1
|
Teng G, Lin G, Wei P, Li L, Chen H, Chen Q, Lin Q. FEN1-assisted LAMP for specific and multiplex detection of pathogens associated with community-acquired pneumonia. Analyst 2025; 150:1419-1426. [PMID: 40066948 DOI: 10.1039/d4an01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Lower respiratory tract infections (LRITs), including community-acquired pneumonia (CAP), are the fifth leading cause of death worldwide over the last ten years, posing a serious threat to global healthcare. Conventional laboratory assays for detecting pathogens are hindered by complicated procedures, a long turnaround time and a lack of multiplex detection capabilities. In this study, a flap-endonuclease 1 (FEN1)-assisted loop-mediated isothermal amplification (LAMP) method was designed, and an assay based on this method was developed to identify three leading pathogens for CAP, namely, Streptococcus pneumoniae, Mycoplasma pneumoniae and Haemophilus influenzae. FEN1-assisted LAMP utilized a sequence-specific probe with a flap structure to generate an amplified signal, demonstrating high specificity and sensitivity with a low limit of detection (100 copies per μL). Based on the cleavage of flap probes by FEN1, our assay was able to detect three pathogens in a single reaction. This method is highly consistent with the polymerase chain reaction (PCR) in clinical sample testing. This simple, specific and multiple detection method has the potential to identify CAP and could be applied to detect other pathogen infections.
Collapse
Affiliation(s)
- Guopeng Teng
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Technology for Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350005, China.
| | - Gongde Lin
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350012, China
| | - Pengfan Wei
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Technology for Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350005, China.
| | - Lizhi Li
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
| | - Hongyuan Chen
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qingquan Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Technology for Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350005, China.
| | - Qiuyuan Lin
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Technology for Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
2
|
Xu C, Cao J, Qiang H, Liu Y, Wu J, Luo Q, Wan M, Wang Y, Wang P, Cheng Q, Zhou G, Sima J, Guo Y, Xu S. TaqTth-hpRNA: a novel compact RNA-targeting tool for specific silencing of pathogenic mRNA. Genome Biol 2024; 25:179. [PMID: 38972974 PMCID: PMC11229350 DOI: 10.1186/s13059-024-03326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
Pathogenic allele silencing is a promising treatment for genetic hereditary diseases. Here, we develop an RNA-cleaving tool, TaqTth-hpRNA, consisting of a small, chimeric TaqTth, and a hairpin RNA guiding probe. With a minimal flanking sequence-motif requirement, in vitro and in vivo studies show TaqTth-hpRNA cleaves RNA efficiently and specifically. In an Alzheimer's disease model, we demonstrate silencing of mutant APPswe mRNA without altering the wild-type APP mRNA. Notably, due to the compact size of TaqTth, we are able to combine with APOE2 overexpression in a single AAV vector, which results in stronger inhibition of pathologies.
Collapse
Affiliation(s)
- Chong Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiyanuo Cao
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huanran Qiang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialin Wu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiudan Luo
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng Wan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujie Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Peiliang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qian Cheng
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jian Sima
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Laboratory of Aging Neuroscience and Neuropharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Xiao Y, Ni M, Zheng Z, Liu Y, Yin M, Mao S, Zhao Y, Tian B, Wang L, Xu H, Hua Y. POLM variant G312R promotes ovarian tumorigenesis through genomic instability and COL11A1-NF-κB axis. Am J Physiol Cell Physiol 2024; 327:C168-C183. [PMID: 38826139 DOI: 10.1152/ajpcell.00025.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
In ovarian cancer (OC), identifying key molecular players in disease escalation and chemoresistance remains critical. Our investigation elucidates the role of the DNA polymerase mu (POLM), especially G312R mutation, in propelling oncogenesis through dual pathways. POLMG312R markedly augments the ribonucleotide insertion capability of POLM, precipitating genomic instability. In addition, our research reveals that POLMG312R perturbs collagen alpha-1 (XI) chain (COL11A1) expression-a gene that plays a key role in oncogenesis-and modulates the NF-κB signaling pathway, alters the secretion of downstream inflammatory cytokines, and promotes tumor-macrophage interactions. We illustrate a bidirectional regulatory interaction between POLM, particularly its G312R variant, and COL11A1. This interaction regulates NF-κB signaling, culminating in heightened malignancy and resistance to chemotherapy in OC cells. These insights position the POLM as a potential molecular target for OC therapy, shedding light on the intricate pathways underpinning POLM variant disease progression.NEW & NOTEWORTHY Our research reveals that POLM plays an important role in ovarian cancer development, especially the mutation G312R. We uncover the POLMG312R mutation as a driver of genomic instability in ovarian cancer via aberrant ribonucleotide incorporation. We reveal that POLMG312R upregulates COL11A1 and activates NF-κB signaling, contributing to tumor progression and chemoresistance. This study identifies the POLM-COL11A1-NF-κB axis as a novel oncogenic pathway.
