1
|
Pankammoon P, Salinas MBS, Thitaram C, Sathanawongs A. The Complexities of Interspecies Somatic Cell Nuclear Transfer: From Biological and Molecular Insights to Future Perspectives. Int J Mol Sci 2025; 26:3310. [PMID: 40244161 PMCID: PMC11989385 DOI: 10.3390/ijms26073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome crosstalk. This review synthesized peer-reviewed English articles from PubMed, Web of Science, and Scopus, spanning nearly three decades, using relevant keywords to explore the molecular mechanisms underlying iSCNT inefficiencies and potential improvement strategies. We highlight recent findings deepening the understanding of interspecies barriers in iSCNT, emphasizing their interconnected complexities, including the following: (1) nucleocytoplasmic incompatibility may disrupt nuclear pore complex (NPC) assembly and maturation, impairing the nuclear transport of essential transcription factors (TFs), embryonic genome activation (EGA), and nuclear reprogramming; (2) mitonuclear incompatibility could lead to nuclear and mitochondrial DNA (nDNA-mtDNA) mismatches, affecting electron transport chain (ETC) assembly, oxidative phosphorylation, and energy metabolism; (3) these interrelated incompatibilities can further influence epigenetic regulation, potentially leading to incomplete epigenetic reprogramming in iSCNT embryos. Addressing these challenges requires a multifaceted, species-specific approach that balances multiple incompatibilities rather than isolating a single factor. Gaining insight into the molecular interactions between the donor nucleus and recipient cytoplast, coupled with optimizing strategies tailored to specific pairings, could significantly enhance iSCNT efficiency, ultimately transforming experimental breakthroughs into real-world applications in reproductive biotechnology, regenerative medicine, and species conservation.
Collapse
Affiliation(s)
- Peachanika Pankammoon
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
| | - Marvin Bryan Segundo Salinas
- Department of Basic Veterinary Sciences, College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines;
| | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anucha Sathanawongs
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
2
|
Pankammoon P, Qing Y, Zhao H, Jiao D, Li H, Wang F, Wiriyahdamrong T, Guo J, Li W, Chuammitri P, Thitaram C, Wei H, Sathanowongs A. Transcriptomic insights into developmental arrest in fluorescent labeling transgenic Asian elephant ( Elephas maximus) embryos via inter-order cloning. Front Cell Dev Biol 2025; 13:1532962. [PMID: 40092629 PMCID: PMC11907086 DOI: 10.3389/fcell.2025.1532962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Asian elephants (Elephas maximus) provide a unique model for studying cloning in large mammals. As an endangered species with declining populations and limited oocyte availability, interspecies somatic cell nuclear transfer (iSCNT) combined with transcriptomic analysis holds promise for advancing iSCNT embryonic arrest development and further facilitating applications in conservation efforts, therapeutic cloning, and regenerative medicine. Methods This study conducted low-input RNA sequencing analyses on transgenic Asian elephant-pig (AE-P) inter-order cloned embryos expressing enhanced green fluorescent protein (EGFP) at the 2- and 4-cell stages. Differential gene expressions, pathway enrichment, and hub gene analyses were performed to identify the molecular mechanisms and core genes influencing normal and arrest development. Results and Discussion Approximately 25% of clean reads successfully aligned with the Asian elephant genome. The transcriptomic analysis revealed that inter-order cloned embryos with earlier cleavage at the 2- and 4-cell stages exhibited signs of residual transcriptomic memory and incomplete epigenetic reprogramming, while arrested embryos showed indications of nucleocytoplasmic incompatibility and nDNA-mtDNA mismatch. Hub gene analyses indicated core genes such as NDUFC2, NDUFS3, NDUFAB1, SDHC, SDHB, NUP54, NUP43, NUP37, NDC1, CDK1, and CCNB1 linked to energy production, nucleocytoplasmic transport, and cell cycle regulation highlighting the overall challenges in cloning Asian elephant inter-order embryos. Altogether, the analysis of high-throughput sequencing enhances the reliability of iSCNT production in this study, advancing our understanding of cellular reprogramming and molecular roadblocks in AE-P inter-order cloned embryos. Transcriptomic analyses have identified key factors contributing to developmental barriers in iSCNT, offering valuable insights into the complexities of these challenges.
