1
|
Deng P, Zhang Y, Xu L, Lyu J, Li L, Sun F, Zhang WB, Gao H. Computational discovery and systematic analysis of protein entangling motifs in nature: from algorithm to database. Chem Sci 2025; 16:8998-9009. [PMID: 40271025 PMCID: PMC12013726 DOI: 10.1039/d4sc08649j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/29/2025] [Indexed: 04/25/2025] Open
Abstract
Nontrivial protein topology has the potential to revolutionize protein engineering by enabling the manipulation of proteins' stability and dynamics. However, the rarity of topological proteins in nature poses a challenge for their design, synthesis and application, primarily due to the limited number of available entangling motifs as synthetic templates. Discovering these motifs is particularly difficult, as entanglement is a subtle structural feature that is not readily discernible from protein sequences. In this study, we developed a streamlined workflow enabling efficient and accurate identification of structurally reliable and applicable entangling motifs from protein sequences. Through this workflow, we automatically curated a database of 1115 entangling protein motifs from over 100 thousand sequences in the UniProt Knowledgebase. In our database, 73.3% of C2 entangling motifs and 80.1% of C3 entangling motifs exhibited low structural similarity to known protein structures. The entangled structures in the database were categorized into different groups and their functional and biological significance were analyzed. The results were summarized in an online database accessible through a user-friendly web platform, providing researchers with an expanded toolbox of entangling motifs. This resource is poised to significantly advance the field of protein topology engineering and inspire new research directions in protein design and application.
Collapse
Affiliation(s)
- Puqing Deng
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Yuxuan Zhang
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jinyu Lyu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Linyan Li
- Department of Data Science, City University of Hong Kong Kowloon Hong Kong
| | - Fei Sun
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
- AI for Science (AI4S)-Preferred Program, Shenzhen Graduate School, Peking University Shenzhen 518055 P. R. China
| | - Hanyu Gao
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| |
Collapse
|
2
|
da Silva FB, Perlinska AP, Płonka J, Flapan E, Sulkowska JI. Universe of Lasso Proteins: Exploring the limit of entanglement of protein predicted by AlphaFold. J Mol Biol 2025:169217. [PMID: 40398674 DOI: 10.1016/j.jmb.2025.169217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Knots and lasso topology represent a class of natural motifs found in proteins that are characterized by a threaded structure. Proteins with a lasso motif represent a macroscopic version of the peptide lasso, which is known for its high stability and offers tremendous potential for the development of novel therapeutics. Here, based on AlphaFold, we have shown the limit of topological complexity of naturally occurring protein structures with cysteine bridges. Based on 176 million high confidence (pLDDT > 70) AlphaFold-predicted protein models and a detailed analysis of the conservation of the motif in a family, we found four new lasso motifs, including L4 and LS4LS3 topologies, and the first examples of knotted lasso proteins: L1K31 and L3#K31. We show that in the case of natural proteins, there are no lassos with 5 threadings, but there exist some with 6. Families possessing proteins with more than 6 threadings did not exceed the conservation threshold of 10%. Moreover, we propose a probable folding mechanism for the LS4LS3 lasso motif, enhancing our view on protein folding and stability. This work expands the topological space of lasso type motifs in proteins but also suggests that more complex structures could be unfavorable for proteins.
Collapse
Affiliation(s)
| | - Agata P Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Jacek Płonka
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Begun AM, Korneev AA, Zorina AV. Effect of a Knot on the Thermal Stability of Protein MJ0366: Insights into Molecular Dynamics and Monte Carlo Simulations. J Phys Chem B 2025; 129:3939-3947. [PMID: 40208585 DOI: 10.1021/acs.jpcb.4c07910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Protein MJ0366 is a hypothetical protein from Methanocaldococcus jannaschii that has a rare and complex knot in its structure. The knot is a right-handed trefoil knot that involves about half of the protein's residues. In this work, we investigate the thermal stability of protein MJ0366 using numerical simulations based on molecular dynamics and Monte Carlo methods. We compare the results with those of a similar unknotted protein and analyze the effects of the knot on the folding and unfolding processes. We show that the knot in protein MJ0366 increases its thermal stability by creating a topological barrier that prevents the protein from unfolding at high temperatures.
Collapse
Affiliation(s)
- A M Begun
- Pacific Quantum Center, Far Eastern Federal University, 690922 Vladivostok, Russia
- Nordita, Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
| | - A A Korneev
- Pacific Quantum Center, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - A V Zorina
- Pacific Quantum Center, Far Eastern Federal University, 690922 Vladivostok, Russia
| |
Collapse
|
4
|
Sugiyama M, Kosik KS, Panagiotou E. Geometry based prediction of tau protein sites and motifs associated with misfolding and aggregation. Sci Rep 2025; 15:10283. [PMID: 40133414 PMCID: PMC11937417 DOI: 10.1038/s41598-025-93304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Recent studies of tau proteins point to specific sites or motifs along the protein related to its misfolding and aggregation propensity, which is associated with neurodegenerative diseases of structure-dependent pathology. In this manuscript we employ topology and geometry to analyze the local structure of tau proteins obtained from the Protein Data Bank. Our results show that mathematical topology/geometry of cryo-EM structures alone identify the PGGG motifs, and the PHF6(*) motifs as sites of interest and reveal a geometrical hierarchy of the PGGG motifs that differs for 3R+4R and 4R tauopathies. By employing the Local Topological Free Energy (LTE), we find that progressive supranuclear palsy (PSP) and globular glial tauopathy (GGT) have the highest LTE values around residues 302-305, which are inside the jR2R3 peptide and in the vicinity of the 301 site, experimentally associated with aggregation. By extending the LTE definition to estimate a global topological free energy, we find that the jR2R3 peptide of PSP and GGT, has in fact the lowest global topological free energy among other tauopathies. These results point to a possible correlation between the global topological free energy of parts of the protein and the LTE of specific sites.
Collapse
Affiliation(s)
- Masumi Sugiyama
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Eleni Panagiotou
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
5
|
Deng P, Xu L, Wei Y, Sun F, Li L, Zhang WB, Gao H. Deep Learning-Assisted Discovery of Protein Entangling Motifs. Biomacromolecules 2025; 26:1520-1529. [PMID: 39937127 DOI: 10.1021/acs.biomac.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Natural topological proteins exhibit unique properties including enhanced stability, controlled quaternary structures, and dynamic switching properties, highlighting topology as a unique dimension in protein engineering. Although artificial design and synthesis of topological proteins have achieved certain success, their diversity and complexity remain rather limited due to the scarcity of available entangling motifs essential for the construction of nontrivial protein topologies. In this work, we developed a deep-learning model to predict the entanglement features of a homodimer based solely on its amino acid sequence via the Gauss linking number matrices. The model achieved a search speed that was dozens of times faster than AlphaFold-Multimer, while maintaining comparable mean squared error. It was used to screen for entangling motifs from the genome of a hyperthermophilic archaeon. We demonstrated the effectiveness of our model by successful wet-lab synthesis of protein catenanes using two candidate entangling motifs. These findings show the great potential of our model for advancing the design and synthesis of novel topological proteins.
Collapse
Affiliation(s)
- Puqing Deng
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay 999077, Hong Kong
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ying Wei
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, P. R. China
| | - Fei Sun
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay 999077, Hong Kong
| | - Linyan Li
- Department of Data Science, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- AI for Science (AI4S)-Preferred Program, Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Hanyu Gao
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay 999077, Hong Kong
| |
Collapse
|
6
|
Zhang H, Jackson SE. Folding of a tandemly knotted protein: Evidence that a polypeptide chain can get out of deep kinetic traps. Protein Sci 2025; 34:e70048. [PMID: 39969078 PMCID: PMC11837048 DOI: 10.1002/pro.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
It is hard to imagine how proteins can thread and form knots in their polypeptide chains, but they do. These topologically complex structures have challenged the traditional protein folding views of simple funnel-shaped energy landscapes. Previous experimental studies on the folding mechanisms of deeply knotted proteins with a single trefoil knot have yielded evidence that this topology has a more complicated folding landscape than other simpler proteins. However, to date, there have been no attempts to study the folding of any protein in which multiple threading events are needed to create more than one knot within a single polypeptide chain. Here, we report the construction and characterization of an artificial tandemly knotted protein. We find compelling evidence that both domains of the protein form trefoil knots with similar structures and stabilities to the parent single trefoil-knotted protein. In addition, we show that this tandemly knotted protein has a complex folding pathway in which there are additional very slow folding phases that we propose correspond to the formation of the second knot within the system. We also find evidence that during folding this protein gets transiently trapped in deep kinetic traps, however, the majority of protein chains (>90%) manage to partially unfold and acquire the native tandem-knot topology. This work highlights the fact that Nature can tolerate more complex protein topologies than we thought, and despite considerable misfolding during folding, protein chains can find their way to the native state even in the absence of molecular chaperones.
