1
|
Long J, Wang D, Yang M, Pang Y, Li M, Qin S, Cui K. Folate intake and the risk of endometrial cancer: A dose-response meta-analysis. Medicine (Baltimore) 2024; 103:e39775. [PMID: 39312350 PMCID: PMC11419418 DOI: 10.1097/md.0000000000039775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND The relationship between folate intake and risk of endometrial cancer (EC) is debatable. The goal of this study was to examine the relationship between folate consumption and EC and then conduct a dose-response analysis in accordance with this. METHODS Up until February 1, 2024, we conducted a thorough search using PubMed, EMBASE, the Cochrane Library, and Web of Science. Stata 14 software was used to analyze the findings of the article. The study protocol was registered in PROSPERO (CRD42024505943), and the meta-analysis was conducted in accordance with PRISMA guidelines. RESULTS Nine case-control studies and 6 cohort studies were included, comprising 379,570 participants and 8660 EC cases. The highest level of folate consumption was associated with a 10% reduction in the occurrence of EC (relative risk [RR] = 0.90, 95% confidence intervals [CIs]: 0.78-1.05, I2 = 63.2%) compared to the lowest level of intake. The association exhibited a statistically significant linear trend (P = .231), with a combined RR of 0.974 (95% CI: 0.968-0.981) for each daily intake of 50 µg folate. CONCLUSION Folate intake may reduce the risk of EC.
Collapse
Affiliation(s)
- Jiaye Long
- Department of Interventional Radiology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| | - Du Wang
- Department of Interventional Radiology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| | - Miyang Yang
- Department of Radiology, The First Clinical Medical College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yingrong Pang
- Department of Cardiology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| | - Meiqiong Li
- Department of Gynaecology and Obstetrics, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| | - Shuxin Qin
- Department of Interventional Radiology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| | - Kai Cui
- Department of Interventional Radiology, Inner Mongolia Forestry General Hospital, The Second Clinical Medical School of Inner Mongolia University for The Nationalities, Yakeshi, Inner Mongolia, China
| |
Collapse
|
2
|
Qi X, Wang Z, Lin Y, Guo Y, Dai Z, Wang Q. Elucidation and engineering mitochondrial respiratory-related genes for improving bioethanol production at high temperature in Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2024; 4:100108. [PMID: 39629328 PMCID: PMC11610969 DOI: 10.1016/j.engmic.2023.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 12/07/2024]
Abstract
Industrial manufacturing of bioproducts, especially bioethanol, can benefit from high-temperature fermentation, which requires the use of thermotolerant yeast strains. Mitochondrial activity in yeast is closely related to its overall metabolism. However, the mitochondrial respiratory changes in response to adaptive thermotolerance are still poorly understood and have been rarely utilized for developing thermotolerant yeast cell factories. Here, adaptive evolution and transcriptional sequencing, as well as whole-genome-level gene knockout, were used to obtain a thermotolerant strain of Saccharomyces cerevisiae. Furthermore, thermotolerance and bioethanol production efficiency of the engineered strain were examined. Physiological evaluation showed the boosted fermentation capacity and suppressed mitochondrial respiratory activity in the thermotolerant strain. The improved fermentation produced an increased supply of adenosine triphosphate required for more active energy-consuming pathways. Transcriptome analysis revealed significant changes in the expression of the genes involved in the mitochondrial respiratory chain. Evaluation of mitochondria-associated gene knockout confirmed that ADK1, DOC1, or MET7 were the key factors for the adaptive evolution of thermotolerance in the engineered yeast strain. Intriguingly, overexpression of DOC1 with TEF1 promoter regulation led to a 10.1% increase in ethanol production at 42 °C. The relationships between thermotolerance, mitochondrial activity, and respiration were explored, and a thermotolerant yeast strain was developed by altering the expression of mitochondrial respiration-related genes. This study provides a better understanding on the physiological mechanism of adaptive evolution of thermotolerance in yeast.
Collapse
Affiliation(s)
- Xianni Qi
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhen Wang
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Science & Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Yuping Lin
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yufeng Guo
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
3
|
Niehaus M, Straube H, Specht A, Baccolini C, Witte CP, Herde M. The nucleotide metabolome of germinating Arabidopsis thaliana seeds reveals a central role for thymidine phosphorylation in chloroplast development. THE PLANT CELL 2022; 34:3790-3813. [PMID: 35861422 PMCID: PMC9516053 DOI: 10.1093/plcell/koac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 05/29/2023]
Abstract
Thymidylates are generated by several partially overlapping metabolic pathways in different subcellular locations. This interconnectedness complicates an understanding of how thymidylates are formed in vivo. Analyzing a comprehensive collection of mutants and double mutants on the phenotypic and metabolic level, we report the effect of de novo thymidylate synthesis, salvage of thymidine, and conversion of cytidylates to thymidylates on thymidylate homeostasis during seed germination and seedling establishment in Arabidopsis (Arabidopsis thaliana). During germination, the salvage of thymidine in organelles contributes predominantly to the thymidylate pools and a mutant lacking organellar (mitochondrial and plastidic) thymidine kinase has severely altered deoxyribonucleotide levels, less chloroplast DNA, and chlorotic cotyledons. This phenotype is aggravated when mitochondrial thymidylate de novo synthesis is additionally compromised. We also discovered an organellar deoxyuridine-triphosphate pyrophosphatase and show that its main function is not thymidylate synthesis but probably the removal of noncanonical nucleotide triphosphates. Interestingly, cytosolic thymidylate synthesis can only compensate defective organellar thymidine salvage in seedlings but not during germination. This study provides a comprehensive insight into the nucleotide metabolome of germinating seeds and demonstrates the unique role of enzymes that seem redundant at first glance.