Collapse
Affiliation(s)
- Yue Xiao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Zhiguo Zheng
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Yufeng Liu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Mingyu Yin
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Shuyu Mao
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Ye Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Liangyan Wang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Xu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Sun H, Ma L, Tsai YF, Abeywardana T, Shen B, Zheng L. Okazaki fragment maturation: DNA flap dynamics for cell proliferation and survival. Trends Cell Biol 2023; 33:221-234. [PMID: 35879148 PMCID: PMC9867784 DOI: 10.1016/j.tcb.2022.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
Unsuccessful processing of Okazaki fragments leads to the accumulation of DNA breaks which are associated with many human diseases including cancer and neurodegenerative disorders. Recently, Okazaki fragment maturation (OFM) has received renewed attention regarding how unprocessed Okazaki fragments are sensed and repaired, and how inappropriate OFM impacts on genome stability and cell viability, especially in cancer cells. We provide an overview of the highly efficient and faithful canonical OFM pathways and their regulation of genomic integrity and cell survival. We also discuss how cells induce alternative error-prone OFM processes to promote cell survival in response to environmental stresses. Such stress-induced OFM processes may be important mechanisms driving mutagenesis, cellular evolution, and resistance to radio/chemotherapy and targeted therapeutics in human cancers.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Lingzi Ma
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ya-Fang Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Tharindu Abeywardana
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
5
|
Liao L, Yao J, Yuan R, Xiang Y, Jiang B. Lighting-up aptamer transcriptional amplification for highly sensitive and label-free FEN1 detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121760. [PMID: 36030671 DOI: 10.1016/j.saa.2022.121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Specific and sensitive detection of flap endonuclease 1 (FEN1), an enzyme biomarker involved in DNA replications and several metabolic pathways, is of high values for the diagnosis of various cancers. In this work, a fluorescence strategy based on transcriptional amplification of lighting-up aptamers for label-free, low background and sensitive monitoring of FEN1 is developed. FEN1 cleaves the 5' flap of the DNA complex probe with double flaps to form a notched dsDNA, which is ligated by T4 DNA ligase to yield fully complementary dsDNA. Subsequently, T7 RNA polymerase binds the promoter region to initiate cyclic transcriptional generation of many RNA aptamers that associate with the malachite green dye to yield highly amplified fluorescence for detecting FEN1 with detection limit as low as 0.22 pM in a selective way. In addition, the method can achieve diluted serum monitoring of low concentrations of FEN1, exhibiting its potential for the diagnosis of early-stage cancers.