Collapse
Affiliation(s)
- Hongyu Zhang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- Present address:
Zhanyuan Therapeutics Ltd.ZhejiangHangzhouChina
| | - Sophie E. Jackson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
7
|
Mepperi J, Mukherjee S, Goel K, Kotamarthi HC. The Complex Energy Landscape of miRFP709, a 4 1-Knotted Protein, Results in Its Irreversible Denaturation. J Phys Chem B 2025; 129:1176-1184. [PMID: 39818792 DOI: 10.1021/acs.jpcb.4c05439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Knotted proteins have a unique topological feature with an open knot, and the physiological significance of these knots remains elusive. In addition, these proteins challenge our understanding of the protein folding process, and whether they retain their native state during unfolding/refolding cycles like other proteins is debated. Most folding studies on knotted proteins have been performed on 31 and 52 knots, monitoring the tryptophan fluorescence. In this study, we probe the unfolding/refolding of a 41-knotted protein, miRFP709, which can be monitored through near-infrared fluorescence in addition to the intrinsic tryptophan emission. miRFP709, upon chemical unfolding and refolding, folds back to a compact, non-native, stable structure that loses its ability to bind to the biliverdin ligand and fluoresce. The refolded protein retains its secondary structure but behaves like a molten-globule state with an exposed hydrophobic surface. The complex folding landscape of these proteins results in hysteresis between the folding and refolding curves. We propose that upon refolding, either an altered knot or an unknotted structure prevents the formation of the native knotted structure.
Collapse
Affiliation(s)
- Jijith Mepperi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soham Mukherjee
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Khushboo Goel
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | |
Collapse
|
8
|
Shen L, Feng H, Li F, Lei F, Wu J, Wei GW. Knot data analysis using multiscale Gauss link integral. Proc Natl Acad Sci U S A 2024; 121:e2408431121. [PMID: 39392667 PMCID: PMC11494316 DOI: 10.1073/pnas.2408431121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/17/2024] [Indexed: 10/12/2024] Open
Abstract
In the past decade, topological data analysis has emerged as a powerful algebraic topology approach in data science. Although knot theory and related subjects are a focus of study in mathematics, their success in practical applications is quite limited due to the lack of localization and quantization. We address these challenges by introducing knot data analysis (KDA), a paradigm that incorporates curve segmentation and multiscale analysis into the Gauss link integral. The resulting multiscale Gauss link integral (mGLI) recovers the global topological properties of knots and links at an appropriate scale and offers a multiscale geometric topology approach to capture the local structures and connectivities in data. By integration with machine learning or deep learning, the proposed mGLI significantly outperforms other state-of-the-art methods across various benchmark problems in 13 intricately complex biological datasets, including protein flexibility analysis, protein-ligand interactions, human Ether-à-go-go-Related Gene potassium channel blockade screening, and quantitative toxicity assessment. Our KDA opens a research area-knot deep learning-in data science.
Collapse
Affiliation(s)
- Li Shen
- Department of Mathematics, Michigan State University, East Lansing, MI48824
| | - Hongsong Feng
- Department of Mathematics, Michigan State University, East Lansing, MI48824
| | - Fengling Li
- School of Mathematical Sciences, Dalian University of Technology, Dalian116024, China
| | - Fengchun Lei
- School of Mathematical Sciences, Dalian University of Technology, Dalian116024, China
| | - Jie Wu
- Beijing Institute of Mathematical Sciences and Applications, 101408, China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI48824
| |
Collapse
|
9
|
Perlinska AP, Sikora M, Sulkowska JI. Everything AlphaFold tells us about protein knots. J Mol Biol 2024; 436:168715. [PMID: 39029890 DOI: 10.1016/j.jmb.2024.168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Recent advances in Machine Learning methods in structural biology opened up new perspectives for protein analysis. Utilizing these methods allows us to go beyond the limitations of empirical research, and take advantage of the vast amount of generated data. We use a complete set of potentially knotted protein models identified in all high-quality predictions from the AlphaFold Database to search for any common trends that describe them. We show that the vast majority of knotted proteins have 31 knot and that the presence of knots is preferred in neither Bacteria, Eukaryota, or Archaea domains. On the contrary, the percentage of knotted proteins in any given proteome is around 0.4%, regardless of the taxonomical group. We also verified that the organism's living conditions do not impact the number of knotted proteins in its proteome, as previously expected. We did not encounter an organism without a single knotted protein. What is more, we found four universally present families of knotted proteins in Bacteria, consisting of SAM synthase, and TrmD, TrmH, and RsmE methyltransferases.
Collapse
Affiliation(s)
- Agata P Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Maciej Sikora
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-097, Poland.
| |
Collapse
|
10
|
Dabrowski‐Tumanski P, Goundaroulis D, Stasiak A, Rawdon EJ, Sulkowska JI. Theta-curves in proteins. Protein Sci 2024; 33:e5133. [PMID: 39167036 PMCID: PMC11337915 DOI: 10.1002/pro.5133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
We study and characterize the topology of connectivity circuits observed in natively folded protein structures whose coordinates are deposited in the Protein Data Bank (PDB). Polypeptide chains of some proteins naturally fold into unique knotted configurations. Another kind of nontrivial topology of polypeptide chains is observed when, in addition to covalent bonds connecting consecutive amino acids in polypeptide chains, one also considers disulfide and ionic bonds between non-consecutive amino acids. Bonds between non-consecutive amino acids introduce bifurcation points into connectivity circuits defined by bonds between consecutive and nonconsecutive amino acids in analyzed proteins. Circuits with bifurcation points can form θ-curves with various topologies. We catalog here the observed topologies of θ-curves passing through bridges between consecutive and non-consecutive amino acids in studied proteins.
Collapse
Affiliation(s)
| | - Dimos Goundaroulis
- Center for Genome Architecture, Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
- Center for Theoretical Biological PhysicsRice UniversityHoustonTexasUSA
| | - Andrzej Stasiak
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Eric J. Rawdon
- Department of MathematicsUniversity of St. ThomasSt. PaulMinnesotaUSA
| | | |
Collapse
|
11
|
Chakraborty D, Pradhan S, Clegg JK, Mukherjee PS. Mechanically Interlocked Water-Soluble Pd 6 Host for the Selective Separation of Coal Tar-Based Planar Aromatic Molecules. Inorg Chem 2024; 63:14924-14932. [PMID: 39129449 DOI: 10.1021/acs.inorgchem.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Research on the synthesis of catenated cages has been a growing field of interest in the past few years. While multiple types of catenated cages with different structures have been synthesized, the application of such systems has been much less explored. Specifically, the use of catenated cages in the separation of industrially relevant molecules that are present in coal tar has not been explored before. Herein, we demonstrate the use of a newly synthesized interlocked cage 1 [C184H240N76O48Pd6] (M6L4), formed through the self-assembly of ligand L.HNO3 (tris(4-(1H-imidazole-1-yl)benzylidene)hydrazine-1-carbohydrazonhydrazide) with acceptor cis-[(tmchda)Pd(NO3)2] [tmchda = ±N,N,N',N'-tetramethylcyclohexane-1,2-diamine] (M). The interlocked cage 1 was able to separate the isomers (anthracene and phenanthrene) using a simple solvent extraction technique. Using the same technique, the much more difficult separation of structurally and physiochemically similar compounds acenaphthene and acenaphthylene was performed for the first time with 1 as the host. Other noninterlocked hexanuclear Pd6 cages having a wider cavity proved inefficient for such separation, demonstrating the uniqueness of the interlocked cage 1 for such challenging separation.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sailendra Pradhan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jack Kay Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Alves Silva JC, Barden Grillo I, A Urquiza-Carvalho G, Bruno Rocha G. Exploring the electronic structure of knotted proteins: the case of two ornithine transcarbamylase family. J Mol Model 2024; 30:265. [PMID: 39008190 DOI: 10.1007/s00894-024-06009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
CONTEXT Geometrical knots are rare structural arrangements in proteins in which the polypeptide chain ties itself into a knot, which is very intriguing due to the uncertainty of their impact on the protein properties. Presently, classical molecular dynamics is the most employed technique in the few studies found on this topic, so any information on how the presence of knots affects the reactivity and electronic properties of proteins is even scarcer. Using the electronic structure methods and quantum chemical descriptors analysis, we found that the same amino-acid residues in the knot core have statistically larger values for the unknotted protein, for both hard-hard and soft-soft interaction descriptors. In addition, we present a computationally feasible protocol, where we show it is possible to separate the contribution of the geometrical knot to the reactivity and other electronic structure properties. METHODS In order to investigate these systems, we used PRIMoRDiA, a new software developed by our research group, to explore the electronic structure of biological macromolecules. We evaluated several local quantum chemical descriptors to unveil relevant patterns potentially originating from the presence of the geometrical knot in two proteins, belonging to the ornithine transcarbamylase family. We compared several sampled structures from these two enzymes that are highly similar in both tertiary structure and function, but one of them has a knot whereas the other does not. The sampling was carried out through molecular dynamics simulations using ff14SB force field along 50 ns, and the semiempirical convergence was performed with PM7 Hamiltonian.