Collapse
Affiliation(s)
| | - Yubo Qing
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Science and Technology Department of Yunnan Province, Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Heng Zhao
- Science and Technology Department of Yunnan Province, Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Science and Technology Department of Yunnan Province, Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Science and Technology Department of Yunnan Province, Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Fengchong Wang
- Science and Technology Department of Yunnan Province, Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- College of Animal Science, Yunnan Agricultural University, Kunming, China
| | - Thanapa Wiriyahdamrong
- Science and Technology Department of Yunnan Province, Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- College of Animal Science, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Science and Technology Department of Yunnan Province, Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
| | - Wengui Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | | | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hongjiang Wei
- Science and Technology Department of Yunnan Province, Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | | |
Collapse
|
3
|
Kodzik N, Ciereszko A, Judycka S, Słowińska M, Szczepkowska B, Świderska B, Dietrich MA. Cryoprotectant-specific alterations in the proteome of Siberian sturgeon spermatozoa induced by cryopreservation. Sci Rep 2024; 14:17707. [PMID: 39085328 PMCID: PMC11291920 DOI: 10.1038/s41598-024-68395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Cryopreservation is crucial for conserving genetic diversity in endangered species including the critically endangered group of sturgeons (Acipenseridae), but it can compromise sperm quality and protein profiles. Although cryopreservation with dimethyl sulfoxide (DMSO) and methanol (MeOH) results in the recovery of good post-thaw motility, DMSO-preserved sperm show reduced fertilization ability. This study was conducted in Siberian sturgeon as a model for Acipenserid fishes to explore the effects of DMSO and MeOH on the proteome of semen using advanced proteomics methods-liquid chromatography‒mass spectrometry and two-dimensional difference gel electrophoresis. We analyzed the proteomic profiles of fresh and cryopreserved spermatozoa and their extracellular medium and showed that cryopreservation decreases motility and viability and increases reactive oxygen species levels, membrane fluidity, and acrosome damage. Despite having similar post-thaw semen motility, sperm treated with DMSO had significantly lower fertilization success (6.2%) than those treated with MeOH (51.2%). A total of 224 and 118 differentially abundant proteins were identified in spermatozoa preserved with MeOH and DMSO, respectively. MeOH-related proteins were linked to chromosomal structure and mitochondrial functionality, while DMSO-related proteins impacted fertilization by altering the acrosome reaction and binding of sperm to the zona pellucida and nuclear organization. Additionally, cryopreservation led to alterations in the proacrosin/acrosin system in both cryoprotectants. This study provides the first comprehensive proteomic characterization of Siberian sturgeon sperm after cryopreservation, offering insights into how cryoprotectants impact fertilization ability.
Collapse
Affiliation(s)
- Natalia Kodzik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Bożena Szczepkowska
- Department of Sturgeon Fish Breeding, National Inland Fisheries Research Institute in Olsztyn, 11-610, Pozezdrze, Pieczarki, Poland
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Mariola A Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
4
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
5
|
Song H, Bae Y, Kim S, Deascanis D, Lee Y, Rona G, Lane E, Lee S, Kim S, Pagano M, Myung K, Kee Y. Nucleoporins cooperate with Polycomb silencers to promote transcriptional repression and repair at DNA double strand breaks. RESEARCH SQUARE 2024:rs.3.rs-4680344. [PMID: 39070640 PMCID: PMC11276006 DOI: 10.21203/rs.3.rs-4680344/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
DNA Double-strand breaks (DSBs) are harmful lesions and major sources of genomic instability. Studies have suggested that DSBs induce local transcriptional silencing that consequently promotes genomic stability. Several factors have been proposed to actively participate in this process, including ATM and Polycomb repressive complex 1 (PRC1). Here we found that disrupting PRC1 clustering disrupts DSB-induced gene silencing. Interactome analysis of PHC2, a PRC1 subunit that promotes the formation of the Polycomb body, found several nucleoporins that constitute the Nuclear Pore Complex (NPC). Similar to PHC2, depleting the nucleoporins also disrupted the DSB-induced gene silencing. We found that some of these nucleoporins, such as NUP107 and NUP43, which are members of the Y-complex of NPC, localize to DSB sites. These nucleoporin-enriched DSBs were distant from the nuclear periphery. The presence of nucleoporins and PHC2 at DSB regions were inter-dependent, suggesting that they act cooperatively in the DSB-induced gene silencing. We further found two structural components within NUP107 to be necessary for the transcriptional repression at DSBs: ATM/ATR-mediated phosphorylation at Serine37 residue within the N-terminal disordered tail, and the NUP133-binding surface at the C-terminus. These results provide a new functional interplay among nucleoporins, ATM and the Polycomb proteins in the DSB metabolism, and underscore their emerging roles in genome stability maintenance. *Hongseon Song, Yubin Bae, Sangin Kim, and Dante Deascanis contributed equally to this work.
