1
|
Zhang S, Chen T, Zhang Y, Lu C. RNA Binding to CCRRM of PABPN1 Induces Conformation Change. BIOLOGY 2025; 14:432. [PMID: 40282297 PMCID: PMC12024694 DOI: 10.3390/biology14040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Poly(A) Binding Protein Nuclear 1 (PABPN1) is a nuclear poly(A)-binding protein that is highly conserved in eukaryotes. It plays multifaceted roles in RNA processing and metabolism, with its dysregulation closely linked to various diseases. PABPN1 contains an alanine-rich N-terminus, a central coiled-coil domain (CC), a conserved RNA recognition motif (RRM) and a C-terminal extension. PABPN1 influences mRNA splicing and stability through its RNA-binding capabilities, thereby modulating gene expression. While PABPN1 is known to interact with RNA, the molecular mechanism underlying this interaction with RNA awaits further investigation. Here, we designed and purified a PABPN1 fragment encompassing the RNA-binding domain (CCRRM fragment, amino acids 114-254). Using a combination of 3D modeling, small-angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) assay, our result indicated that CCRRM exhibits a high affinity for poly(A) RNA, a moderate affinity for GU-rich and CU-rich sequences, and negligible binding to AU-rich and CA-rich sequences. RNA binding induces conformation change in the CC. These results suggest that PABPN1 could potentially be involved in cytoplasmic polyadenylation and may influence the regulation of mRNA translation and degradation, although further investigation is required to confirm this role.
Collapse
Affiliation(s)
| | | | | | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (T.C.); (Y.Z.)
| |
Collapse
|
2
|
Mubaid S, Sanchez BJ, Algehani RA, Skopenkova V, Adjibade P, Hall DT, Busque S, Lian XJ, Ashour K, Tremblay AMK, Carlile G, Gagné JP, Diaz-Gaxiola A, Khattak S, Di Marco S, Thomas DY, Poirier GG, Gallouzi IE. Tankyrase-1 regulates RBP-mediated mRNA turnover to promote muscle fiber formation. Nucleic Acids Res 2024; 52:4002-4020. [PMID: 38321934 DOI: 10.1093/nar/gkae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.
Collapse
Affiliation(s)
- Souad Mubaid
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Brenda Janice Sanchez
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Rinad A Algehani
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Viktoriia Skopenkova
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Pauline Adjibade
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Derek T Hall
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Sandrine Busque
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Xian Jin Lian
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Kholoud Ashour
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Anne-Marie K Tremblay
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - Graeme Carlile
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Jean-Philippe Gagné
- Centre de recherche du CHU de Québec-Pavillon CHUL, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | - Andrea Diaz-Gaxiola
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Shahryar Khattak
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Sergio Di Marco
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| | - David Y Thomas
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Guy G Poirier
- Centre de recherche du CHU de Québec-Pavillon CHUL, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | - Imed-Eddine Gallouzi
- KAUST Smart-Health Initiative (KSHI) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
3
|
Sun P, Chen M, Sooranna SR, Shi D, Liu Q, Li H. The emerging roles of circRNAs in traits associated with livestock breeding. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1775. [PMID: 36631071 DOI: 10.1002/wrna.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Many indicators can be used to evaluate the productivity and quality of livestock, such as meat and milk production as well as fat deposition. Meat and milk production are measures of livestock performance, while fat deposition affects the taste and flavor of the meat. The circRNAs, are non-coding RNAs, that are involved in the regulation of all these three traits. We review the functions and mechanisms of circRNAs in muscle and fat development as well as lactation to provide a theoretical basis for circRNA research in animal husbandry. Various phenotypic changes presented in livestock may be produced by different circRNAs. Our current concern is how to use the roles played by circRNAs to our advantage to produce the best possible livestock. Hence, we describe the advantages and disadvantages of knockout techniques for circRNAs. In addition, we also put forward our thoughts regarding the mechanism and network of circRNAs to provide researchers with novel ideas of how molecular biology can help us advance our goals in animal farming. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Suren R Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Huang XM, Liu Q, Xu ZY, Yang XH, Xiao F, Ouyang PW, Yi WZ, Zhao N, Meng J, Cui YH, Pan HW. Down-regulation of HuR inhibits pathological angiogenesis in oxygen-induced retinopathy. Exp Eye Res 2023; 227:109378. [PMID: 36603796 DOI: 10.1016/j.exer.2022.109378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
HuR (also known as ELAV1), a ubiquitous RNA-binding protein, is implicated in the pathogenesis of diverse diseases via the mechanism of post-transcriptional regulation. Whether it is involved in pathological angiogenesis in oxygen-induced retinopathy is not clear. In this study, we detected HuR expression was increased in the retina of mouse model of oxygen-induced retinopathy (OIR) as well as in vascular endothelial cells exposed to hypoxia. With gain-of-function and loss-of-function studies using adenovirus infection, we found HuR over-expression promoted while HuR knockdown inhibited the migration, proliferation and tube formation of vascular endothelial cells. Moreover, HuR regulated the expression of VEGFA in vascular endothelial cells. We also found the retinal pathological angiogenesis in mouse OIR model was greatly reduced with HuR knockdown using recombinant AAV expressing HuR specific shRNA which was administered by intravitreal injection. The results of this study suggest HuR is involved in pathological angiogenesis via regulating angiogenic behaviors of endothelial cells, providing a potential target for the treatment of retinopathy of prematurity.