Collapse
Affiliation(s)
- José Cícero Alves Silva
- Department of Chemistry, Federal University of Paraíba, Cid. Universitária, João Pessoa, 58051-900, Paraíba, Brazil
| | - Igor Barden Grillo
- Department of Chemistry, Federal University of Paraíba, Cid. Universitária, João Pessoa, 58051-900, Paraíba, Brazil
| | - Gabriel A Urquiza-Carvalho
- Department of Chemistry, Federal University of Pernambuco, Cid. Universitária, Recife, 50670-901, Pernambuco, Brazil
| | - Gerd Bruno Rocha
- Department of Chemistry, Federal University of Paraíba, Cid. Universitária, João Pessoa, 58051-900, Paraíba, Brazil.
| |
Collapse
|
13
|
Rubach P, Sikora M, Jarmolinska A, Perlinska A, Sulkowska J. AlphaKnot 2.0: a web server for the visualization of proteins' knotting and a database of knotted AlphaFold-predicted models. Nucleic Acids Res 2024; 52:W187-W193. [PMID: 38842945 PMCID: PMC11223836 DOI: 10.1093/nar/gkae443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
The availability of 3D protein models is rapidly increasing with the development of structure prediction algorithms. With the expanding availability of data, new ways of analysis, especially topological analysis, of those predictions are becoming necessary. Here, we present the updated version of the AlphaKnot service that provides a straightforward way of analyzing structure topology. It was designed specifically to determine knot types of the predicted structure models, however, it can be used for all structures, including the ones solved experimentally. AlphaKnot 2.0 provides the user's ability to obtain the knowledge necessary to assess the topological correctness of the model. Both probabilistic and deterministic knot detection methods are available, together with various visualizations (including a trajectory of simplification steps to highlight the topological complexities). Moreover, the web server provides a list of proteins similar to the queried model within AlphaKnot's database and returns their knot types for direct comparison. We pre-calculated the topology of high-quality models from the AlphaFold Database (4th version) and there are now more than 680.000 knotted models available in the AlphaKnot database. AlphaKnot 2.0 is available at https://alphaknot.cent.uw.edu.pl/.
Collapse
Affiliation(s)
- Pawel Rubach
- Warsaw School of Economics, Al. Niepodleglosci 162, 02-554 Warsaw, Poland
| | - Maciej Sikora
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | | | - Agata P Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
14
|
Sikora M, Klimentova E, Uchal D, Sramkova D, Perlinska AP, Nguyen ML, Korpacz M, Malinowska R, Nowakowski S, Rubach P, Simecek P, Sulkowska JI. Knot or not? Identifying unknotted proteins in knotted families with sequence-based Machine Learning model. Protein Sci 2024; 33:e4998. [PMID: 38888487 PMCID: PMC11184937 DOI: 10.1002/pro.4998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
Knotted proteins, although scarce, are crucial structural components of certain protein families, and their roles continue to be a topic of intense research. Capitalizing on the vast collection of protein structure predictions offered by AlphaFold (AF), this study computationally examines the entire UniProt database to create a robust dataset of knotted and unknotted proteins. Utilizing this dataset, we develop a machine learning (ML) model capable of accurately predicting the presence of knots in protein structures solely from their amino acid sequences. We tested the model's capabilities on 100 proteins whose structures had not yet been predicted by AF and found agreement with our local prediction in 92% cases. From the point of view of structural biology, we found that all potentially knotted proteins predicted by AF can be classified only into 17 families. This allows us to discover the presence of unknotted proteins in families with a highly conserved knot. We found only three new protein families: UCH, DUF4253, and DUF2254, that contain both knotted and unknotted proteins, and demonstrate that deletions within the knot core could potentially account for the observed unknotted (trivial) topology. Finally, we have shown that in the majority of knotted families (11 out of 15), the knotted topology is strictly conserved in functional proteins with very low sequence similarity. We have conclusively demonstrated that proteins AF predicts as unknotted are structurally accurate in their unknotted configurations. However, these proteins often represent nonfunctional fragments, lacking significant portions of the knot core (amino acid sequence).
Collapse
Affiliation(s)
- Maciej Sikora
- Centre of New Technologies, University of WarsawWarsawPoland
- Faculty of Mathematics, Informatics and Mechanics, University of WarsawWarsawPoland
| | - Eva Klimentova
- Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrnoCzech Republic
| | - Dawid Uchal
- Centre of New Technologies, University of WarsawWarsawPoland
- Faculty of Physics, University of WarsawWarsawPoland
| | - Denisa Sramkova
- Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrnoCzech Republic
| | | | - Mai Lan Nguyen
- Centre of New Technologies, University of WarsawWarsawPoland
| | - Marta Korpacz
- Centre of New Technologies, University of WarsawWarsawPoland
- Faculty of Mathematics, Informatics and Mechanics, University of WarsawWarsawPoland
| | - Roksana Malinowska
- Centre of New Technologies, University of WarsawWarsawPoland
- Faculty of Mathematics, Informatics and Mechanics, University of WarsawWarsawPoland
| | - Szymon Nowakowski
- Faculty of Mathematics, Informatics and Mechanics, University of WarsawWarsawPoland
- Faculty of Physics, University of WarsawWarsawPoland
| | - Pawel Rubach
- Centre of New Technologies, University of WarsawWarsawPoland
- Warsaw School of EconomicsWarsawPoland
| | - Petr Simecek
- Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
| | | |
Collapse
|
15
|
Perlinska AP, Nguyen ML, Pilla SP, Staszor E, Lewandowska I, Bernat A, Purta E, Augustyniak R, Bujnicki JM, Sulkowska JI. Are there double knots in proteins? Prediction and in vitro verification based on TrmD-Tm1570 fusion from C. nitroreducens. Front Mol Biosci 2024; 10:1223830. [PMID: 38903539 PMCID: PMC11187310 DOI: 10.3389/fmolb.2023.1223830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/04/2023] [Indexed: 06/22/2024] Open
Abstract
We have been aware of the existence of knotted proteins for over 30 years-but it is hard to predict what is the most complicated knot that can be formed in proteins. Here, we show new and the most complex knotted topologies recorded to date-double trefoil knots (31 #31). We found five domain arrangements (architectures) that result in a doubly knotted structure in almost a thousand proteins. The double knot topology is found in knotted membrane proteins from the CaCA family, that function as ion transporters, in the group of carbonic anhydrases that catalyze the hydration of carbon dioxide, and in the proteins from the SPOUT superfamily that gathers 31 knotted methyltransferases with the active site-forming knot. For each family, we predict the presence of a double knot using AlphaFold and RoseTTaFold structure prediction. In the case of the TrmD-Tm1570 protein, which is a member of SPOUT superfamily, we show that it folds in vitro and is biologically active. Our results show that this protein forms a homodimeric structure and retains the ability to modify tRNA, which is the function of the single-domain TrmD protein. However, how the protein folds and is degraded remains unknown.
Collapse
Affiliation(s)
| | - Mai Lan Nguyen
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | - Smita P. Pilla
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Emilia Staszor
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Agata Bernat
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | |
Collapse
|
16
|
Sugiyama M, Kosik KS, Panagiotou E. Mathematical topology and geometry-based classification of tauopathies. Sci Rep 2024; 14:7560. [PMID: 38555402 PMCID: PMC10981734 DOI: 10.1038/s41598-024-58221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Neurodegenerative diseases, like Alzheimer's, are associated with the presence of neurofibrillary lesions formed by tau protein filaments in the cerebral cortex. While it is known that different morphologies of tau filaments characterize different neurodegenerative diseases, there are few metrics of global and local structure complexity that enable to quantify their structural diversity rigorously. In this manuscript, we employ for the first time mathematical topology and geometry to classify neurodegenerative diseases by using cryo-electron microscopy structures of tau filaments that are available in the Protein Data Bank. By employing mathematical topology metrics (Gauss linking integral, writhe and second Vassiliev measure) we achieve a consistent, but more refined classification of tauopathies, than what was previously observed through visual inspection. Our results reveal a hierarchy of classification from global to local topology and geometry characteristics. In particular, we find that tauopathies can be classified with respect to the handedness of their global conformations and the handedness of the relative orientations of their repeats. Progressive supranuclear palsy is identified as an outlier, with a more complex structure than the rest, reflected by a small, but observable knotoid structure (a diagrammatic structure representing non-trivial topology). This topological characteristic can be attributed to a pattern in the beginning of the R3 repeat that is present in all tauopathies but at different extent. Moreover, by comparing single filament to paired filament structures within tauopathies we find a consistent change in the side-chain orientations with respect to the alpha carbon atoms at the area of interaction.