Collapse
|
6
|
Yao X, Wang C, Yu W, Sun L, Lv Z, Xie X, Tian S, Yan L, Zhang H, Liu J. SRSF1 is essential for primary follicle development by regulating granulosa cell survival via mRNA alternative splicing. Cell Mol Life Sci 2023; 80:343. [PMID: 37907803 PMCID: PMC11072053 DOI: 10.1007/s00018-023-04979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023]
Abstract
Granulosa cell abnormalities are characteristics of premature ovarian insufficiency (POI). Abnormal expression of serine/arginine-rich splicing factor 1 (SRSF1) can cause various diseases, but the role of SRSF1 in mouse granulosa cells remains largely unclear. In this study, we found that SRSF1 was expressed in the nuclei of both mouse oocytes and granulosa cells. The specific knockout of Srsf1 in granulosa cells led to follicular development inhibition, decreased granulosa cell proliferation, and increased apoptosis. Gene Ontology (GO) analysis of RNA-seq results revealed abnormal expression of genes involved in DNA repair, cell killing and other signalling pathways. Alternative splicing (AS) analysis showed that SRSF1 affected DNA damage in granulosa cells by regulating genes related to DNA repair. In summary, SRSF1 in granulosa cells controls follicular development by regulating AS of genes associated with DNA repair, thereby affecting female reproduction.
Collapse
Affiliation(s)
- Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiran Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Nobari P, Doye V, Boumendil C. Metazoan nuclear pore complexes in gene regulation and genome stability. DNA Repair (Amst) 2023; 130:103565. [PMID: 37696111 DOI: 10.1016/j.dnarep.2023.103565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
The nuclear pore complexes (NPCs), one of the hallmarks of eukaryotic nuclei, allow selective transport of macromolecules between the cytoplasm and the nucleus. Besides this canonical function, an increasing number of additional roles have been attributed to the NPCs and their constituents, the nucleoporins. Here we review recent insights into the mechanisms by which NPCs and nucleoporins affect transcription and DNA repair in metazoans. In the first part, we discuss how gene expression can be affected by the localization of genome-nucleoporin interactions at pores or "off-pores", by the role of nucleoporins in chromatin organization at different scales, or by the physical properties of nucleoporins. In the second part, we review the contribution of NPCs to genome stability, including transport-dependent and -independent functions and the role of positioning at NPCs in the repair of heterochromatic breaks and the regulation of replication stress.