Collapse
Affiliation(s)
- Xiao-Mei Huang
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi-Yi Xu
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiao-Hua Yang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fan Xiao
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Pei-Wen Ouyang
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Wan-Zhao Yi
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Na Zhao
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Meng
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yu-Hong Cui
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hong-Wei Pan
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Sánchez BJ, Mubaid S, Busque S, de los Santos Y, Ashour K, Sadek J, Lian X, Khattak S, Di Marco S, Gallouzi IE. The formation of HuR/YB1 complex is required for the stabilization of target mRNA to promote myogenesis. Nucleic Acids Res 2023; 51:1375-1392. [PMID: 36629268 PMCID: PMC9943665 DOI: 10.1093/nar/gkac1245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
mRNA stability is the mechanism by which cells protect transcripts allowing their expression to execute various functions that affect cell metabolism and fate. It is well-established that RNA binding proteins (RBPs) such as HuR use their ability to stabilize mRNA targets to modulate vital processes such as muscle fiber formation (myogenesis). However, the machinery and the mechanisms regulating mRNA stabilization are still elusive. Here, we identified Y-Box binding protein 1 (YB1) as an indispensable HuR binding partner for mRNA stabilization and promotion of myogenesis. Both HuR and YB1 bind to 409 common mRNA targets, 147 of which contain a U-rich consensus motif in their 3' untranslated region (3'UTR) that can also be found in mRNA targets in other cell systems. YB1 and HuR form a heterodimer that associates with the U-rich consensus motif to stabilize key promyogenic mRNAs. The formation of this complex involves a small domain in HuR (227-234) that if mutated prevents HuR from reestablishing myogenesis in siHuR-treated muscle cells. Together our data uncover that YB1 is a key player in HuR-mediated stabilization of pro-myogenic mRNAs and provide the first indication that the mRNA stability mechanism is as complex as other key cellular processes such as mRNA decay and translation.