Collapse
Affiliation(s)
- Masumi Sugiyama
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Eleni Panagiotou
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
17
|
Rana V, Sitarik I, Petucci J, Jiang Y, Song H, O'Brien EP. Non-covalent Lasso Entanglements in Folded Proteins: Prevalence, Functional Implications, and Evolutionary Significance. J Mol Biol 2024; 436:168459. [PMID: 38296158 PMCID: PMC11265471 DOI: 10.1016/j.jmb.2024.168459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
One-third of protein domains in the CATH database contain a recently discovered tertiary topological motif: non-covalent lasso entanglements, in which a segment of the protein backbone forms a loop closed by non-covalent interactions between residues and is threaded one or more times by the N- or C-terminal backbone segment. Unknown is how frequently this structural motif appears across the proteomes of organisms. And the correlation of these motifs with various classes of protein function and biological processes have not been quantified. Here, using a combination of protein crystal structures, AlphaFold2 predictions, and Gene Ontology terms we show that in E. coli, S. cerevisiae and H. sapiens that 71%, 52% and 49% of globular proteins contain one-or-more non-covalent lasso entanglements in their native fold, and that some of these are highly complex with multiple threading events. Further, proteins containing these tertiary motifs are consistently enriched in certain functions and biological processes across these organisms and depleted in others, strongly indicating an influence of evolutionary selection pressures acting positively and negatively on the distribution of these motifs. Together, these results demonstrate that non-covalent lasso entanglements are widespread and indicate they may be extensively utilized for protein function and subcellular processes, thus impacting phenotype.
Collapse
Affiliation(s)
- Viraj Rana
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Justin Petucci
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, United States
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Hyebin Song
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States; Department of Statistics, Pennsylvania State University, University Park, PA, United States.
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States; Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, United States; Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
18
|
Castells-Graells R, Yeates TO. Making topological protein links using enzymatic reactions. Natl Sci Rev 2024; 11:nwae071. [PMID: 38572076 PMCID: PMC10990160 DOI: 10.1093/nsr/nwae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Affiliation(s)
- Roger Castells-Graells
- Department of Chemistry and Biochemistry, University of California, USA
- UCLA-DOE Institute for Genomics and Proteomics, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, USA
- UCLA-DOE Institute for Genomics and Proteomics, USA
| |
Collapse
|
19
|
Noel JK, Haglund E. Topological Reaction Coordinate Captures the Folding Transition State Ensemble in a Pierced Lasso Protein. J Phys Chem B 2024; 128:117-124. [PMID: 38118146 DOI: 10.1021/acs.jpcb.3c06678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Proteins with a pierced lasso topology (PLT) have a covalent loop created by a disulfide bond, and the backbone circles back to thread the loop. This threaded topology has unique features compared to knotted topologies; notably, the topology is controlled by the chemical environment and the covalent loop remains intact even when denatured. In this work, we use the hormone leptin as our model PLT system and study its folding using molecular dynamics simulations that employ a structure-based (Go̅-like) model. We find that the reduced protein has a two-state folding mechanism with a transition state ensemble (TSE) that can be characterized by the reaction coordinate Q, the fraction of native contacts formed. In contrast, the oxidized protein, which must thread part of the polypeptide chain through a covalent loop, has a folding process that is poorly characterized by Q. Instead, we find that a topological coordinate that monitors the residue crossing the loop can identify the TSE of oxidized leptin. By precisely identifying the predicted TSE, one may now reliably calculate theoretical phi-values for the PLT protein, thereby enabling a comparison with experimental measurements. We find the loop-threading constraint leads to noncanonical phi-values that are uniformly small because this PLT protein has a flat energy landscape through the TSE.
Collapse
Affiliation(s)
- Jeffrey K Noel
- Structural Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ellinor Haglund
- Department of Chemistry, University of Hawaii, Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
20
|
Hsu MF, Sriramoju MK, Lai CH, Chen YR, Huang JS, Ko TP, Huang KF, Hsu STD. Structure, dynamics, and stability of the smallest and most complex 7 1 protein knot. J Biol Chem 2024; 300:105553. [PMID: 38072060 PMCID: PMC10840475 DOI: 10.1016/j.jbc.2023.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Proteins can spontaneously tie a variety of intricate topological knots through twisting and threading of the polypeptide chains. Recently developed artificial intelligence algorithms have predicted several new classes of topological knotted proteins, but the predictions remain to be authenticated experimentally. Here, we showed by X-ray crystallography and solution-state NMR spectroscopy that Q9PR55, an 89-residue protein from Ureaplasma urealyticum, possesses a novel 71 knotted topology that is accurately predicted by AlphaFold 2, except for the flexible N terminus. Q9PR55 is monomeric in solution, making it the smallest and most complex knotted protein known to date. In addition to its exceptional chemical stability against urea-induced unfolding, Q9PR55 is remarkably robust to resist the mechanical unfolding-coupled proteolysis by a bacterial proteasome, ClpXP. Our results suggest that the mechanical resistance against pulling-induced unfolding is determined by the complexity of the knotted topology rather than the size of the molecule.
Collapse
Affiliation(s)
- Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Chih-Hsuan Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Academia Sinica Protein Clinic, Academia Sinica, Taipei, Taiwan
| | - Jing-Siou Huang
- Academia Sinica Protein Clinic, Academia Sinica, Taipei, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Academia Sinica Protein Clinic, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Academia Sinica Protein Clinic, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Higashihiroshima, Japan.
| |
Collapse
|
21
|
Zayats V, Sikora M, Perlinska AP, Stasiulewicz A, Gren BA, Sulkowska JI. Conservation of knotted and slipknotted topology in transmembrane transporters. Biophys J 2023; 122:4528-4541. [PMID: 37919904 PMCID: PMC10719070 DOI: 10.1016/j.bpj.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
The existence of nontrivial topology is well accepted in globular proteins but not in membrane proteins. Our comprehensive topological analysis of the Protein Data Bank structures reveals 18 families of transmembrane proteins with nontrivial topology, showing that they constitute a significant number of membrane proteins. Moreover, we found that they comprise one of the largest groups of secondary active transporters. We classified them based on their knotted fingerprint into four groups: three slipknotted and one knotted. Unexpectedly, we found that the same protein can possess two distinct slipknot motifs that correspond to its outward- and inward-open conformational state. Based on the analysis of structures and knotted fingerprints, we show that slipknot topology is directly involved in the conformational transition and substrate transfer. Therefore, entanglement can be used to classify proteins and to find their structure-function relationship. Furthermore, based on the topological analysis of the transmembrane protein structures predicted by AlphaFold, we identified new potentially slipknotted protein families.
Collapse
Affiliation(s)
- Vasilina Zayats
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Maciej Sikora
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | | | - Adam Stasiulewicz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz A Gren
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
22
|
Hsu STD. Folding and functions of knotted proteins. Curr Opin Struct Biol 2023; 83:102709. [PMID: 37778185 DOI: 10.1016/j.sbi.2023.102709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Topologically knotted proteins have entangled structural elements within their native structures that cannot be disentangled simply by pulling from the N- and C-termini. Systematic surveys have identified different types of knotted protein structures, constituting as much as 1% of the total entries within the Protein Data Bank. Many knotted proteins rely on their knotted structural elements to carry out evolutionarily conserved biological functions. Being knotted may also provide mechanical stability to withstand unfolding-coupled proteolysis. Reconfiguring a knotted protein topology by circular permutation or cyclization provides insights into the importance of being knotted in the context of folding and functions. With the explosion of predicted protein structures by artificial intelligence, we are now entering a new era of exploring the entangled protein universe.
Collapse
Affiliation(s)
- Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
23
|
Tripathi P, Mehrafrooz B, Aksimentiev A, Jackson SE, Gruebele M, Wanunu M. A Marcus-Type Inverted Region in the Translocation Kinetics of a Knotted Protein. J Phys Chem Lett 2023; 14:10719-10726. [PMID: 38009629 PMCID: PMC11176711 DOI: 10.1021/acs.jpclett.3c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Knotted proteins are rare but important species, yet how their complex topologies affect their physical properties is not fully understood. Here we combine single molecule nanopore experiments and all-atom MD simulations to study the electric-field-driven unfolding during the translocation through a model pore of individual protein knots important for methylating tRNA. One of these knots shows an unusual behavior that resembles the behavior of electrons hopping between two potential surfaces: as the electric potential driving the translocation reaction is increased, the rate eventually plateaus or slows back down in the "Marcus inverted regime". Our results shed light on the influence of topology in knotted proteins on their forced translocation through a pore connecting two electrostatic potential wells.
Collapse
Affiliation(s)
- Prabhat Tripathi
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP-221005, India
| | - Behzad Mehrafrooz
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Sophie E. Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield `Road, Cambridge CB2 1EW, UK
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA-02115, USA
| |
Collapse
|
24
|
Dabrowski-Tumanski P, Stasiak A. AlphaFold Blindness to Topological Barriers Affects Its Ability to Correctly Predict Proteins' Topology. Molecules 2023; 28:7462. [PMID: 38005184 PMCID: PMC10672856 DOI: 10.3390/molecules28227462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
AlphaFold is a groundbreaking deep learning tool for protein structure prediction. It achieved remarkable accuracy in modeling many 3D structures while taking as the user input only the known amino acid sequence of proteins in question. Intriguingly though, in the early steps of each individual structure prediction procedure, AlphaFold does not respect topological barriers that, in real proteins, result from the reciprocal impermeability of polypeptide chains. This study aims to investigate how this failure to respect topological barriers affects AlphaFold predictions with respect to the topology of protein chains. We focus on such classes of proteins that, during their natural folding, reproducibly form the same knot type on their linear polypeptide chain, as revealed by their crystallographic analysis. We use partially artificial test constructs in which the mutual non-permeability of polypeptide chains should not permit the formation of complex composite knots during natural protein folding. We find that despite the formal impossibility that the protein folding process could produce such knots, AlphaFold predicts these proteins to form complex composite knots. Our study underscores the necessity for cautious interpretation and further validation of topological features in protein structures predicted by AlphaFold.