Collapse
Affiliation(s)
- Lei Liao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Jianglong Yao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
6
|
Liang B, Zhao W, Han B, Barkema HW, Niu YD, Liu Y, Kastelic JP, Gao J. Biological and genomic characteristics of two bacteriophages isolated from sewage, using one multidrug-resistant and one non-multidrug-resistant strain of Klebsiella pneumoniae. Front Microbiol 2022; 13:943279. [PMID: 36312979 PMCID: PMC9608510 DOI: 10.3389/fmicb.2022.943279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Bovine mastitis caused by multi-drug resistant (MDR) Klebsiella pneumoniae is difficult to treat with antibiotics, whereas bacteriophages may be a viable alternative. Our objective was to use 2 K. pneumoniae strains, 1 MDR and the other non-MDR, to isolate phages from sewage samples and compare their biological and genomic characteristics. Additionally, phage infected mouse mammary gland was also analyzed by H&E staining and ELISA kits to compare morphology and inflammatory factors, respectively. Based on assessments with double agar plates and transmission electron microscopy, phage CM_Kpn_HB132952 had clear plaques surrounded by translucent halos on the bacterial lawn of K. pneumoniae KPHB132952 and belonged to Siphoviridae, whereas phage CM_Kpn_HB143742 formed a clear plaque on the bacterial lawn of K. pneumoniae KPHB143742 and belonged to Podoviridae. In 1-step growth curves, CM_Kpn_HB132952 and CM_Kpn_HB143742 had burst sizes of 0.34 and 0.73 log10 PFU/mL, respectively. The former had a latent period of 50 min and an optimal multiplicity of infection (MOI) of 0.01, whereas for the latter, the latent period was 30 min (MOI = 1). Phage CM_Kpn_HB132952 had better thermal and acid–base stability than phage CM_Kpn_HB143742. Additionally, both phages had the same host range rate but different host ranges. Based on Illumina NovaSeq, phages CM_Kpn_HB132952 and CM_Kpn_HB143742 had 140 and 145 predicted genes, respectively. Genomic sequencing and phylogenetic tree analysis indicated that both phages were novel phages belonging to the Klebsiella family. Additionally, the histopathological structure and inflammatory factors TNF-α and IL-1β were not significantly different among phage groups and the control group. In conclusion, using 1 MDR and 1 non-MDR strain of K. pneumoniae, we successfully isolated two phages from the same sewage sample, and demonstrated that they had distinct biological and genomic characteristics.
Collapse
Affiliation(s)
- Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenpeng Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, Hospital Drive NW, University of Calgary, Calgary, AB, Canada
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Hospital Drive NW, University of Calgary, Calgary, AB, Canada
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, Hospital Drive NW, University of Calgary, Calgary, AB, Canada
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Jian Gao,
| |
Collapse
|
7
|
Small-Molecule Inhibitors Targeting FEN1 for Cancer Therapy. Biomolecules 2022; 12:biom12071007. [PMID: 35883563 PMCID: PMC9312813 DOI: 10.3390/biom12071007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
DNA damage repair plays a key role in maintaining genomic stability and integrity. Flap endonuclease 1 (FEN1) is a core protein in the base excision repair (BER) pathway and participates in Okazaki fragment maturation during DNA replication. Several studies have implicated FEN1 in the regulation of other DNA repair pathways, including homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Abnormal expression or mutation of FEN1 in cells can cause a series of pathological responses, leading to various diseases, including cancers. Moreover, overexpression of FEN1 contributes to drug resistance in several types of cancers. All this supports the hypothesis that FEN1 could be a therapeutic target for cancer treatment. Targeting FEN1 has been verified as an effective strategy in mono or combined treatment of cancer. Small-molecule compounds targeting FEN1 have also been developed and detected in cancer regression. In this review, we summarize the recent development of small-molecule inhibitors targeting FEN1 in recent years, thereby expanding their therapeutic potential and application.
Collapse
|
8
|
Wu H, Yan Y, Yuan J, Luo M, Wang Y. miR-4324 inhibits ovarian cancer progression by targeting FEN1. J Ovarian Res 2022; 15:32. [PMID: 35246224 PMCID: PMC8896303 DOI: 10.1186/s13048-022-00959-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Ovarian cancer is one of the most lethal malignancies, with a 1.9% mortality rate worldwide. The dysregulation of the FEN1 gene and miR-4324 has been associated with cancer progression. However, the relationship between miR-4324 and-FEN1 requires further investigation. Methods miR-4324 and FEN1 expressions in ovarian cancer tissues and cell lines were measured via RT-qPCR. The interaction between miR-4324 and FEN1 was assessed using luciferase and RNA pull-down assays. The effects of miR-4324 and FEN1 on cell proliferation, adhesion and apoptosis were determined by CCK-8, BrdU, colony formation, cell adhesion, Caspase-3 and western blot assays in ovarian cancer cell lines CaOV3 and OVCAR3, respectively. Results The results showed that miR-4324 expression was significantly decreased and FEN1 expression was enhanced in ovarian cancer tissues and cell lines. miR-4324 inhibitor promoted cell proliferation, adhesion and migration, and prevented apoptosis. Furthermore, the downregulation of FEN1 inhibited ovarian cancer cell growth and increased apoptosis. miR-4324 inhibited FEN1 expression and repressed ovarian cancer progression. Conclusion Our study found that miR-4324 inhibited FEN1 expression, suppressed cell growth, and increased apoptosis in ovarian cancer cells. Therefore, we identified miR-4324 and FEN1 as potential therapeutic targets for ovarian cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00959-5.
