1
|
Jain M, Vyas R. Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis. Crit Rev Biotechnol 2025:1-19. [PMID: 39880585 DOI: 10.1080/07388551.2024.2449367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/12/2024] [Accepted: 09/14/2024] [Indexed: 01/31/2025]
Abstract
The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (M.tb) emphasizes the critical requirement for novel potent drugs. The M.tb demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of M.tb that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host. M.tb is an exceptionally triumphant pathogen, primarily due to its adeptness in developing defense mechanisms against stressful situations. The recent advances emphasize the significance of M.tb stress sensors, including chaperones, proteases, transcription factors, riboswitches, inteins, etc., employed in responding to a spectrum of physiological stresses imposed by the host, encompassing surface stress, host immune responses, osmotic stress, oxidative and nitrosative stresses, cell envelope stress, environmental stress, reductive stress, and drug pressure. These sensors act as silent defenders orchestrating adaptive strategies, with limited comprehensive information in current literature, necessitating a focused review. The M.tb strategies utilizing these stress sensors to mitigate the impact of traumatic conditions demand attention to neutralize this pathogen effectively. Moreover, the intricacies of these stress sensors provide potential targets to design an effective TB drug using structure-based drug design against this formidable global health threat.
Collapse
Affiliation(s)
- Manya Jain
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| | - Rajan Vyas
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
2
|
Bigi MM, Forrellad MA, García JS, Blanco FC, Vázquez CL, Bigi F. An update on Mycobacterium tuberculosis lipoproteins. Future Microbiol 2023; 18:1381-1398. [PMID: 37962486 DOI: 10.2217/fmb-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/29/2023] [Indexed: 11/15/2023] Open
Abstract
Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.
Collapse
Affiliation(s)
- María M Bigi
- Instituto de Investigaciones Biomédicas, CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
| | - Marina A Forrellad
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Julia S García
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Federico C Blanco
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Cristina L Vázquez
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| |
Collapse
|
3
|
Brenner EP, Sreevatsan S. Global-scale GWAS associates a subset of SNPs with animal-adapted variants in M. tuberculosis complex. BMC Med Genomics 2023; 16:260. [PMID: 37875894 PMCID: PMC10598944 DOI: 10.1186/s12920-023-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND While Mycobacterium tuberculosis complex (MTBC) variants are clonal, variant tuberculosis is a human-adapted pathogen, and variant bovis infects many hosts. Despite nucleotide identity between MTBC variants exceeding 99.95%, it remains unclear what drives these differences. Markers of adaptation into variants were sought by bacterial genome-wide association study of single nucleotide polymorphisms extracted from 6,362 MTBC members from varied hosts and countries. RESULTS The search identified 120 genetic loci associated with MTBC variant classification and certain hosts. In many cases, these changes are uniformly fixed in certain variants while absent in others in this dataset, providing good discriminatory power in distinguishing variants by polymorphisms. Multiple changes were seen in genes for cholesterol and fatty acid metabolism, pathways previously proposed to be important for host adaptation, including Mce4F (part of the fundamental cholesterol intake Mce4 pathway), 4 FadD and FadE genes (playing roles in cholesterol and fatty acid utilization), and other targets like Rv3548c and PTPB, genes shown essential for growth on cholesterol by transposon studies. CONCLUSIONS These findings provide a robust set of genetic loci associated with the split of variant bovis and variant tuberculosis, and suggest that adaptation to new hosts could involve adjustments in uptake and catabolism of cholesterol and fatty acids, like the proposed specialization to different populations in MTB lineages by alterations to host lipid composition. Future studies are required to elucidate how the associations between cholesterol profiles and pathogen utilization differences between hosts and MTBC variants, as well as the investigation of uncharacterized genes discovered in this study. This information will likely provide an understanding on the diversification of MBO away from humans and specialization towards a broad host range.