Collapse
Affiliation(s)
- Pawel Dabrowski-Tumanski
- Faculty of Mathematics and Natural Sciences, School of Exact Sciences, Cardinal Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Doyle LA, Takushi B, Kibler RD, Milles LF, Orozco CT, Jones JD, Jackson SE, Stoddard BL, Bradley P. De novo design of knotted tandem repeat proteins. Nat Commun 2023; 14:6746. [PMID: 37875492 PMCID: PMC10598012 DOI: 10.1038/s41467-023-42388-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
De novo protein design methods can create proteins with folds not yet seen in nature. These methods largely focus on optimizing the compatibility between the designed sequence and the intended conformation, without explicit consideration of protein folding pathways. Deeply knotted proteins, whose topologies may introduce substantial barriers to folding, thus represent an interesting test case for protein design. Here we report our attempts to design proteins with trefoil (31) and pentafoil (51) knotted topologies. We extended previously described algorithms for tandem repeat protein design in order to construct deeply knotted backbones and matching designed repeat sequences (N = 3 repeats for the trefoil and N = 5 for the pentafoil). We confirmed the intended conformation for the trefoil design by X ray crystallography, and we report here on this protein's structure, stability, and folding behaviour. The pentafoil design misfolded into an asymmetric structure (despite a 5-fold symmetric sequence); two of the four repeat-repeat units matched the designed backbone while the other two diverged to form local contacts, leading to a trefoil rather than pentafoil knotted topology. Our results also provide insights into the folding of knotted proteins.
Collapse
Affiliation(s)
- Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA
| | - Brittany Takushi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Lukas F Milles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Carolina T Orozco
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jonathan D Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA.
| | - Philip Bradley
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. North, Seattle, WA, 98109, USA.
- Division of Public Health Sciences and Program in Computational Biology, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N, Seattle, WA, 98009, USA.
| |
Collapse
|
26
|
Especial JNC, Faísca PFN. Effects of sequence-dependent non-native interactions in equilibrium and kinetic folding properties of knotted proteins. J Chem Phys 2023; 159:065101. [PMID: 37551809 DOI: 10.1063/5.0160886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Determining the role of non-native interactions in folding dynamics, kinetics, and mechanisms is a classic problem in protein folding. More recently, this question has witnessed a renewed interest in light of the hypothesis that knotted proteins require the assistance of non-native interactions to fold efficiently. Here, we conduct extensive equilibrium and kinetic Monte Carlo simulations of a simple off-lattice C-alpha model to explore the role of non-native interactions in the thermodynamics and kinetics of three proteins embedding a trefoil knot in their native structure. We find that equilibrium knotted conformations are stabilized by non-native interactions that are non-local, and proximal to native ones, thus enhancing them. Additionally, non-native interactions increase the knotting frequency at high temperatures, and in partially folded conformations below the transition temperatures. Although non-native interactions clearly enhance the efficiency of transition from an unfolded conformation to a partially folded knotted one, they are not required to efficiently fold a knotted protein. Indeed, a native-centric interaction potential drives the most efficient folding transition, provided that the simulation temperature is well below the transition temperature of the considered model system.
Collapse
Affiliation(s)
- João N C Especial
- Departamento de Física, Faculdade de Ciências, Ed. C8, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Patrícia F N Faísca
- Departamento de Física, Faculdade de Ciências, Ed. C8, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| |
Collapse
|
27
|
Jedrzejewski M, Belza B, Lewandowska I, Sadlej M, Perlinska AP, Augustyniak R, Christian T, Hou YM, Kalek M, Sulkowska JI. Nucleolar Essential Protein 1 (Nep1): Elucidation of enzymatic catalysis mechanism by molecular dynamics simulation and quantum mechanics study. Comput Struct Biotechnol J 2023; 21:3999-4008. [PMID: 37649713 PMCID: PMC10462857 DOI: 10.1016/j.csbj.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
The Nep1 protein is essential for the formation of eukaryotic and archaeal small ribosomal subunits, and it catalyzes the site-directed SAM-dependent methylation of pseudouridine (Ψ) during pre-rRNA processing. It possesses a non-trivial topology, namely, a 31 knot in the active site. Here, we address the issue of seemingly unfeasible deprotonation of Ψ in Nep1 active site by a distant aspartate residue (D101 in S. cerevisiae), using a combination of bioinformatics, computational, and experimental methods. We identified a conserved hydroxyl-containing amino acid (S233 in S. cerevisiae, T198 in A. fulgidus) that may act as a proton-transfer mediator. Molecular dynamics simulations, based on the crystal structure of S. cerevisiae, and on a complex generated by molecular docking in A. fulgidus, confirmed that this amino acid can shuttle protons, however, a water molecule in the active site may also serve this role. Quantum-chemical calculations based on density functional theory and the cluster approach showed that the water-mediated pathway is the most favorable for catalysis. Experimental kinetic and mutational studies reinforce the requirement for the aspartate D101, but not S233. These findings provide insight into the catalytic mechanisms underlying proton transfer over extended distances and comprehensively elucidate the mode of action of Nep1.
Collapse
Affiliation(s)
- Mateusz Jedrzejewski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Barbara Belza
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Iwona Lewandowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Marta Sadlej
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Agata P. Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Rafal Augustyniak
- Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, PA 19144, USA
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
28
|
Puri S, Liu CY, Hu IC, Lai CH, Hsu STD, Lyu PC. Elucidation of the folding pathway of a circular permutant of topologically knotted YbeA by tryptophan substitutions. Biochem Biophys Res Commun 2023; 672:81-88. [PMID: 37343318 DOI: 10.1016/j.bbrc.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
CP74 is an engineered circular permutant of a deep trefoil knotted SpoU-TrmD (SPOUT) RNA methyl transferase protein YbeA from E. coli. We have previously established that the circular permutation unties the knotted topology of YbeA and CP74 forms a domain-swapped dimer with a large dimeric interface of ca. 4600 Å2. To understand the impact of domain-swapping and the newly formed hinge region joining the two folded domains on the folding and stability of CP74, the five equally spaced tryptophan residues were individually substituted into phenylalanine to monitor their conformational and stability changes by a battery of biophysical tools. Far-UV circular dichroism, intrinsic fluorescence, and small-angle X-ray scattering dictated minimal global conformational perturbations to the native structures in the tryptophan variants. The structures of the tryptophan variants also showed the conservation of the domain-swapped ternary structure with the exception that the W72F exhibited significant asymmetry in the α-helix 5. Comparative global thermal and chemical stability analyses indicated the pivotal role of W100 in the folding of CP74 followed by W19 and W72. Solution-state NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry further revealed the accumulation of a native-like intermediate state in which the hinge region made important contributions to maintain the domain-swapped ternary structure of CP74.
Collapse
Affiliation(s)
- Sarita Puri
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Yu Liu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - I-Chen Hu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Hsuan Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, 739-8527, Japan.
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
29
|
Flapan E, Mashaghi A, Wong H. A tile model of circuit topology for self-entangled biopolymers. Sci Rep 2023; 13:8889. [PMID: 37264056 DOI: 10.1038/s41598-023-35771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Building on the theory of circuit topology for intra-chain contacts in entangled proteins, we introduce tiles as a way to rigorously model local entanglements which are held in place by molecular forces. We develop operations that combine tiles so that entangled chains can be represented by algebraic expressions. Then we use our model to show that the only knot types that such entangled chains can have are [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and connected sums of these knots. This includes all proteins knots that have thus far been identified.
Collapse
Affiliation(s)
- Erica Flapan
- Mathematics and Statistics Department, Pomona College, Claremont, CA, 91711, USA.
| | - Alireza Mashaghi
- Faculty of Science, Leiden University, 2333CC, Leiden, The Netherlands
| | - Helen Wong
- Mathematical Sciences Department, Claremont McKenna College, Claremont, CA, 91711, USA
| |
Collapse
|
30
|
Benjamin K, Mukta L, Moryoussef G, Uren C, Harrington HA, Tillmann U, Barbensi A. Homology of homologous knotted proteins. J R Soc Interface 2023; 20:20220727. [PMID: 37122282 PMCID: PMC10130707 DOI: 10.1098/rsif.2022.0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Quantification and classification of protein structures, such as knotted proteins, often requires noise-free and complete data. Here, we develop a mathematical pipeline that systematically analyses protein structures. We showcase this geometric framework on proteins forming open-ended trefoil knots, and we demonstrate that the mathematical tool, persistent homology, faithfully represents their structural homology. This topological pipeline identifies important geometric features of protein entanglement and clusters the space of trefoil proteins according to their depth. Persistence landscapes quantify the topological difference between a family of knotted and unknotted proteins in the same structural homology class. This difference is localized and interpreted geometrically with recent advancements in systematic computation of homology generators. The topological and geometric quantification we find is robust to noisy input data, which demonstrates the potential of this approach in contexts where standard knot theoretic tools fail.