Collapse
Affiliation(s)
- Parisa Nobari
- IGH, Université de Montpellier, CNRS, Montpellier, France
| | - Valérie Doye
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | | |
Collapse
|
8
|
Pan L, Song XW, Song JC, Shi CY, Wang ZK, Huang SQ, Guo ZF, Li SH, Zhao XX, Ge JB. Downregulation of NUP93 aggravates hypoxia-induced death of cardiomyocytes in vitro through abnormal regulation of gene transcription. Acta Pharmacol Sin 2023; 44:969-983. [PMID: 36807413 PMCID: PMC10104817 DOI: 10.1038/s41401-022-01036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/27/2022] [Indexed: 02/22/2023]
Abstract
Nuclear pore complex in the nuclear envelope plays an important role in controlling the transportation of RNAs, proteins and other macromolecules between the nucleus and cytoplasm. The relationship between abnormal expression of nucleoporins and cardiovascular diseases is unclear. In this study we investigated how myocardial infarction affected the expression and function of nucleoporins in cardiomyocytes. We separately knocked down 27 nucleoporins in rat primary myocardial cells. Among 27 nucleoporins, knockdown of Nup93, Nup210 and Nup214 markedly increased the expression of ANP and BNP, two molecular markers of cardiomyocyte function. We showed that Nup93 was significantly downregulated in hypoxic cardiomyocytes. Knockdown of Nup93 aggravated hypoxia-induced injury and cell death of cardiomyocytes, whereas overexpression of Nup93 led to the opposite effects. RNA-seq and bioinformatics analysis revealed that knockdown of Nup93 did not affect the overall transportation of mRNAs from the nucleus to the cytoplasm, but regulated the transcription of a large number of mRNAs in cardiomyocytes, which are mainly involved in oxidative phosphorylation and ribosome subunits. Most of the down-regulated genes by Nup93 knockdown overlapped with the genes whose promoters could be directly bound by Nup93. Among these genes, we demonstrated that Nup93 knockdown significantly down-regulated the expression of YAP1. Overexpression of YAP1 partially rescued the function of Nup93 knockdown and attenuated the effects of hypoxia on cell injury and cardiomyocyte death. We conclude that down-regulation of Nup93, at least partially, contributes to hypoxia-induced injury and cardiomyocyte death through abnormal interaction with the genome to dynamically regulate the transcription of YAP1 and other genes. These results reveal a new mechanism of Nup93 and might provide new therapeutic targets for the treatment of ischemia-induced heart failure.
Collapse
Affiliation(s)
- Lei Pan
- Department of Cardiology, Zhongshan Hospital of Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Xiao-Wei Song
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jin-Chao Song
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shanghai, 200433, China
| | - Cheng-Yong Shi
- Department of Cardiology, No. 903 Hospital of Chinese People's Liberation Army, Hangzhou, 310013, China
| | - Zhong-Kai Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Song-Qun Huang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zhi-Fu Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Song-Hua Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital of Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
9
|
Akbar H, Cao J, Wang D, Yuan X, Zhang M, Muthusamy S, Song X, Liu X, Aikhionbare F, Yao X, Gao X, Liu X. Acetylation of Nup62 by TIP60 ensures accurate chromosome segregation in mitosis. J Mol Cell Biol 2022; 14:6747133. [PMID: 36190325 PMCID: PMC9926331 DOI: 10.1093/jmcb/mjac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Manjuan Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | | | | | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| |
Collapse
|
10
|
Raices M, D'Angelo MA. Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome. Cold Spring Harb Perspect Biol 2022; 14:a040691. [PMID: 34312247 PMCID: PMC8789946 DOI: 10.1101/cshperspect.a040691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the genetic material is segregated inside the nucleus. This compartmentalization of the genome requires a transport system that allows cells to move molecules across the nuclear envelope, the membrane-based barrier that surrounds the chromosomes. Nuclear pore complexes (NPCs) are the central component of the nuclear transport machinery. These large protein channels penetrate the nuclear envelope, creating a passage between the nucleus and the cytoplasm through which nucleocytoplasmic molecule exchange occurs. NPCs are one of the largest protein assemblies of eukaryotic cells and, in addition to their critical function in nuclear transport, these structures also play key roles in many cellular processes in a transport-independent manner. Here we will review the current knowledge of the NPC structure, the cellular mechanisms that regulate their formation and maintenance, and we will provide a brief description of a variety of processes that NPCs regulate.