Collapse
Affiliation(s)
- Evan P Brenner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
D’Halluin A, Polgar P, Kipkorir T, Patel Z, Cortes T, Arnvig KB. Premature termination of transcription is shaped by Rho and translated uORFS in Mycobacterium tuberculosis. iScience 2023; 26:106465. [PMID: 37096044 PMCID: PMC10122055 DOI: 10.1016/j.isci.2023.106465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/29/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Little is known about the decisions behind transcription elongation versus termination in the human pathogen Mycobacterium tuberculosis (M.TB). By applying Term-seq to M.TB we found that the majority of transcription termination is premature and associated with translated regions, i.e., within previously annotated or newly identified open reading frames. Computational predictions and Term-seq analysis, upon depletion of termination factor Rho, suggests that Rho-dependent transcription termination dominates all transcription termination sites (TTS), including those associated with regulatory 5' leaders. Moreover, our results suggest that tightly coupled translation, in the form of overlapping stop and start codons, may suppress Rho-dependent termination. This study provides detailed insights into novel M.TB cis-regulatory elements, where Rho-dependent, conditional termination of transcription and translational coupling together play major roles in gene expression control. Our findings contribute to a deeper understanding of the fundamental regulatory mechanisms that enable M.TB adaptation to the host environment offering novel potential points of intervention.
Collapse
Affiliation(s)
- Alexandre D’Halluin
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Peter Polgar
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Terry Kipkorir
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Zaynah Patel
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Teresa Cortes
- Instituto de Biomedicina de Valencia, CSIC, Valencia 46010, Spain
| | - Kristine B. Arnvig
- Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
5
|
Verma A, Ghoshal A, Dwivedi VP, Bhaskar A. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:1079569. [PMID: 36619761 PMCID: PMC9813417 DOI: 10.3389/fcimb.2022.1079569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) is an intracellular pathogen that predominantly affects the alveolar macrophages in the respiratory tract. Upon infection, the activation of TLR2 and TLR4- mediated signaling pathways leads to lysosomal degradation of the bacteria. However, bacterium counteracts the host immune cells and utilizes them as a cellular niche for its survival. One distinctive mechanism of M.tb to limit the host stress responses such as hypoxia and nutrient starvation is induction of dormancy. As the environmental conditions become favorable, the bacteria resuscitate, resulting in a relapse of clinical symptoms. Different bacterial proteins play a critical role in maintaining the state of dormancy and resuscitation, namely, DevR (DosS), Hrp1, DATIN and RpfA-D, RipA, etc., respectively. Existing knowledge regarding the key proteins associated with dormancy and resuscitation can be employed to develop novel therapies. In this review we aim to highlight the current knowledge of bacterial progression from dormancy to resuscitation and the gaps in understanding the transition from dormant to active state. We have also focused on elucidating a few therapeutic strategies employed to prevent M.tb resuscitation.
Collapse
|
6
|
Miotto P, Sorrentino R, De Giorgi S, Provvedi R, Cirillo DM, Manganelli R. Transcriptional regulation and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:990312. [PMID: 36118045 PMCID: PMC9480834 DOI: 10.3389/fcimb.2022.990312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial drug resistance is one of the major challenges to present and future human health, as the continuous selection of multidrug resistant bacteria poses at serious risk the possibility to treat infectious diseases in the near future. One of the infection at higher risk to become incurable is tuberculosis, due to the few drugs available in the market against Mycobacterium tuberculosis. Drug resistance in this species is usually due to point mutations in the drug target or in proteins required to activate prodrugs. However, another interesting and underexplored aspect of bacterial physiology with important impact on drug susceptibility is represented by the changes in transcriptional regulation following drug exposure. The main regulators involved in this phenomenon in M. tuberculosis are the sigma factors, and regulators belonging to the WhiB, GntR, XRE, Mar and TetR families. Better understanding the impact of these regulators in survival to drug treatment might contribute to identify new drug targets and/or to design new strategies of intervention.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Rita Sorrentino
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Stefano De Giorgi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
7
|
Bahoua B, Sevdalis SE, Soto AM. Effect of Sequence on the Interactions of Divalent Cations with M-Box Riboswitches from Mycobacterium tuberculosis and Bacillus subtilis. Biochemistry 2021; 60:2781-2794. [PMID: 34472844 DOI: 10.1021/acs.biochem.1c00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA is highly negatively charged and often acquires complex structures that require the presence of divalent cations. Subtle changes in conformation resulting from changes in sequence can affect the way ions associate with RNA. Riboswitches are RNA molecules that are involved in the control of gene expression in bacteria and are excellent systems for testing the effects of sequence variations on the conformation of RNA because they contain a highly conserved binding pocket but present sequence variability among different organisms. In this work, we have compared the aptamer domain of a proposed M-box riboswitch from Mycobacterium tuberculosis with the aptamer domain of a validated M-box riboswitch from Bacillus subtilis. We have in vitro transcribed and purified wild-type (WT) M-box riboswitches from M. tuberculosis and B. subtilis as well as a variety of mutated aptamers in which regions from one riboswitch have been replaced with regions from the other riboswitch. We have used ultraviolet unfolding experiments and circular dichroism to characterize the interactions of WT and related M-box riboswitches with divalent cations. Our results show that M-box from M. tuberculosis associates with Mg2+ and Sr2+ in a similar fashion while M-box from B. subtilis discriminates between these two ions and appears to associate better with Mg2+. Our overall results show that M-box from M. tuberculosis interacts differently with cations than M-box from B. subtilis and suggest conformational differences between these two riboswitches.