Collapse
Affiliation(s)
| | - Lamisah Mukta
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | | | - Christopher Uren
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Heather A. Harrington
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Ulrike Tillmann
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge CB3 0EH, UK
| | - Agnese Barbensi
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
A Note on the Effects of Linear Topology Preservation in Monte Carlo Simulations of Knotted Proteins. Int J Mol Sci 2022; 23:ijms232213871. [PMID: 36430350 PMCID: PMC9695063 DOI: 10.3390/ijms232213871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Monte Carlo simulations are a powerful technique and are widely used in different fields. When applied to complex molecular systems with long chains, such as those in synthetic polymers and proteins, they have the advantage of providing a fast and computationally efficient way to sample equilibrium ensembles and calculate thermodynamic and structural properties under desired conditions. Conformational Monte Carlo techniques employ a move set to perform the transitions in the simulation Markov chain. While accepted conformations must preserve the sequential bonding of the protein chain model and excluded volume among its units, the moves themselves may take the chain across itself. We call this a break in linear topology preservation. In this manuscript, we show, using simple protein models, that there is no difference in equilibrium properties calculated with a move set that preserves linear topology and one that does not. However, for complex structures, such as those of deeply knotted proteins, the preservation of linear topology provides correct equilibrium results but only after long relaxation. In any case, to analyze folding pathways, knotting mechanisms and folding kinetics, the preservation of linear topology may be an unavoidable requirement.
Collapse
|
32
|
Walker CC, Fobe TL, Shirts MR. How Cooperatively Folding Are Homopolymer Molecular Knots? Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher C. Walker
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303 United States
| | - Theodore L. Fobe
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303 United States
| | - Michael R. Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303 United States
| |
Collapse
|
33
|
On the Classification of Polyhedral Links. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Knots and links are ubiquitous in chemical systems. Their structure can be responsible for a variety of physical and chemical properties, making them very important in materials development. In this article, we analyze the topological structures of interlocking molecules composed of metal-peptide rings using the concept of polyhedral links. To that end, we discuss the topological classification of alternating polyhedral links.
Collapse
|
34
|
Monroe L, Kihara D. Using steered molecular dynamic tension for assessing quality of computational protein structure models. J Comput Chem 2022; 43:1140-1150. [PMID: 35475517 PMCID: PMC9133218 DOI: 10.1002/jcc.26876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/16/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022]
Abstract
The native structures of proteins, except for notable exceptions of intrinsically disordered proteins, in general take their most stable conformation in the physiological condition to maintain their structural framework so that their biological function can be properly carried out. Experimentally, the stability of a protein can be measured by several means, among which the pulling experiment using the atomic force microscope (AFM) stands as a unique method. AFM directly measures the resistance from unfolding, which can be quantified from the observed force-extension profile. It has been shown that key features observed in an AFM pulling experiment can be well reproduced by computational molecular dynamics simulations. Here, we applied computational pulling for estimating the accuracy of computational protein structure models under the hypothesis that the structural stability would positively correlated with the accuracy, i.e. the closeness to the native, of a model. We used in total 4929 structure models for 24 target proteins from the Critical Assessment of Techniques of Structure Prediction (CASP) and investigated if the magnitude of the break force, that is, the force required to rearrange the model's structure, from the force profile was sufficient information for selecting near-native models. We found that near-native models can be successfully selected by examining their break forces suggesting that high break force indeed indicates high stability of models. On the other hand, there were also near-native models that had relatively low peak forces. The mechanisms of the stability exhibited by the break forces were explored and discussed.
Collapse
Affiliation(s)
- Lyman Monroe
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| |
Collapse
|
35
|
Niemyska W, Rubach P, Gren BA, Nguyen ML, Garstka W, Bruno da Silva F, Rawdon EJ, Sulkowska JI. AlphaKnot: server to analyze entanglement in structures predicted by AlphaFold methods. Nucleic Acids Res 2022; 50:W44-W50. [PMID: 35609987 PMCID: PMC9252816 DOI: 10.1093/nar/gkac388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
AlphaKnot is a server that measures entanglement in AlphaFold-solved protein models while considering pLDDT confidence values. AlphaKnot has two main functions: (i) providing researchers with a webserver for analyzing knotting in their own AlphaFold predictions and (ii) providing a database of knotting in AlphaFold predictions from the 21 proteomes for which models have been published prior to 2022. The knotting is defined in a probabilistic fashion. The knotting complexity of proteins is presented in the form of a matrix diagram which shows users the knot type for the entire polypeptide chain and for each of its subchains. The dominant knot types as well as the computed locations of the knot cores (i.e. minimal portions of protein backbones that form a given knot type) are shown for each protein structure. Based mainly on the pLDDT confidence values, entanglements are classified as Knots, Unsure, and Artifacts. The database portion of the server can be used, for example, to examine protein geometry and entanglement-function correlations, as a reference set for protein modeling, and for facilitating evolutional studies. The AlphaKnot server can be found at https://alphaknot.cent.uw.edu.pl/.
Collapse
Affiliation(s)
- Wanda Niemyska
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland.,Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Pawel Rubach
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland.,Warsaw School of Economics,Al. Niepodleglosci 162, 02-554, Warsaw, Poland
| | - Bartosz A Gren
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland
| | - Mai Lan Nguyen
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland.,Polish-Japanese Academy of Information Technology, Koszykowa 86, 02-008 Warsaw, Poland
| | - Wojciech Garstka
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland.,Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | | | - Eric J Rawdon
- University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105, USA
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland
| |
Collapse
|
36
|
Investigation of the structural dynamics of a knotted protein and its unknotted analog using molecular dynamics. J Mol Model 2022; 28:108. [PMID: 35357594 DOI: 10.1007/s00894-022-05094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
The role of knots in proteins remains elusive. Some studies suggest an impact on stability; the difficulty in comparing systems to assess this effect, however, has been a significant challenge. In this study, we produced and analyzed molecular dynamic trajectories considering three different temperatures of two variants of ornithine transcarbamylase (OTC), only one of which has a 31 knot, in order to evaluate the relative stability of the two molecules. RMSD showed equilibrated structures for the produced trajectories, and RMSF showed subtle differences in flexibility. In the knot moiety, the knotted protein did not show a great deal of fluctuation at any temperature. For the unknotted protein, the residue GLY243 showed a high fluctuation in the corresponding moiety. The fraction of native contacts (Q) showed a similar profile at all temperatures, with the greatest decrease by 436 K. The investigation of conformational behavior with principal component analysis (PCA) and dynamic cross-correlation map (DCCM) showed that knotted protein is less likely to undergo changes in its conformation under the conditions employed compared to unknotted. PCA data showed that the unknotted protein had greater dispersion in its conformations, which suggests that it has a greater capacity for conformation transitions in response to thermal changes. DCCM graphs comparing the 310 K and 436 K temperatures showed that the knotted protein had less change in its correlation and anti-correlation movements, indicating stability compared to the unknotted.
Collapse
|
37
|
Slipknot or Crystallographic Error: A Computational Analysis of the Plasmodium falciparum DHFR Structural Folds. Int J Mol Sci 2022; 23:ijms23031514. [PMID: 35163439 PMCID: PMC8835989 DOI: 10.3390/ijms23031514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/12/2023] Open
Abstract
The presence of protein structures with atypical folds in the Protein Data Bank (PDB) is rare and may result from naturally occurring knots or crystallographic errors. Proper characterisation of such folds is imperative to understanding the basis of naturally existing knots and correcting crystallographic errors. If left uncorrected, such errors can frustrate downstream experiments that depend on the structures containing them. An atypical fold has been identified in P. falciparum dihydrofolate reductase (PfDHFR) between residues 20–51 (loop 1) and residues 191–205 (loop 2). This enzyme is key to drug discovery efforts in the parasite, necessitating a thorough characterisation of these folds. Using multiple sequence alignments (MSA), a unique insert was identified in loop 1 that exacerbates the appearance of the atypical fold-giving it a slipknot-like topology. However, PfDHFR has not been deposited in the knotted proteins database, and processing its structure failed to identify any knots within its folds. The application of protein homology modelling and molecular dynamics simulations on the DHFR domain of P. falciparum and those of two other organisms (E. coli and M. tuberculosis) that were used as molecular replacement templates in solving the PfDHFR structure revealed plausible unentangled or open conformations of these loops. These results will serve as guides for crystallographic experiments to provide further insights into the atypical folds identified.