Collapse
Affiliation(s)
- Haixia Wu
- Department of Obstetrics and Gynecology, Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, Guangdong, P. R. China
| | - Youliang Yan
- Department of Obstetrics and Gynecology, Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, Guangdong, P. R. China
| | - Jialin Yuan
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Avenue, Changchun, 130000, Jilin, P. R. China
| | - Mengze Luo
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Avenue, Changchun, 130000, Jilin, P. R. China
| | - Yingjian Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Avenue, Changchun, 130000, Jilin, P. R. China.
| |
Collapse
|
9
|
Ye X, Wang N, Li Y, Fang X, Kong J. A high-specificity flap probe-based isothermal nucleic acid amplification method based on recombinant FEN1-Bst DNA polymerase. Biosens Bioelectron 2021; 192:113503. [PMID: 34303138 PMCID: PMC8280370 DOI: 10.1016/j.bios.2021.113503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
The COVID-19 pandemic has unfortunately demonstrated how easily infectious diseases can spread and harm human life and society. As of writing, pandemic has now been on-going for more than one year. There is an urgent need for new nucleic acid-based methods that can be used to diagnose pathogens early, quickly, and accurately to effectively impede the spread of infections and gain control of epidemics. We developed a flap probe-based isothermal nucleic acid amplification method that is triggered by recombinant FEN1-Bst DNA polymerase, which-through enzymatic engineering-has both DNA synthesis, strand displacement and cleavage functions. This novel method offers a simpler and more specific probe-primer pair than those of other isothermal amplifications. We tested the method's ability to detect SARS-CoV-2 (both ORF1ab and N genes), rotavirus, and Chlamydia trachomatis. The limits of detection were 10 copies/μL for rotavirus, C. trachomatis, and SARS-CoV-2 N gene, and 100 copies/μL for SARS-CoV-2 ORF1ab gene. There were no cross-reactions among 11 other common pathogens with characteristics similar to those of the test target, and the method showed 100% sensitivity and 100% specificity in clinical comparisons with RT-PCR testing. In addition to real-time detection, the endpoint could be displayed under a transilluminator, which is a convenient reporting method for point-of-care test settings. Therefore, this novel nucleic acid senor has great potential for use in clinical diagnostics, epidemic prevention, and epidemic control.