Collapse
|
8
|
Harale B, Kidwai S, Ojha D, Singh M, Chouhan DK, Singh R, Khedkar V, Rode AB. Synthesis and evaluation of antimycobacterial activity of riboflavin derivatives. Bioorg Med Chem Lett 2021; 48:128236. [PMID: 34242760 DOI: 10.1016/j.bmcl.2021.128236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
The riboflavin biosynthetic pathway is a promising target for the development of novel antimycobacterial drugs given the lack of riboflavin transporter in M. tuberculosis. Herein, a series of riboflavin derivatives was designed, synthesized and screened for their antimycobacterial and antibacterial activity. The compounds 1a, 1b, 2a, 3a and 5a displayed noticeable antitubercular activity against M. tuberculosis with minimum inhibitory concentration (MIC99) in the range of 6.25 to 25 μM. The lead compound 5a had a selectivity index of 10.7 in the present study. The compounds 2a, 2b, 2c, 4c and 4d showed relatively low to moderate antibacterial activity (MIC = 100-200 μM) against gram-positive strains. Notably, the compounds do not show any inhibition against gram-negative strains even at 200 μM concentration. Further, molecular docking and binding experiments with representative flavin mononucleotide (FMN) riboswitch suggested that the riboflavin analogs exhibited antimycobacterial activity plausibly through FMN riboswitch-mediated repression of riboflavin biosynthesis. In addition to FMN riboswitch, flavoproteins involved in the flavin biosynthesis could also be target of riboflavin derivatives. In conclusion, the potency and low toxicity of riboflavin analogs particularly 5a (MIC99 = 6.25) make it a lead compound for the synthesis of new analogs for antimycobacterial therapy.
Collapse
Affiliation(s)
- Bhaiyyasaheb Harale
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Divya Ojha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Manisha Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Dwarika Kumar Chouhan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Vijay Khedkar
- School of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India.
| |
Collapse
|
9
|
Pawełczyk J, Brzostek A, Minias A, Płociński P, Rumijowska-Galewicz A, Strapagiel D, Zakrzewska-Czerwińska J, Dziadek J. Cholesterol-dependent transcriptome remodeling reveals new insight into the contribution of cholesterol to Mycobacterium tuberculosis pathogenesis. Sci Rep 2021; 11:12396. [PMID: 34117327 PMCID: PMC8196197 DOI: 10.1038/s41598-021-91812-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an obligate human pathogen that can adapt to the various nutrients available during its life cycle. However, in the nutritionally stringent environment of the macrophage phagolysosome, Mtb relies mainly on cholesterol. In previous studies, we demonstrated that Mtb can accumulate and utilize cholesterol as the sole carbon source. However, a growing body of evidence suggests that a lipid-rich environment may have a much broader impact on the pathogenesis of Mtb infection than previously thought. Therefore, we applied high-resolution transcriptome profiling and the construction of various mutants to explore in detail the global effect of cholesterol on the tubercle bacillus metabolism. The results allow re-establishing the complete list of genes potentially involved in cholesterol breakdown. Moreover, we identified the modulatory effect of vitamin B12 on Mtb transcriptome and the novel function of cobalamin in cholesterol metabolite dissipation which explains the probable role of B12 in Mtb virulence. Finally, we demonstrate that a key role of cholesterol in mycobacterial metabolism is not only providing carbon and energy but involves also a transcriptome remodeling program that helps in developing tolerance to the unfavorable host cell environment far before specific stress-inducing phagosomal signals occur.