Collapse
|
38
|
PDBe-KB consortium, Varadi M, Anyango S, Armstrong D, Berrisford J, Choudhary P, Deshpande M, Nadzirin N, Nair SS, Pravda L, Tanweer A, Al-Lazikani B, Andreini C, Barton GJ, Bednar D, Berka K, Blundell T, Brock KP, Carazo JM, Damborsky J, David A, Dey S, Dunbrack R, Recio JF, Fraternali F, Gibson T, Helmer-Citterich M, Hoksza D, Hopf T, Jakubec D, Kannan N, Krivak R, Kumar M, Levy ED, London N, Macias JR, Srivatsan MM, Marks DS, Martens L, McGowan SA, McGreig JE, Modi V, Parra RG, Pepe G, Piovesan D, Prilusky J, Putignano V, Radusky LG, Ramasamy P, Rausch AO, Reuter N, Rodriguez LA, Rollins NJ, Rosato A, Rubach P, Serrano L, Singh G, Skoda P, Sorzano COS, Stourac J, Sulkowska JI, Svobodova R, Tichshenko N, Tosatto SCE, Vranken W, Wass MN, Xue D, Zaidman D, Thornton J, Sternberg M, Orengo C, Velankar S. PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Res 2022; 50:D534-D542. [PMID: 34755867 PMCID: PMC8728252 DOI: 10.1093/nar/gkab988] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
The Protein Data Bank in Europe - Knowledge Base (PDBe-KB, https://pdbe-kb.org) is an open collaboration between world-leading specialist data resources contributing functional and biophysical annotations derived from or relevant to the Protein Data Bank (PDB). The goal of PDBe-KB is to place macromolecular structure data in their biological context by developing standardised data exchange formats and integrating functional annotations from the contributing partner resources into a knowledge graph that can provide valuable biological insights. Since we described PDBe-KB in 2019, there have been significant improvements in the variety of available annotation data sets and user functionality. Here, we provide an overview of the consortium, highlighting the addition of annotations such as predicted covalent binders, phosphorylation sites, effects of mutations on the protein structure and energetic local frustration. In addition, we describe a library of reusable web-based visualisation components and introduce new features such as a bulk download data service and a novel superposition service that generates clusters of superposed protein chains weekly for the whole PDB archive.
Collapse
|
39
|
Greń BA, Dabrowski-Tumanski P, Niemyska W, Sulkowska JI. Lasso Proteins-Unifying Cysteine Knots and Miniproteins. Polymers (Basel) 2021; 13:3988. [PMID: 34833285 PMCID: PMC8621785 DOI: 10.3390/polym13223988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Complex lasso proteins are a recently identified class of biological compounds that are present in considerable fraction of proteins with disulfide bridges. In this work, we look at complex lasso proteins as a generalization of well-known cysteine knots and miniproteins (lasso peptides). In particular, we show that complex lasso proteins with the same crucial topological features-cysteine knots and lasso peptides-are antimicrobial proteins, which suggests that they act as a molecular plug. Based on an analysis of the stability of the lasso piercing residue, we also introduce a method to determine which lasso motif is potentially functional. Using this method, we show that the lasso motif in antimicrobial proteins, as well in that in cytokines, is functionally relevant. We also study the evolution of lasso motifs, their conservation, and the usefulness of the lasso fingerprint, which extracts all topologically non-triviality concerning covalent loops. The work is completed by the presentation of extensive statistics on complex lasso proteins to analyze, in particular, the strange propensity for "negative" piercings. We also identify 21 previously unknown complex lasso proteins with an ester and a thioester bridge.
Collapse
Affiliation(s)
- Bartosz Ambroży Greń
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (B.A.G.); (P.D.-T.)
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Wanda Niemyska
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | - Joanna Ida Sulkowska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (B.A.G.); (P.D.-T.)
| |
Collapse
|
40
|
Xu Y, Kang R, Ren L, Yang L, Yue T. Revealing Topological Barriers against Knot Untying in Thermal and Mechanical Protein Unfolding by Molecular Dynamics Simulations. Biomolecules 2021; 11:1688. [PMID: 34827686 PMCID: PMC8615548 DOI: 10.3390/biom11111688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The knot is one of the most remarkable topological features identified in an increasing number of proteins with important functions. However, little is known about how the knot is formed during protein folding, and untied or maintained in protein unfolding. By means of all-atom molecular dynamics simulation, here we employ methyltransferase YbeA as the knotted protein model to analyze changes of the knotted conformation coupled with protein unfolding under thermal and mechanical denaturing conditions. Our results show that the trefoil knot in YbeA is occasionally untied via knot loosening rather than sliding under enhanced thermal fluctuations. Through correlating protein unfolding with changes in the knot position and size, several aspects of barriers that jointly suppress knot untying are revealed. In particular, protein unfolding is always prior to knot untying and starts preferentially from separation of two α-helices (α1 and α5), which protect the hydrophobic core consisting of β-sheets (β1-β4) from exposure to water. These β-sheets form a loop through which α5 is threaded to form the knot. Hydrophobic and hydrogen bonding interactions inside the core stabilize the loop against loosening. In addition, residues at N-terminal of α5 define a rigid turning to impede α5 from sliding out of the loop. Site mutations are designed to specifically eliminate these barriers, and easier knot untying is achieved under the same denaturing conditions. These results provide new molecular level insights into the folding/unfolding of knotted proteins.
Collapse
Affiliation(s)
- Yan Xu
- College of Electronic Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China;
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Runshan Kang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Luyao Ren
- Key Laboratory of Marine Environment and Ecology, Institute of Coastal Environmental Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.R.); (L.Y.)
| | - Lin Yang
- Key Laboratory of Marine Environment and Ecology, Institute of Coastal Environmental Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.R.); (L.Y.)
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Institute of Coastal Environmental Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.R.); (L.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
41
|
Rusková R, Račko D. Channels with Helical Modulation Display Stereospecific Sensitivity for Chiral Superstructures. Polymers (Basel) 2021; 13:3726. [PMID: 34771282 PMCID: PMC8588256 DOI: 10.3390/polym13213726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 01/03/2023] Open
Abstract
By means of coarse-grained molecular dynamics simulations, we explore chiral sensitivity of confining spaces modelled as helical channels to chiral superstructures represented by polymer knots. The simulations show that helical channels exhibit stereosensitivity to chiral knots localized on linear chains by effect of external pulling force and also to knots embedded on circular chains. The magnitude of the stereoselective effect is stronger for torus knots, the effect is weaker in the case of twist knots, and amphichiral knots do exhibit no chiral effects. The magnitude of the effect can be tuned by the so-far investigated radius of the helix, the pitch of the helix and the strength of the pulling force. The model is aimed to simulate and address a range of practical situations that may occur in experimental settings such as designing of nanotechnological devices for the detection of topological state of molecules, preparation of new gels with tailor made stereoselective properties, or diffusion of knotted DNA in biological conditions.
Collapse
Affiliation(s)
- Renáta Rusková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 3, 84541 Bratislava, Slovakia;
- Department of Plastics, Rubber and Fibres (IPM FCFT), Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Dušan Račko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 3, 84541 Bratislava, Slovakia;
| |
Collapse
|
42
|
Slipknotted and unknotted monovalent cation-proton antiporters evolved from a common ancestor. PLoS Comput Biol 2021; 17:e1009502. [PMID: 34648493 PMCID: PMC8562792 DOI: 10.1371/journal.pcbi.1009502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/02/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
While the slipknot topology in proteins has been known for over a decade, its evolutionary origin is still a mystery. We have identified a previously overlooked slipknot motif in a family of two-domain membrane transporters. Moreover, we found that these proteins are homologous to several families of unknotted membrane proteins. This allows us to directly investigate the evolution of the slipknot motif. Based on our comprehensive analysis of 17 distantly related protein families, we have found that slipknotted and unknotted proteins share a common structural motif. Furthermore, this motif is conserved on the sequential level as well. Our results suggest that, regardless of topology, the proteins we studied evolved from a common unknotted ancestor single domain protein. Our phylogenetic analysis suggests the presence of at least seven parallel evolutionary scenarios that led to the current diversity of proteins in question. The tools we have developed in the process can now be used to investigate the evolution of other repeated-domain proteins. In proteins with the slipknot topology, the polypeptide chain forms a slipknot—a structure that is not necessarily manifest to a naked eye, but it can be detected using mathematical methods. Slipknots are conserved motifs often found at catalytic sites and are directly involved in molecular transport. Although the first proteins with slipknots were found in 2007, many questions remain unanswered, e.g. how these proteins appeared, or whether the slipknotted proteins evolved from unknotted ones or vice versa. Here we provide the first analysis of homologous slipknotted and unknotted transmembrane proteins in order to elucidate their evolutionary relationship. We show that two-domain slipknotted and unknotted membrane transporters share the same one-domain unknotted protein as an ancestor. The ancestor gene duplicated and underwent various diversification and fusion events during the evolution, which have led to the appearance of a large superfamily of secondary active transporters. The slipknot motif seems to have been created by chance after a fusion of two single domain genes. Therefore, we show here that the slipknotted transporter evolved from an unknotted one-domain protein and that there are at least seven different evolutionary scenarios that gave rise to this large superfamily of transporters.