Collapse
Affiliation(s)
- Brenda Janice Sánchez
- KAUST Smart-Health Initiative King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia,KAUST Biological Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia,Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada,Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A1A3, Canada
| | - Souad Mubaid
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada,Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A1A3, Canada
| | - Sandrine Busque
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada,Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A1A3, Canada
| | - Yossef Lopez de los Santos
- KAUST Biological Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Kholoud Ashour
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada,Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A1A3, Canada
| | - Jason Sadek
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada,Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A1A3, Canada
| | - Xian Jin Lian
- Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada,Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A1A3, Canada
| | - Shahryar Khattak
- KAUST Smart-Health Initiative King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia,KAUST Biological Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Sergio Di Marco
- KAUST Smart-Health Initiative King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia,KAUST Biological Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia,Dept. of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada,Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Avenue, Montreal, QC H3A1A3, Canada
| | | |
Collapse
|
6
|
Zhang Y, Zeuthen C, Zhu C, Wu F, Mezzell AT, Whitlow TJ, Choo HJ, Vest KE. Pharyngeal pathology in a mouse model of oculopharyngeal muscular dystrophy is associated with impaired basal autophagy in myoblasts. Front Cell Dev Biol 2022; 10:986930. [PMID: 36313551 PMCID: PMC9614327 DOI: 10.3389/fcell.2022.986930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset dominant disease that primarily affects craniofacial muscles. Despite the fact that the genetic cause of OPMD is known to be expansion mutations in the gene encoding the nuclear polyadenosine RNA binding protein PABPN1, the molecular mechanisms of pathology are unknown and no pharmacologic treatments are available. Due to the limited availability of patient tissues, several animal models have been employed to study the pathology of OPMD. However, none of these models have demonstrated functional deficits in the muscles of the pharynx, which are predominantly affected by OPMD. Here, we used a knock-in mouse model of OPMD, Pabpn1 +/A17 , that closely genocopies patients. In Pabpn1 +/A17 mice, we detected impaired pharyngeal muscle function, and impaired pharyngeal satellite cell proliferation and fusion. Molecular studies revealed that basal autophagy, which is required for normal satellite cell function, is higher in pharynx-derived myoblasts than in myoblasts derived from limb muscles. Interestingly, basal autophagy is impaired in cells derived from Pabpn1 +/A17 mice. Pabpn1 knockdown in pharyngeal myoblasts failed to recapitulate the autophagy defect detected in Pabpn1 +/A17 myoblasts suggesting that loss of PABPN1 function does not contribute to the basal autophagy defect. Taken together, these studies provide the first evidence for pharyngeal muscle and satellite cell pathology in a mouse model of OPMD and suggest that aberrant gain of PABPN1 function contributes to the craniofacial pathology in OPMD.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christopher Zeuthen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Carol Zhu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Fang Wu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allison T. Mezzell
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Thomas J. Whitlow
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine E. Vest
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
7
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
8
|
Zhao LW, Fan HY. Revisiting poly(A)-binding proteins: Multifaceted regulators during gametogenesis and early embryogenesis. Bioessays 2021; 43:e2000335. [PMID: 33830517 DOI: 10.1002/bies.202000335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation faces a distinctive challenge in gametes. Transcription is limited when the germ cells enter the division phase due to condensed chromatin, while gene expression during gamete maturation, fertilization, and early cleavage depends on existing mRNA post-transcriptional coordination. The dynamics of the 3'-poly(A) tail play crucial roles in defining mRNA fate. The 3'-poly(A) tail is covered with poly(A)-binding proteins (PABPs) that help to mediate mRNA metabolism and recent work has shed light on the number and function of germ cell-specific expressed PABPs. There are two structurally different PABP groups distinguished by their cytoplasmic and nuclear localization. Both lack catalytic activity but are coupled with various roles through their interaction with multifunctional partners during mRNA metabolism. Here, we present a synopsis of PABP function during gametogenesis and early embryogenesis and describe both conventional and current models of the functions and regulation of PABPs, with an emphasis on the physiological significance of how germ cell-specific PABPs potentially affect human fertility.
Collapse
Affiliation(s)
- Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Ehses J, Fernández-Moya SM, Schröger L, Kiebler MA. Synergistic regulation of Rgs4 mRNA by HuR and miR-26/RISC in neurons. RNA Biol 2020; 18:988-998. [PMID: 32779957 PMCID: PMC8216180 DOI: 10.1080/15476286.2020.1795409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The negative regulator of G-protein signalling 4 (Rgs4) is linked to several neurologic diseases, e.g. schizophrenia, addiction, seizure and pain perception. Consequently, Rgs4 expression is tightly regulated, resulting in high mRNA and protein turnover. The post-transcriptional control of gene expression is mediated via RNA-binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. Here, we show that in neurons the RBP HuR reduces endogenous Rgs4 expression by destabilizing Rgs4 mRNA. Interestingly, in smooth muscle cells, Rgs4 is stabilized by HuR, indicating tissue-dependent differences in HuR function. Using in vitro RNA-based pulldown experiments, we identify the functional AU-rich element (ARE) within the Rgs4 3ʹ-UTR that is recognized and bound by HuR. Bioinformatic analysis uncovered that this ARE lies within a highly conserved area next to a miR-26 binding site. We find that the neuronal-enriched miR-26 negatively influences Rgs4 expression in neurons. Further, HuR and miR-26 act synergistically in fluorescent reporter assays. Together, our data suggest a regulatory mechanism, in which an RBP selectively destabilizes a target mRNA in cooperation with a miRNA and the RISC machinery.