Collapse
Affiliation(s)
- Marcela Raices
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Maximiliano A D'Angelo
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| |
Collapse
|
11
|
EMP3 negatively modulates breast cancer cell DNA replication, DNA damage repair, and stem-like properties. Cell Death Dis 2021; 12:844. [PMID: 34511602 PMCID: PMC8435533 DOI: 10.1038/s41419-021-04140-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Enhanced DNA damage repair capacity attenuates cell killing of DNA-damaging chemotherapeutic agents. In silico analysis showed that epithelial membrane protein 3 (EMP3) is associated with favorable survival, and negatively regulates cell cycle S-phase. Consistently, loss and gain of function studies demonstrated that EMP3 inhibits breast cancer cell S-phage entry, DNA replication, DNA damage repair, and stem-like properties. Moreover, EMP3 blocks Akt-mTOR signaling activation and induces autophagy. EMP3 negatively modulates BRCA1 and RAD51 expression, indicating EMP3 suppresses homologous recombination repair of DNA double-strand breaks. Accordingly, EMP3 sensitizes breast cancer cells to the DNA-damaging drug Adriamycin. EMP3 downregulates YTHDC1, a RNA-binding protein involved in m6a modification, which at least in part mediates the effects of EMP3 on breast cancer cells. Taken together, these data indicate that EMP3 is a putative tumor suppressor in breast cancer, and EMP3 downregulation may be responsible for breast cancer chemoresistance.
Collapse
|
12
|
Multifunctionality of F-rich nucleoporins. Biochem Soc Trans 2021; 48:2603-2614. [PMID: 33336681 DOI: 10.1042/bst20200357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 01/11/2023]
Abstract
Nucleoporins (Nups) represent a range of proteins most known for composing the macromolecular assembly of the nuclear pore complex (NPC). Among them, the family of intrinsically disordered proteins (IDPs) phenylalanine-glycine (FG) rich Nups, form the permeability barrier and coordinate the high-speed nucleocytoplasmic transport in a selective way. Those FG-Nups have been demonstrated to participate in various biological processes besides nucleocytoplasmic transport. The high number of accessible hydrophobic motifs of FG-Nups potentially gives rise to this multifunctionality, enabling them to form unique microenvironments. In this review, we discuss the multifunctionality of disordered and F-rich Nups and the diversity of their localizations, emphasizing the important roles of those Nups in various regulatory and metabolic processes.
Collapse
|
13
|
Guo K, Shen G, Kibbie J, Gonzalez T, Dillon SM, Smith HA, Cooper EH, Lavender K, Hasenkrug KJ, Sutter K, Dittmer U, Kroehl M, Kechris K, Wilson CC, Santiago ML. Qualitative Differences Between the IFNα subtypes and IFNβ Influence Chronic Mucosal HIV-1 Pathogenesis. PLoS Pathog 2020; 16:e1008986. [PMID: 33064743 PMCID: PMC7592919 DOI: 10.1371/journal.ppat.1008986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 10/28/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
The Type I Interferons (IFN-Is) are innate antiviral cytokines that include 12 different IFNα subtypes and IFNβ that signal through the IFN-I receptor (IFNAR), inducing hundreds of IFN-stimulated genes (ISGs) that comprise the 'interferome'. Quantitative differences in IFNAR binding correlate with antiviral activity, but whether IFN-Is exhibit qualitative differences remains controversial. Moreover, the IFN-I response is protective during acute HIV-1 infection, but likely pathogenic during the chronic stages. To gain a deeper understanding of the IFN-I response, we compared the interferomes of IFNα subtypes dominantly-expressed in HIV-1-exposed plasmacytoid dendritic cells (1, 2, 5, 8 and 14) and IFNβ in the earliest cellular targets of HIV-1 infection. Primary gut CD4 T cells from 3 donors were treated for 18 hours ex vivo with individual IFN-Is normalized for IFNAR signaling strength. Of 1,969 IFN-regulated genes, 246 'core ISGs' were induced by all IFN-Is tested. However, many IFN-regulated genes were not shared between the IFNα subtypes despite similar induction of canonical antiviral ISGs such as ISG15, RSAD2 and MX1, formally demonstrating qualitative differences between the IFNα subtypes. Notably, IFNβ induced a broader interferome than the individual IFNα subtypes. Since IFNβ, and not IFNα, is upregulated during chronic HIV-1 infection in the gut, we compared core ISGs and IFNβ-specific ISGs from colon pinch biopsies of HIV-1-uninfected (n = 13) versus age- and gender-matched, antiretroviral-therapy naïve persons with HIV-1 (PWH; n = 19). Core ISGs linked to inflammation, T cell activation and immune exhaustion were elevated in PWH, positively correlated with plasma lipopolysaccharide (LPS) levels and gut IFNβ levels, and negatively correlated with gut CD4 T cell frequencies. In sharp contrast, IFNβ-specific ISGs linked to protein translation and anti-inflammatory responses were significantly downregulated in PWH, negatively correlated with gut IFNβ and LPS, and positively correlated with plasma IL6 and gut CD4 T cell frequencies. Our findings reveal qualitative differences in interferome induction by diverse IFN-Is and suggest potential mechanisms for how IFNβ may drive HIV-1 pathogenesis in the gut.