Collapse
Affiliation(s)
- Xin Ye
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Ning Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yang Li
- Shanghai Suxin Biotechnology Co. Ltd., Shanghai, 201318, PR China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
10
|
Donati E, Vidossich P, De Vivo M. Molecular Mechanism of Phosphate Steering for DNA Binding, Cleavage Localization, and Substrate Release in Nucleases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
11
|
Sobhy MA, Tehseen M, Takahashi M, Bralić A, De Biasio A, Hamdan SM. Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level. Comput Struct Biotechnol J 2021; 19:4456-4471. [PMID: 34471492 PMCID: PMC8385120 DOI: 10.1016/j.csbj.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an important component of the intricate molecular machinery for DNA replication and repair. FEN1 is a structure-specific 5' nuclease that cleaves nascent single-stranded 5' flaps during the maturation of Okazaki fragments. Here, we review our research primarily applying single-molecule fluorescence to resolve important mechanistic aspects of human FEN1 enzymatic reaction. The methodology presented in this review is aimed as a guide for tackling other biomolecular enzymatic reactions by fluorescence enhancement, quenching, and FRET and their combinations. Using these methods, we followed in real-time the structures of the substrate and product and 5' flap cleavage during catalysis. We illustrate that FEN1 actively bends the substrate to verify its features and continues to mold it to induce a protein disorder-to-order transitioning that controls active site assembly. This mechanism suppresses off-target cleavage of non-cognate substrates and promotes their dissociation with an accuracy that was underestimated from bulk assays. We determined that product release in FEN1 after the 5' flap release occurs in two steps; a brief binding to the bent nicked-product followed by longer binding to the unbent nicked-product before dissociation. Based on our cryo-electron microscopy structure of the human lagging strand replicase bound to FEN1, we propose how this two-step product release mechanism may regulate the final steps during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Mouse papillomavirus type 1 (MmuPV1) DNA is frequently integrated in benign tumors by microhomology-mediated end-joining. PLoS Pathog 2021; 17:e1009812. [PMID: 34343212 PMCID: PMC8362953 DOI: 10.1371/journal.ppat.1009812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/13/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
MmuPV1 is a useful model for studying papillomavirus-induced tumorigenesis. We used RNA-seq to look for chimeric RNAs that map to both MmuPV1 and host genomes. In tumor tissues, a higher proportion of total viral reads were virus-host chimeric junction reads (CJRs) (1.9‰ - 7‰) than in tumor-free tissues (0.6‰ - 1.3‰): most CJRs mapped to the viral E2/E4 region. Although most of the MmuPV1 integration sites were mapped to intergenic regions and introns throughout the mouse genome, integrations were seen more than once in several genes: Malat1, Krt1, Krt10, Fabp5, Pard3, and Grip1; these data were confirmed by rapid amplification of cDNA ends (RACE)-Single Molecule Real-Time (SMRT)-seq or targeted DNA-seq. Microhomology sequences were frequently seen at host-virus DNA junctions. MmuPV1 infection and integration affected the expression of host genes. We found that factors for DNA double-stranded break repair and microhomology-mediated end-joining (MMEJ), such as H2ax, Fen1, DNA polymerase Polθ, Cdk1, and Plk1, exhibited a step-wise increase and Mdc1 a decrease in expression in MmuPV1-infected tissues and MmuPV1 tumors relative to normal tissues. Increased expression of mitotic kinases CDK1 and PLK1 appears to be correlated with CtIP phosphorylation in MmuPV1 tumors, suggesting a role for MMEJ-mediated DNA joining in the MmuPV1 integration events that are associated with MmuPV1-induced progression of tumors. Persistent high-risk HPV infection leads viral DNA integration into the host genome and promotes viral carcinogenesis. We have been using the MmuPV1 mouse-infection model to study papillomavirus tumorigenesis and asked whether MmuPV1 DNA also integrates into the genomes of infected mouse cells. Strikingly, we found that MmuPV1 integration into the infected host genome, like high-risk HPV infections, is very common and the mapped integration sites were distributed on all of the mouse chromosomes. Consistently, we identified microhomology sequences in the range of 2–10 nts always at the integration junction regions. We further verified the MMEJ-mediated viral DNA integration in tumor tissues during MmuPV1 infection and a step-wise increase in the expression of the DNA repair MMEJ host factors from normal tissues, to tumor-free MmuPV1 infected tissues, and then to MmuPV1 tumors. Our observations provide the first evidence of MmuPV1 integration in virus-infected cells and a conceptual advance of how papillomavirus DNA integration contributes to the development of papillomavirus-associated precancers to cancers.
