1
|
Emmerich HJ, Schneider L, Essen LO. Structural and Functional Analysis of a Prokaryotic (6-4) Photolyase from the Aquatic Pathogen Vibrio Cholerae †. Photochem Photobiol 2023; 99:1248-1257. [PMID: 36692077 DOI: 10.1111/php.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Photolyases are flavoproteins, which are able to repair UV-induced DNA lesions in a light-dependent manner. According to their substrate, they can be distinguished as CPD- and (6-4) photolyases. While CPD-photolyases repair the predominantly occurring cyclobutane pyrimidine dimer lesion, (6-4) photolyases catalyze the repair of the less prominent (6-4) photoproduct. The subgroup of prokaryotic (6-4) photolyases/FeS-BCP is one of the most ancient types of flavoproteins in the ubiquitously occurring photolyase & cryptochrome superfamily (PCSf). In contrast to canonical photolyases, prokaryotic (6-4) photolyases possess a few particular characteristics, including a lumazine derivative as antenna chromophore besides the catalytically essential flavin adenine dinucleotide as well as an elongated linker region between the N-terminal α/β-domain and the C-terminal all-α-helical domain. Furthermore, they can harbor an additional short subdomain, located at the C-terminus, with a binding site for a [4Fe-4S] cluster. So far, two crystal structures of prokaryotic (6-4) photolyases have been reported. Within this study, we present the high-resolution structure of the prokaryotic (6-4) photolyase from Vibrio cholerae and its spectroscopic characterization in terms of in vitro photoreduction and DNA-repair activity.
Collapse
Affiliation(s)
- Hans-Joachim Emmerich
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Leonie Schneider
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Sato R, Mori Y, Matsui R, Okimoto N, Yamamoto J, Taiji M. Theoretical insights into the DNA repair function of Arabidopsis thaliana cryptochrome-DASH. Biophys Physicobiol 2020; 17:113-124. [PMID: 33194514 PMCID: PMC7610064 DOI: 10.2142/biophysico.bsj-2020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/28/2020] [Indexed: 12/01/2022] Open
Abstract
Following the discovery of cryptochrome-DASH (CRYD) as a new type of blue-light receptor cryptochrome, theoretical and experimental findings on CRYD have been reported. Early studies identified CRYD as highly homologous to the DNA repair enzyme photolyases (PLs), suggesting the involvement of CRYD in DNA repair. However, an experimental study reported that CRYD does not exhibit DNA repair activity in vivo. Successful PL-mediated DNA repair requires: (i) the recognition of UV-induced DNA lesions and (ii) an electron transfer reaction. If either of them is inefficient, the DNA repair activity will be low. To elucidate the functional differences between CRYD and PL, we theoretically investigated the electron transfer reactivity and DNA binding affinity of CRYD and also performed supplementary experiments. The average electronic coupling matrix elements value for Arabidopsis thaliana CRYD (AtCRYD) was estimated to be 5.3 meV, comparable to that of Anacystis nidulans cyclobutane pyrimidine dimer PLs (AnPL) at 4.5 meV, indicating similar electron transfer reactivities. We also confirmed the DNA repair activity of AtCRYD for UV-damaged single-stranded DNA by the experimental analysis. In addition, we investigated the dynamic behavior of AtCRYD and AnPL in complex with double-stranded DNA using molecular dynamics simulations and observed the formation of a transient salt bridge between protein and DNA in AtCRYD, in contrast to AnPL in which it was formed stably. We suggested that the instability of the salt bridge between protein and DNA will lead to reduced DNA binding affinity for AtCRYD.
Collapse
Affiliation(s)
- Ryuma Sato
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 565-0874, Japan
| | - Yoshiharu Mori
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Risa Matsui
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Noriaki Okimoto
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 565-0874, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Makoto Taiji
- Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka 565-0874, Japan
| |
Collapse
|
3
|
Franz S, Ignatz E, Wenzel S, Zielosko H, Putu E, Maestre-Reyna M, Tsai MD, Yamamoto J, Mittag M, Essen LO. Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii. Nucleic Acids Res 2019; 46:8010-8022. [PMID: 30032195 PMCID: PMC6125616 DOI: 10.1093/nar/gky621] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Photolyases and cryptochromes form an almost ubiquitous family of blue light photoreceptors involved in the repair and maintenance of DNA integrity or regulatory control. We found that one cryptochrome from the green alga Chlamydomonas reinhardtii (CraCRY) is capable of both, control of transcript levels and the sexual cycle of the alga in a positive (germination) and negative manner (mating ability), as well as catalyzing the repair of UV-DNA lesions. Its 1.6 Å crystal structure shows besides the FAD chromophore an aromatic tetrad that is indispensable in animal-like type I cryptochromes for light-driven change of their signaling-active redox state and formation of a stable radical pair. Given CraCRY’s catalytic activity as (6-4) photolyase in vivo and in vitro, we present the first co-crystal structure of a cryptochrome with duplex DNA comprising a (6-4) pyrimidine–pyrimidone lesion. This 2.9 Å structure reveals a distinct conformation for the catalytic histidine His1, H357, that challenges previous models of a single-photon driven (6-4) photolyase mechanism.