Collapse
|
43
|
Inomata Y, Sawada T, Fujita M. Metal-Peptide Nonafoil Knots and Decafoil Supercoils. J Am Chem Soc 2021; 143:16734-16739. [PMID: 34601872 DOI: 10.1021/jacs.1c08094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the frequent occurrence of knotted frameworks in protein structures, the latent potential of peptide strands to form entangled structures is rarely discussed in peptide chemistry. Here we report the construction of highly entangled molecular topologies from Ag(I) ions and tripeptide ligands. The efficient entanglement of metal-peptide strands and the wide scope for design of the amino acid side chains in these ligands enabled the construction of metal-peptide 91 torus knots and 1012 torus links. Moreover, steric control of the peptide side chain induced ring opening and twisting of the torus framework, which resulted in an infinite toroidal supercoil nanostructure.
Collapse
Affiliation(s)
- Yuuki Inomata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,JST PRESTO, https://www.jst.go.jp/kisoken/presto/en/index.html
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
44
|
Petrosyan R, Narayan A, Woodside MT. Single-Molecule Force Spectroscopy of Protein Folding. J Mol Biol 2021; 433:167207. [PMID: 34418422 DOI: 10.1016/j.jmb.2021.167207] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The use of force probes to induce unfolding and refolding of single molecules through the application of mechanical tension, known as single-molecule force spectroscopy (SMFS), has proven to be a powerful tool for studying the dynamics of protein folding. Here we provide an overview of what has been learned about protein folding using SMFS, from small, single-domain proteins to large, multi-domain proteins. We highlight the ability of SMFS to measure the energy landscapes underlying folding, to map complex pathways for native and non-native folding, to probe the mechanisms of chaperones that assist with native folding, to elucidate the effects of the ribosome on co-translational folding, and to monitor the folding of membrane proteins.
Collapse
Affiliation(s)
- Rafayel Petrosyan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
45
|
A Topological Selection of Folding Pathways from Native States of Knotted Proteins. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Understanding how knotted proteins fold is a challenging problem in biology. Researchers have proposed several models for their folding pathways, based on theory, simulations and experiments. The geometry of proteins with the same knot type can vary substantially and recent simulations reveal different folding behaviour for deeply and shallow knotted proteins. We analyse proteins forming open-ended trefoil knots by introducing a topologically inspired statistical metric that measures their entanglement. By looking directly at the geometry and topology of their native states, we are able to probe different folding pathways for such proteins. In particular, the folding pathway of shallow knotted carbonic anhydrases involves the creation of a double-looped structure, contrary to what has been observed for other knotted trefoil proteins. We validate this with Molecular Dynamics simulations. By leveraging the geometry and local symmetries of knotted proteins’ native states, we provide the first numerical evidence of a double-loop folding mechanism in trefoil proteins.
Collapse
|
46
|
Parisi G, Palopoli N, Tosatto SC, Fornasari MS, Tompa P. "Protein" no longer means what it used to. Curr Res Struct Biol 2021; 3:146-152. [PMID: 34308370 PMCID: PMC8283027 DOI: 10.1016/j.crstbi.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
Every biologist knows that the word protein describes a group of macromolecules essential to sustain life on Earth. As biologists, we are invariably trained under a protein paradigm established since the early twentieth century. However, in recent years, the term protein unveiled itself as an euphemism to describe the overwhelming heterogeneity of these compounds. Most of our current studies are targeted on carefully selected subsets of proteins, but we tend to think and write about these as representative of the whole population. Here we discuss how seeking for universal definitions and general rules in any arbitrarily segmented study would be misleading about the conclusions. Of course, it is not our purpose to discourage the use of the word protein. Instead, we suggest to embrace the extended universe of proteins to reach a deeper understanding of their full potential, realizing that the term encompasses a group of molecules very heterogeneous in terms of size, shape, chemistry and functions, i.e. the term protein no longer means what it used to.
Collapse
Affiliation(s)
- Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | | | - María Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
47
|
Especial JNC, Faísca PFN. A Specific Set of Heterogeneous Native Interactions Yields Efficient Knotting in Protein Folding. J Phys Chem B 2021; 125:7359-7367. [PMID: 34197706 DOI: 10.1021/acs.jpcb.1c03127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Native interactions are crucial for folding, and non-native interactions appear to be critical for efficiently knotting proteins. Therefore, it is important to understand both their roles in the folding of knotted proteins. It has been proposed that non-native interactions drive the correct order of contact formation, which is essential to avoid backtracking and efficiently self-tie. In this study, we ask if non-native interactions are strictly necessary to tangle a protein or if the correct order of contact formation can be assured by a specific set of native, but otherwise heterogeneous (i.e., having distinct energies), interactions. In order to address this problem, we conducted extensive Monte Carlo simulations of lattice models of protein-like sequences designed to fold into a preselected knotted conformation embedding a trefoil knot. We were able to identify a specific set of heterogeneous native interactions that drives efficient knotting and is able to fold the protein when combined with the remaining native interactions modeled as homogeneous. This specific set of heterogeneous native interactions is strictly enough to efficiently self-tie. A distinctive feature of these native interactions is that they do not backtrack because their energies ensure the correct order of contact formation. Furthermore, they stabilize a knotted intermediate state, which is en route to the native structure. Our results thus show that-at least in the context of the adopted model-non-native interactions are not necessary to knot a protein. However, when they are taken into account in protein energetics, it is possible to find specific, nonlocal non-native interactions that operate as a scaffold that assists the knotting step.
Collapse
Affiliation(s)
- João N C Especial
- Departamento de Física, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal.,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal
| | - Patrícia F N Faísca
- Departamento de Física, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal.,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal
| |
Collapse
|
48
|
Paissoni C, Puri S, Wang I, Chen SY, Camilloni C, Hsu STD. Converging experimental and computational views of the knotting mechanism of a small knotted protein. Biophys J 2021; 120:2276-2286. [PMID: 33812848 PMCID: PMC8390826 DOI: 10.1016/j.bpj.2021.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
MJ0366 from Methanocaldococcus jannaschii is the smallest topologically knotted protein known to date. 92 residues in length, MJ0366 ties a trefoil (31) knot by threading its C-terminal helix through a buttonhole formed by the remainder of the secondary structure elements. By generating a library of point mutations at positions pertinent to the knot formation, we systematically evaluated the contributions of individual residues to the folding stability and kinetics of MJ0366. The experimental Φ-values were used as restraints to computationally generate an ensemble of conformations that correspond to the transition state of MJ0366, which revealed several nonnative contacts. The importance of these nonnative contacts in stabilizing the transition state of MJ0366 was confirmed by a second round of mutagenesis, which also established the pivotal role of F15 in stapling the network of hydrophobic interactions around the threading C-terminal helix. Our converging experimental and computational results show that, despite the small size, the transition state of MJ0366 is formed at a very late stage of the folding reaction coordinate, following a polarized pathway. Eventually, the formation of extensive native contacts, as well as a number of nonnative ones, leads to the threading of the C-terminal helix that defines the topological knot.
Collapse
Affiliation(s)
- Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Sarita Puri
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Iren Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Yu Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
49
|
Gukov S, Halverson J, Ruehle F, Sułkowski P. Learning to unknot. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abe91f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
We introduce natural language processing into the study of knot theory, as made natural by the braid word representation of knots. We study the UNKNOT problem of determining whether or not a given knot is the unknot. After describing an algorithm to randomly generate N-crossing braids and their knot closures and discussing the induced prior on the distribution of knots, we apply binary classification to the UNKNOT decision problem. We find that the Reformer and shared-QK Transformer network architectures outperform fully-connected networks, though all perform at
≳
95% accuracy. Perhaps surprisingly, we find that accuracy increases with the length of the braid word, and that the networks learn a direct correlation between the confidence of their predictions and the degree of the Jones polynomial. Finally, we utilize reinforcement learning (RL) to find sequences of Markov moves and braid relations that simplify knots and can identify unknots by explicitly giving the sequence of unknotting actions. Trust region policy optimization (TRPO) performs consistently well, reducing
≳
80% of the unknots with up to 96 crossings we tested to the empty braid word, and thoroughly outperformed other RL algorithms and random walkers. Studying these actions, we find that braid relations are more useful in simplifying to the unknot than one of the Markov moves.
Collapse
|
50
|
Dabrowski-Tumanski P, Rubach P, Niemyska W, Gren BA, Sulkowska JI. Topoly: Python package to analyze topology of polymers. Brief Bioinform 2021; 22:bbaa196. [PMID: 32935829 PMCID: PMC8138882 DOI: 10.1093/bib/bbaa196] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
The increasing role of topology in (bio)physical properties of matter creates a need for an efficient method of detecting the topology of a (bio)polymer. However, the existing tools allow one to classify only the simplest knots and cannot be used in automated sample analysis. To answer this need, we created the Topoly Python package. This package enables the distinguishing of knots, slipknots, links and spatial graphs through the calculation of different topological polynomial invariants. It also enables one to create the minimal spanning surface on a given loop, e.g. to detect a lasso motif or to generate random closed polymers. It is capable of reading various file formats, including PDB. The extensive documentation along with test cases and the simplicity of the Python programming language make it a very simple to use yet powerful tool, suitable even for inexperienced users. Topoly can be obtained from https://topoly.cent.uw.edu.pl.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Ida Sulkowska
- Corresponding author: Joanna Ida Sulkowska, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland; Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland. Tel.: +48-22-55-43678 E-mail:
| |
Collapse
|