Collapse
|
13
|
Zhou X, Chen X, An Y, Lu H, Wang L, Xu H, Tian B, Zhao Y, Hua Y. Biochemical characterization of a unique DNA polymerase A from the extreme radioresistant organism Deinococcus radiodurans. Biochimie 2021; 185:22-32. [PMID: 33727139 DOI: 10.1016/j.biochi.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023]
Abstract
Deinococcus radiodurans survives extraordinary doses of ionizing radiation and desiccation that cause numerous DNA strand breaks. D. radiodurans DNA polymerase A (DrPolA) is essential for reassembling the shattered genome, while its biochemical property has not been fully demonstrated. In this study, we systematically examined the enzymatic activities of DrPolA and characterized its unique features. DrPolA contains an N-terminal nuclease domain (DrPolA-NTD) and a C-terminal Klenow fragment (KlenDr). Compared with the Klenow fragment of E. coli Pol I, KlenDr shows higher fidelity despite the lacking of 3'-5' exonuclease proofreading activity and prefers double-strand DNA rather than Primer-Template substrates. Apart from the well-annotated 5'-3' exonuclease and flap endonuclease activities, DrPolA-NTD displays approximately 140-fold higher gap endonuclease activity than its homolog in E. coli and Human FEN1. Its 5'-3' exonuclease activity on ssDNA, gap endonuclease, and Holliday junction cleavage activities are greatly enhanced by Mn2+. The DrPolA-NTD deficient strain shows increased sensitivity to UV and gamma-ray radiation. Collectively, our results reveal distinct biochemical characteristics of DrPolA during DNA degradation and re-synthesis, which provide new insight into the outstanding DNA repair capacity of D. radiodurans.
Collapse
Affiliation(s)
- Xingru Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Xuanyi Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Ying An
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Huizhi Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Liangyan Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Hong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Bing Tian
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Ye Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Yuejin Hua
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China.
| |
Collapse
|
14
|
Schilling EM, Scherer M, Rothemund F, Stamminger T. Functional regulation of the structure-specific endonuclease FEN1 by the human cytomegalovirus protein IE1 suggests a role for the re-initiation of stalled viral replication forks. PLoS Pathog 2021; 17:e1009460. [PMID: 33770148 PMCID: PMC8026080 DOI: 10.1371/journal.ppat.1009460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/07/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a member of the family of structure-specific endonucleases implicated in regulation of DNA damage response and DNA replication. So far, knowledge on the role of FEN1 during viral infections is limited. Previous publications indicated that poxviruses encode a conserved protein that acts in a manner similar to FEN1 to stimulate homologous recombination, double-strand break (DSB) repair and full-size genome formation. Only recently, cellular FEN1 has been identified as a key component for hepatitis B virus cccDNA formation. Here, we report on a novel functional interaction between Flap endonuclease 1 (FEN1) and the human cytomegalovirus (HCMV) immediate early protein 1 (IE1). Our results provide evidence that IE1 manipulates FEN1 in an unprecedented manner: we observed that direct IE1 binding does not only enhance FEN1 protein stability but also phosphorylation at serine 187. This correlates with nucleolar exclusion of FEN1 stimulating its DSB-generating gap endonuclease activity. Depletion of FEN1 and inhibition of its enzymatic activity during HCMV infection significantly reduced nascent viral DNA synthesis demonstrating a supportive role for efficient HCMV DNA replication. Furthermore, our results indicate that FEN1 is required for the formation of DSBs during HCMV infection suggesting that IE1 acts as viral activator of FEN1 in order to re-initiate stalled replication forks. In summary, we propose a novel mechanism of viral FEN1 activation to overcome replication fork barriers at difficult-to-replicate sites in viral genomes.
Collapse
Affiliation(s)
| | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | | |
Collapse
|
15
|
Myricetin: A review of the most recent research. Biomed Pharmacother 2020; 134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Myricetin(MYR) is a flavonoid compound widely found in many natural plants including bayberry. So far, MYR has been proven to have multiple biological functions and it is a natural compound with promising research and development prospects. This review comprehensively retrieved and collected the latest pharmacological abstracts on MYR, and discussed the potential molecular mechanisms of its effects. The results of our review indicated that MYR has a therapeutic effect on many diseases, including tumors of different types, inflammatory diseases, atherosclerosis, thrombosis, cerebral ischemia, diabetes, Alzheimer's disease and pathogenic microbial infections. Furthermore, it regulates the expression of Hippo, MAPK, GSK-3β, PI3K/AKT/mTOR, STAT3, TLR, IκB/NF-κB, Nrf2/HO-1, ACE, eNOS / NO, AChE and BrdU/NeuN. MYR also enhances the immunomodulatory functions, suppresses cytokine storms, improves cardiac dysfunction, possesses an antiviral potential, can be used as an adjuvant treatment against cancer, cardiovascular injury and nervous system diseases, and it may be a potential drug against COVID-19 and other viral infections. Generally, this article provides a theoretical basis for the clinical application of MYR and a reference for its further use.