Collapse
Affiliation(s)
- Jakub Pawełczyk
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Anna Brzostek
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Alina Minias
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Przemysław Płociński
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland ,grid.10789.370000 0000 9730 2769Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Anna Rumijowska-Galewicz
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Dominik Strapagiel
- grid.10789.370000 0000 9730 2769Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Jolanta Zakrzewska-Czerwińska
- grid.8505.80000 0001 1010 5103Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jarosław Dziadek
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
10
|
Ali S, Ehtram A, Arora N, Manjunath P, Roy D, Ehtesham NZ, Hasnain SE. The M. tuberculosis Rv1523 Methyltransferase Promotes Drug Resistance Through Methylation-Mediated Cell Wall Remodeling and Modulates Macrophages Immune Responses. Front Cell Infect Microbiol 2021; 11:622487. [PMID: 33777836 PMCID: PMC7994892 DOI: 10.3389/fcimb.2021.622487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The acquisition of antibiotics resistance is a major clinical challenge limiting the effective prevention and treatment of the deadliest human infectious disease tuberculosis. The molecular mechanisms by which initially Mycobacterium tuberculosis (M.tb) develop drug resistance remain poorly understood. In this study, we report the novel role of M.tb Rv1523 MTase in the methylation of mycobacterial cell envelope lipids and possible mechanism of its contribution in the virulence and drug resistance. Initial interactome analyses predicted association of Rv1523 with proteins related to fatty acid biosynthetic pathways. This promoted us to investigate methylation activity of Rv1523 using cell wall fatty acids or lipids as a substrate. Rv1523 catalyzed the transfer of methyl group from SAM to the cell wall components of mycobacterium. To investigate further the in vivo methylating role of Rv1523, we generated a recombinant Mycobacterium smegmatis strain that expressed the Rv1523 gene. The M. smegmatis strain expressing Rv1523 exhibited altered cell wall lipid composition, leading to an increased survival under surface stress, acidic condition and resistance to antibiotics. Macrophages infected with recombinant M. smegmatis induced necrotic cell death and modulated the host immune responses. In summary, these findings reveal a hitherto unknown role of Rv1523 encoded MTase in cell wall remodeling and modulation of immune responses. Functional gain of mycolic acid Rv1523 methyltransferase induced virulence and resistance to antibiotics in M. smegmatis. Thus, mycolic acid methyltransferase may serve as an excellent target for the discovery and development of novel anti-TB agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aquib Ehtram
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Naresh Arora
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - P Manjunath
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Deodutta Roy
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
11
|
Maitra A, Nukala S, Dickman R, Martin LT, Munshi T, Gupta A, Shepherd AJ, Arnvig KB, Tabor AB, Keep NH, Bhakta S. Characterization of the MurT/GatD complex in Mycobacterium tuberculosis towards validating a novel anti-tubercular drug target. JAC Antimicrob Resist 2021; 3:dlab028. [PMID: 34223102 PMCID: PMC8210147 DOI: 10.1093/jacamr/dlab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Identification and validation of novel therapeutic targets is imperative to tackle the rise of drug resistance in tuberculosis. An essential Mur ligase-like gene (Rv3712), expected to be involved in cell-wall peptidoglycan (PG) biogenesis and conserved across mycobacteria, including the genetically depleted Mycobacterium leprae, was the primary focus of this study. METHODS Biochemical analysis of Rv3712 was performed using inorganic phosphate release assays. The operon structure was identified using reverse-transcriptase PCR and a transcription/translation fusion vector. In vivo mycobacterial protein fragment complementation assays helped generate the interactome. RESULTS Rv3712 was found to be an ATPase. Characterization of its operon revealed a mycobacteria-specific promoter driving the co-transcription of Rv3712 and Rv3713. The two gene products were found to interact with each other in vivo. Sequence-based functional assignments reveal that Rv3712 and Rv3713 are likely to be the mycobacterial PG precursor-modifying enzymes MurT and GatD, respectively. An in vivo network involving Mtb-MurT, regulatory proteins and cell division proteins was also identified. CONCLUSIONS Understanding the role of the enzyme complex in the context of PG metabolism and cell division, and the implications for antimicrobial resistance and host immune responses will facilitate the design of therapeutics that are targeted specifically to M. tuberculosis.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Syamasundari Nukala
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Rachael Dickman
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Antima Gupta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Adrian J Shepherd