Collapse
Affiliation(s)
- Janina Ehses
- BioMedical Center, Medical Faculty, Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Sandra M Fernández-Moya
- BioMedical Center, Medical Faculty, Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Luise Schröger
- BioMedical Center, Medical Faculty, Ludwig Maximilians University of Munich, Martinsried, Germany
| | - Michael A Kiebler
- BioMedical Center, Medical Faculty, Ludwig Maximilians University of Munich, Martinsried, Germany
| |
Collapse
|
10
|
Depletion of HuR in murine skeletal muscle enhances exercise endurance and prevents cancer-induced muscle atrophy. Nat Commun 2019; 10:4171. [PMID: 31519904 PMCID: PMC6744452 DOI: 10.1038/s41467-019-12186-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The master posttranscriptional regulator HuR promotes muscle fiber formation in cultured muscle cells. However, its impact on muscle physiology and function in vivo is still unclear. Here, we show that muscle-specific HuR knockout (muHuR-KO) mice have high exercise endurance that is associated with enhanced oxygen consumption and carbon dioxide production. muHuR-KO mice exhibit a significant increase in the proportion of oxidative type I fibers in several skeletal muscles. HuR mediates these effects by collaborating with the mRNA decay factor KSRP to destabilize the PGC-1α mRNA. The type I fiber-enriched phenotype of muHuR-KO mice protects against cancer cachexia-induced muscle loss. Therefore, our study uncovers that under normal conditions HuR modulates muscle fiber type specification by promoting the formation of glycolytic type II fibers. We also provide a proof-of-principle that HuR expression can be targeted therapeutically in skeletal muscles to combat cancer-induced muscle wasting. HuR is an RNA-binding protein that regulates myotube differentiation in vitro. Here, the authors show that the muscle-specific ablation of HuR in mice leads to enhanced endurance capacity and an increase in oxidative fibres by destabilising PGC1α-mRNA, and show that the mice are protected against cancer cachexia
Collapse
|
11
|
Banerjee A, Phillips BL, Deng Q, Seyfried NT, Pavlath GK, Vest KE, Corbett AH. Proteomic analysis reveals that wildtype and alanine-expanded nuclear poly(A)-binding protein exhibit differential interactions in skeletal muscle. J Biol Chem 2019; 294:7360-7376. [PMID: 30837270 DOI: 10.1074/jbc.ra118.007287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, primarily autosomal dominant disease caused by a short GCN expansion in the PABPN1 (polyadenylate-binding protein nuclear 1) gene that results in an alanine expansion at the N terminus of the PABPN1 protein. Expression of alanine-expanded PABPN1 is linked to the formation of nuclear aggregates in tissues from individuals with OPMD. However, as with other nuclear aggregate-associated diseases, controversy exists over whether these aggregates are the direct cause of pathology. An emerging hypothesis is that a loss of PABPN1 function and/or aberrant protein interactions contribute to pathology in OPMD. Here, we present the first global proteomic analysis of the protein interactions of WT and alanine-expanded PABPN1 in skeletal muscle tissue. These data provide both insight into the function of PABPN1 in muscle and evidence that the alanine expansion alters the protein-protein interactions of PABPN1. We extended this analysis to demonstrate altered complex formation with and loss of function of TDP-43 (TAR DNA-binding protein 43), which we show interacts with alanine-expanded but not WT PABPN1. The results from our study support a model where altered protein interactions with alanine-expanded PABPN1 that lead to loss or gain of function could contribute to pathology in OPMD.
Collapse
Affiliation(s)
| | - Brittany L Phillips
- From the Department of Biology and.,the Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322
| | - Quidong Deng
- the Department of Biochemistry, Center for Neurodegenerative Diseases and
| | | | - Grace K Pavlath
- the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Katherine E Vest
- the Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | |
Collapse
|
12
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
13
|
Xu L, Peng L, Gu T, Yu D, Yao YG. The 3′UTR of human MAVS mRNA contains multiple regulatory elements for the control of protein expression and subcellular localization. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:47-57. [DOI: 10.1016/j.bbagrm.2018.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
|