Collapse
Affiliation(s)
- Sophie Franz
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Elisabeth Ignatz
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Sandra Wenzel
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Hannah Zielosko
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | | | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Taipei 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Taipei 115, Taiwan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Am Planetarium 1, 07743 Jena, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
- LOEWE Center of Synthetic Microbiology, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
- To whom correspondence should be addressed. Tel: +49 6421/28 22032; Fax: +49 6421/28 22012;
| |
Collapse
|
4
|
Hosokawa Y, Sato R, Iwai S, Yamamoto J. Implications of a Water Molecule for Photoactivation of Plant (6-4) Photolyase. J Phys Chem B 2019; 123:5059-5068. [PMID: 31117614 DOI: 10.1021/acs.jpcb.9b03030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photolyases (PLs) are flavoproteins able to repair cross-links formed between adjacent pyrimidine bases in DNA in a light-dependent manner via an electron transfer. The catalytically active redox state of the flavin chromophore for the DNA repair is a fully reduced form of flavin adenine dinucleotide (FADH-). PLs and their relative, cryptochromes (CRYs), share a physicochemical process attributable to the light-dependent reduction of the chromophore via an ultrafast successive electron transfer through exclusively conserved three tryptophan side chains. In some (6-4) PLs and animal CRYs, an additional tryptophan participates in this photoactivation process. In a search for the intrinsic difference between the Trp triad and tetrad, a water molecule proximal to the second and third Trp was found in the reported crystal structure of Arabidopsis thaliana (6-4) PL. Here, we investigated the involvement of the water molecule in photoactivation. Molecular dynamics simulations indicated that the water molecule is stably captured in the binding site, while mutation of S412 increased water displacement from the binding site. Photochemical analysis of recombinant proteins revealed that the S412A mutation significantly decelerated the FAD photoreduction as compared to the wild type. The hydrogen-bonding network including the water molecule would play a key role in the stabilization of the FAD-Trp radical pair.
Collapse
Affiliation(s)
- Yuhei Hosokawa
- Division of Chemistry, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan
| | - Ryuma Sato
- Center for Biosystems Dynamics Research , RIKEN , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan
| |
Collapse
|
5
|
Ma H, Holub D, Gillet N, Kaeser G, Thoulass K, Elstner M, Krauß N, Lamparter T. Two aspartate residues close to the lesion binding site of Agrobacterium (6-4) photolyase are required for Mg 2+ stimulation of DNA repair. FEBS J 2019; 286:1765-1779. [PMID: 30706696 DOI: 10.1111/febs.14770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/05/2018] [Accepted: 01/28/2019] [Indexed: 12/25/2022]
Abstract
Prokaryotic (6-4) photolyases branch at the base of the evolution of cryptochromes and photolyases. Prototypical members contain an iron-sulphur cluster which was lost in the evolution of the other groups. In the Agrobacterium (6-4) photolyase PhrB, the repair of DNA lesions containing UV-induced (6-4) pyrimidine dimers is stimulated by Mg2+ . We propose that Mg2+ is required for efficient lesion binding and for charge stabilization after electron transfer from the FADH- chromophore to the DNA lesion. Furthermore, two highly conserved Asp residues close to the DNA-binding site are essential for the effect of Mg2+ . Simulations show that two Mg2+ bind to the region around these residues. On the other hand, DNA repair by eukaryotic (6-4) photolyases is not increased by Mg2+ . In these photolyases, structurally overlapping regions contain no Asp but positively charged Lys or Arg. During the evolution of photolyases, the role of Mg2+ in charge stabilization and enhancement of DNA binding was therefore taken over by a postiviely charged amino acid. Besides PhrB, another prokaryotic (6-4) photolyase from the marine cyanobacterium Prochlorococcus marinus, PromaPL, which contains no iron-sulphur cluster, was also investigated. This photolyase is stimulated by Mg2+ as well. The evolutionary loss of the iron-sulphur cluster due to limiting iron concentrations can occur in a marine environment as a result of iron deprivation. However, the evolutionary replacement of Mg2+ by a positively charged amino acid is unlikely to occur in a marine environment because the concentration of divalent cations in seawater is always sufficient. We therefore assume that this transition could have occurred in a freshwater environment.
Collapse
Affiliation(s)
- Hongju Ma
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Daniel Holub
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Germany
| | - Natacha Gillet
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | | | - Marcus Elstner
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | | |
Collapse
|
6
|
Frontera A, Bauzá A. closo-Carboranes as dual CH⋯π and BH⋯π donors: theoretical study and biological significance. Phys Chem Chem Phys 2019; 21:19944-19950. [DOI: 10.1039/c9cp03858b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this manuscript the ability ofcloso-carboranes to establish CH⋯π and BH⋯π interactions with several aromatic moieties exhibiting different electronic natures has been evaluated at the PBE0-D3/def2-TZVP level of theory.
Collapse
Affiliation(s)
- Antonio Frontera
- Department of Chemistry Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Antonio Bauzá
- Department of Chemistry University of Florida
- Gainesville
- USA
| |
Collapse
|