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Kristine B Arnvig
- Research Department of Structural Molecular Biology, Division of Biosciences, University College London, Gower Place, London WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
12
|
Cai X, Zhan Y, Cao Z, Yan B, Cai J. Expression of ribosomal protection protein RppA is regulated by a ribosome-dependent ribo-regulator and two mistranslation products. Environ Microbiol 2020; 23:696-712. [PMID: 32592275 DOI: 10.1111/1462-2920.15143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023]
Abstract
Gene expression is tightly controlled by transcription factors and RNA regulatory elements, including trans-acting small RNAs, cis-regulatory riboswitches and ribosome-dependent ribo-regulators. In the present study, we demonstrated that a ribosome-dependent ribo-regulator and two mistranslation products co-regulate rppA (encoding a ribosomal protection protein) expression in Bacillus thuringiensis BMB171. The leader RNA of the rppA gene controls rppA expression via translation of leader ORF1 resident in its sequence. In the presence of chloramphenicol, a +1 frameshift product (ORF2) and a stop codon readthrough product (ORF3) of ORF1 emerged. ORF3 exerted a negative effect on rppA expression. By contrast, the ORF2 promoted rppA expression. The regulation mode identified in the present study will lead to a deeper understanding of bacterial gene expression.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunda Zhan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhanglei Cao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300071, China
| |
Collapse
|
13
|
Taneja S, Dutta T. On a stake-out: Mycobacterial small RNA identification and regulation. Noncoding RNA Res 2019; 4:86-95. [PMID: 32083232 PMCID: PMC7017587 DOI: 10.1016/j.ncrna.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022] Open
Abstract
Persistence of mycobacteria in the hostile environment of human macrophage is pivotal for its successful pathogenesis. Rapid adaptation to diverse stresses is the key aspect for their survival in the host cells. A range of heterogeneous mechanisms operate in bacteria to retaliate stress conditions. Small RNAs (sRNA) have been implicated in many of those mechanisms in either a single or multiple regulatory networks to post-transcriptionally modulate bacterial gene expression. Although small RNA profiling in mycobacteria by advanced technologies like deep sequencing, tilling microarray etc. have identified hundreds of sRNA, however, a handful of those small RNAs have been unearthed with precise regulatory mechanism. Extensive investigations on sRNA-mediated gene regulations in eubacteria like Escherichia coli revealed the existence of a plethora of distinctive sRNA mechanisms e.g. base pairing, protein sequestration, RNA decoy etc. Increasing studies on mycobacterial sRNA also discovered several eccentric mechanisms where sRNAs act at the posttranscriptional stage to either activate or repress target gene expression that lead to promote mycobacterial survival in stresses. Several intrinsic features like high GC content, absence of any homologue of abundant RNA chaperones, Hfq and ProQ, isolate sRNA mechanisms of mycobacteria from that of other bacteria. An insightful approach has been taken in this review to describe sRNA identification and its regulations in mycobacterial species especially in Mycobacterium tuberculosis.
Collapse
Key Words
- Anti-antisense
- Antisense
- Base pairing
- CDS, coding sequence
- Gene regulation by sRNA
- IGR, intergenic region
- ORF, open reading frame
- RBS, Ribosome binding site
- RNAP, RNA polymerase
- SD, Shine Dalgarno sequence
- Small RNAs
- TF, transcription factor
- TIR, translation initiation region
- UTR, untranslated region
- nt, nucleotide
- sRNA, small RNA
Collapse
Affiliation(s)
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
14
|
Arnvig KB. Riboswitches: choosing the best platform. Biochem Soc Trans 2019; 47:1091-1099. [PMID: 31249101 PMCID: PMC7615714 DOI: 10.1042/bst20180507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 03/07/2024]
Abstract
Riboswitch discovery and characterisation have come a long way since the term was first coined almost two decades ago. Riboswitches themselves are likely derived from ancient ligand-binding transcripts, which have evolved into sophisticated genetic control elements that are widespread in prokaryotes. Riboswitches are associated with a multitude of cellular processes including biosynthetic pathways, transport mechanisms and stress responses leading to an ever-increasing appreciation for an in-depth understanding of their triggers and functions in order to address physiological and regulatory questions. The majority of riboswitches exert their control via transcriptional or translational expression platforms depending on their genetic context. It remains, however, to be determined precisely why one platform is favoured over another. Is this a question of the layout of the gene expression machinery, ligand availability, the degree of control required, serendipity or various combinations of these? With this review, rather than providing answers, I am hoping to plant a seed for further scientific discussions about this puzzle.
