1
- MD, Molecular dynamics
- Molecular dynamics
- Protein-protein docking
- RMSD, Root mean square deviation
- RoG, Radius of gyration
- SASA, Solvent accessible surface area
- TLR2 or TLR4, Toll-like Receptor 2 or 4
- ds-HMGB1, Disulfide High-mobility Group Box 1
- fr-HMGB1, Full reduced High-mobility Group Box 1
Collapse
Affiliation(s)
- Enrico M A Fassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Maura Garofalo
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,University of Lausanne (UNIL), CH-1015, Lausanne, Switzerland
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Humanitas University, Department of Biomedical Sciences, 20090, Pieve Emanuele, Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
12
|
Huang J, Zeng T, Tian Y, Wu Y, Yu J, Pei Z, Tan L. Clinical significance of high-mobility group box-1 (HMGB1) in subjects with type 2 diabetes mellitus (T2DM) combined with chronic obstructive pulmonary disease (COPD). J Clin Lab Anal 2019; 33:e22910. [PMID: 31129918 PMCID: PMC6642301 DOI: 10.1002/jcla.22910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/16/2023] Open
Abstract
Background Simple method to predict type 2 diabetes mellitus (T2DM) combined with chronic obstructive pulmonary disease (COPD) is in great need clinically. This study aims to assess the clinical significance of high‐mobility group box‐1 (HMGB1) in predicting T2DM combined with COPD in Chinese patients with T2DM or COPD. Methods Serum concentrations of glycated hemoglobin (HbA1C), fasting plasma glucose (FPG), fasting insulin (FINS), total cholesterol (TC), triglyceride (TG), low‐density lipoprotein cholesterol (LDL‐c), high‐density lipoprotein cholesterol (HDL‐c), C‐reactive protein (CRP), fibrinogen (FIB), HMGB1, white blood cell count (WBC), neutrophil% (NEU%), and lung function text such as forced expiratory volume 1/forced vital capacity (FEV1/FVC) and forced expiratory volume 1% predicted value (FEV1%pred) were measured in 126 T2DM patients, 118 COPD patients, 112 T2DM combined with COPD patients, and 120 healthy controls. Logistic regression was used to estimate the risk factors for T2DM combined with COPD. Results High‐mobility group box‐1 elevated in patients with T2DM combined with COPD, significantly higher than other subjects (P < 0.05), and differences in HMGB1 also existed between patients with T2DM or COPD and healthy individuals (P < 0.01). HMGB1 was positively correlated with HOMA‐IR, FBG, and HbA1c (P < 0.01) and negatively correlated with FEV1/FVC and FEV1%pred (P < 0.01). Logistic regression showed that HMGB1 was identified to be independent risk factor for T2DM combined with COPD. Conclusion High‐mobility group box‐1 was independent risk factor for T2DM combined with COPD and can be served to predict the occurrence of T2DM combined with COPD.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Tingting Zeng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Yongjian Tian
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Yang Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Jianlin Yu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Zihuan Pei
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| | - Liming Tan
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, Jiangxi, China
| |
Collapse
|