Collapse
|
16
|
Matsumoto Y, Brooks RC, Sverzhinsky A, Pascal JM, Tomkinson AE. Dynamic DNA-bound PCNA complexes co-ordinate Okazaki fragment synthesis, processing and ligation. J Mol Biol 2020; 432:166698. [PMID: 33157085 DOI: 10.1016/j.jmb.2020.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022]
Abstract
More than a million Okazaki fragments are synthesized, processed and joined during replication of the human genome. After synthesis of an RNA-DNA oligonucleotide by DNA polymerase α holoenzyme, proliferating cell nuclear antigen (PCNA), a homotrimeric DNA sliding clamp and polymerase processivity factor, is loaded onto the primer-template junction by replication factor C (RFC). Although PCNA interacts with the enzymes DNA polymerase δ (Pol δ), flap endonuclease 1 (FEN1) and DNA ligase I (LigI) that complete Okazaki fragment processing and joining, it is not known how the activities of these enzymes are coordinated. Here we describe a novel interaction between Pol δ and LigI that is critical for Okazaki fragment joining in vitro. Both LigI and FEN1 associate with PCNA-Pol δ during gap-filling synthesis, suggesting that gap-filling synthesis is carried out by a complex of PCNA, Pol δ, FEN1 and LigI. Following ligation, PCNA and LigI remain on the DNA, indicating that Pol δ and FEN1 dissociate during 5' end processing and that LigI engages PCNA at the DNA nick generated by FEN1 and Pol δ. Thus, dynamic PCNA complexes coordinate Okazaki fragment synthesis and processing with PCNA and LigI forming a terminal structure of two linked protein rings encircling the ligated DNA.
Collapse
Affiliation(s)
- Yoshihiro Matsumoto
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Rhys C Brooks
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States.
| |
Collapse
|
17
|
Shi R, Wang Y, Gao Y, Xu X, Mao S, Xiao Y, Song S, Wang L, Tian B, Zhao Y, Hua Y, Xu H. Succinylation at a key residue of FEN1 is involved in the DNA damage response to maintain genome stability. Am J Physiol Cell Physiol 2020; 319:C657-C666. [PMID: 32783654 DOI: 10.1152/ajpcell.00137.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human flap endonuclease 1 (FEN1) is a structure-specific, multifunctional endonuclease essential for DNA replication and repair. Our previous study showed that in response to DNA damage, FEN1 interacts with the PCNA-like Rad9-Rad1-Hus1 complex instead of PCNA to engage in DNA repair activities, such as stalled DNA replication fork repair, and undergoes SUMOylation by SUMO-1. Here, we report that succinylation of FEN1 was stimulated in response to DNA replication fork-stalling agents, such as ultraviolet (UV) irradiation, hydroxyurea, camptothecin, and mitomycin C. K200 is a key succinylation site of FEN1 that is essential for gap endonuclease activity and could be suppressed by methylation and stimulated by phosphorylation to promote SUMO-1 modification. Succinylation at K200 of FEN1 promoted the interaction of FEN1 with the Rad9-Rad1-Hus1 complex to rescue stalled replication forks. Impairment of FEN1 succinylation led to the accumulation of DNA damage and heightened sensitivity to fork-stalling agents. Altogether, our findings suggest an important role of FEN1 succinylation in regulating its roles in DNA replication and repair, thus maintaining genome stability.
Collapse
Affiliation(s)
- Rongyi Shi
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yiyi Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ya Gao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xiaoli Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Shuyu Mao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yue Xiao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Shuang Song
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| |
Collapse
|