Collapse
Affiliation(s)
- Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, U.K.
| |
Collapse
|
15
|
Ample glycosylation in membrane and cell envelope proteins may explain the phenotypic diversity and virulence in the Mycobacterium tuberculosis complex. Sci Rep 2019; 9:2927. [PMID: 30814666 PMCID: PMC6393673 DOI: 10.1038/s41598-019-39654-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Multiple regulatory mechanisms including post-translational modifications (PTMs) confer complexity to the simpler genomes and proteomes of Mycobacterium tuberculosis (Mtb). PTMs such as glycosylation play a significant role in Mtb adaptive processes. The glycoproteomic patterns of clinical isolates of the Mycobacterium tuberculosis complex (MTBC) representing the lineages 3, 4, 5 and 7 were characterized by mass spectrometry. A total of 2944 glycosylation events were discovered in 1325 proteins. This data set represents the highest number of glycosylated proteins identified in Mtb to date. O-glycosylation constituted 83% of the events identified, while 17% of the sites were N-glycosylated. This is the first report on N-linked protein glycosylation in Mtb and in Gram-positive bacteria. Collectively, the bulk of Mtb glycoproteins are involved in cell envelope biosynthesis, fatty acid and lipid metabolism, two-component systems, and pathogen-host interaction that are either surface exposed or located in the cell wall. Quantitative glycoproteomic analysis revealed that 101 sites on 67 proteins involved in Mtb fitness and survival were differentially glycosylated between the four lineages, among which 64% were cell envelope and membrane proteins. The differential glycosylation pattern may contribute to phenotypic variabilities across Mtb lineages. The study identified several clinically important membrane-associated glycolipoproteins that are relevant for diagnostics as well as for drug and vaccine discovery.
Collapse
|
16
|
A journey through the evolutionary diversification of archaeal Lsm and Hfq proteins. Emerg Top Life Sci 2018; 2:647-657. [PMID: 33525833 DOI: 10.1042/etls20180034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 11/17/2022]
Abstract
Sm-like (Lsm) proteins are found in all three domains of life. They are crucially involved in the RNA metabolism of prokaryotic organisms. To exert their function, they assemble into hexa- or heptameric rings and bind RNA via a conserved binding pocket for uridine stretches in the inner pore of the ring. Despite the conserved secondary structure of Lsm proteins, there are several features that lead to a structural diversification of this protein family that mediates their participation in a variety of processes related to RNA metabolism. Until recently, the cellular function of archaeal Sm-like proteins was not well understood. In this review, we discuss structural features of Lsm proteins with a strong focus on archaeal variants, reflect on the evolutionary development of archaeal Lsm proteins and present recent insights into their biological function.
Collapse
|
17
|
Schwenk S, Arnvig KB. Regulatory RNA in Mycobacterium tuberculosis, back to basics. Pathog Dis 2018; 76:4966984. [PMID: 29796669 PMCID: PMC7615687 DOI: 10.1093/femspd/fty035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/09/2018] [Indexed: 01/17/2023] Open
Abstract
Since the turn of the millenium, RNA-based control of gene expression has added an extra dimension to the central dogma of molecular biology. Still, the roles of Mycobacterium tuberculosis regulatory RNAs and the proteins that facilitate their functions remain elusive, although there can be no doubt that RNA biology plays a central role in the baterium's adaptation to its many host environments. In this review, we have presented examples from model organisms and from M. tuberculosis to showcase the abundance and versatility of regulatory RNA, in order to emphasise the importance of these 'fine-tuners' of gene expression.
Collapse
MESH Headings
- Aconitate Hydratase/genetics
- Aconitate Hydratase/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Host-Pathogen Interactions
- Humans
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Mycobacterium tuberculosis/pathogenicity
- Nucleic Acid Conformation
- RNA Stability
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Cytoplasmic/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Riboswitch
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Stefan Schwenk
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|