Collapse
Affiliation(s)
- Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Guannan Shen
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Jon Kibbie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Tania Gonzalez
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Harry A. Smith
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Emily H. Cooper
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kerry Lavender
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Canada
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, Hamilton, MT, United States of America
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisberg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisberg-Essen, Essen, Germany
| | - Miranda Kroehl
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Katerina Kechris
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
14
|
Burdine RD, Preston CC, Leonard RJ, Bradley TA, Faustino RS. Nucleoporins in cardiovascular disease. J Mol Cell Cardiol 2020; 141:43-52. [PMID: 32209327 DOI: 10.1016/j.yjmcc.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is a pressing health problem with significant global health, societal, and financial burdens. Understanding the molecular basis of polygenic cardiac pathology is thus essential to devising novel approaches for management and treatment. Recent identification of uncharacterized regulatory functions for a class of nuclear envelope proteins called nucleoporins offers the opportunity to understand novel putative mechanisms of cardiac disease development and progression. Consistent reports of nucleoporin deregulation associated with ischemic and dilated cardiomyopathies, arrhythmias and valvular disorders suggests that nucleoporin impairment may be a significant but understudied variable in cardiopathologic disorders. This review discusses and converges existing literature regarding nuclear pore complex proteins and their association with cardiac pathologies, and proposes a role for nucleoporins as facilitators of cardiac disease.
Collapse
Affiliation(s)
- Ryan D Burdine
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; School of Health Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, United States of America
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Riley J Leonard
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Tyler A Bradley
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22(nd) Street, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|
15
|
Nucleoporin Nup58 localizes to centrosomes and mid-bodies during mitosis. Cell Div 2019; 14:7. [PMID: 31388347 PMCID: PMC6679547 DOI: 10.1186/s13008-019-0050-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023] Open
Abstract
Background Nuclear pore complexes (NPCs) act as nano-turnstiles within nuclear membranes between the cytoplasm and nucleus of mammalian cells. NPC proteins, called nucleoporins (Nups), mediate trafficking of proteins and RNA into and out of the nucleus, and are involved in a variety of mitotic processes. We previously reported that Nup62 localizes to the centrosome and mitotic spindle during mitosis, and plays a role in centrosome homeostasis. However, whether Nup58, a Nup62 subcomplex protein, also localizes to spindle poles is unknown. Result Herein, we show that Nup58 localizes to the nuclear rim during interphase, and to mitotic spindles, centrosomes, and midbodies during mitosis. Our confocal microscopy, live-cell imaging, and stimulated emission depletion nanoscopy results also demonstrated that Nup58 localized to the centrosomes during metaphase and relocalized to midbodies during abscission. Depletion of Nup58 resulted in centrosomal abnormalities and delayed abscission. Conclusion Nup58 localized at the centrosomes and mitotic spindle during metaphase and relocalized at midbodies during abscission. This study highlights the important role of Nup58 in mitosis.
Collapse
|