Collapse
Affiliation(s)
- Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - André Specht
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Chiara Baccolini
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
4
|
Vitamins as Possible Cancer Biomarkers: Significance and Limitations. Nutrients 2021; 13:nu13113914. [PMID: 34836171 PMCID: PMC8622959 DOI: 10.3390/nu13113914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The Western-style diet, which is common in developed countries and spreading into developing countries, is unbalanced in many respects. For instance, micronutrients (vitamins A, B complex, C, D, E, and K plus iron, zinc, selenium, and iodine) are generally depleted in Western food (causing what is known as ‘hidden hunger’), whereas some others (such as phosphorus) are added beyond the daily allowance. This imbalance in micronutrients can induce cellular damage that can increase the risk of cancer. Interestingly, there is a large body of evidence suggesting a strong correlation between vitamin intake as well as vitamin blood concentrations with the occurrence of certain types of cancer. The direction of association between the concentration of a given vitamin and cancer risk is tumor specific. The present review summarized the literature regarding vitamins and cancer risk to assess whether these could be used as diagnostic or prognostic markers, thus confirming their potential as biomarkers. Despite many studies that highlight the importance of monitoring vitamin blood or tissue concentrations in cancer patients and demonstrate the link between vitamin intake and cancer risk, there is still an urgent need for more data to assess the effectiveness of vitamins as biomarkers in the context of cancer. Therefore, this review aims to provide a solid basis to support further studies on this promising topic.
Collapse
|
5
|
Reyes GX, Kolodziejczak A, Devakumar LJPS, Kubota T, Kolodner RD, Putnam CD, Hombauer H. Ligation of newly replicated DNA controls the timing of DNA mismatch repair. Curr Biol 2021; 31:1268-1276.e6. [PMID: 33417883 PMCID: PMC8281387 DOI: 10.1016/j.cub.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022]
Abstract
Mismatch repair (MMR) safeguards genome stability through recognition and excision of DNA replication errors.1–4 How eukaryotic MMR targets the newly replicated strand in vivo has not been established. MMR reactions reconstituted in vitro are directed to the strand containing a preexisting nick or gap,5–8 suggesting that strand discontinuities could act as discrimination signals. Another candidate is the proliferating cell nuclear antigen (PCNA) that is loaded at replication forks and is required for the activation of Mlh1-Pms1 endonuclease.7–9 Here, we discovered that overexpression of DNA ligase I (Cdc9) in Saccharomyces cerevisiae causes elevated mutation rates and increased chromatin-bound PCNA levels and accumulation of Pms1 foci that are MMR intermediates, suggesting that premature ligation of replication-associated nicks interferes with MMR. We showed that yeast Pms1 expression is mainly restricted to S phase, in agreement with the temporal coupling between MMR and DNA replication.10 Restricting Pms1 expression to the G2/M phase caused a mutator phenotype that was exacerbated in the absence of the exonuclease Exo1. This mutator phenotype was largely suppressed by increasing the lifetime of replication-associated DNA nicks, either by reducing or delaying Cdc9 ligase activity in vivo. Therefore, Cdc9 dictates a window of time for MMR determined by transient DNA nicks that direct the Mlh1-Pms1 in a strand-specific manner. Because DNA nicks occur on both newly synthesized leading and lagging strands,11 these results establish a general mechanism for targeting MMR to the newly synthesized DNA, thus preventing the accumulation of mutations that underlie the development of human cancer. The correction of DNA replication errors by the mismatch repair (MMR) machinery requires the discrimination between parental and daughter DNA strands. Reyes et al. provide evidence that DNA replication-associated nicks are used as MMR strand discrimination signals and that DNA ligase I (Cdc9) activity dictates a window of time for MMR.
Collapse
Affiliation(s)
- Gloria X Reyes
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Anna Kolodziejczak
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Bioscience, Heidelberg University, Heidelberg 69120, Germany
| | - Lovely Jael Paul Solomon Devakumar
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| | - Takashi Kubota
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0669, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0669, USA; Moores Cancer Center at UC San Diego Health, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0669, USA; Institute of Genomic Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0669, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0669, USA; Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0669, USA
| | - Hans Hombauer
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg 69120, Germany.
| |
Collapse
|
6
|
Identification of MLH2/hPMS1 dominant mutations that prevent DNA mismatch repair function. Commun Biol 2020; 3:751. [PMID: 33303966 PMCID: PMC7730388 DOI: 10.1038/s42003-020-01481-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Inactivating mutations affecting key mismatch repair (MMR) components lead to microsatellite instability (MSI) and cancer. However, a number of patients with MSI-tumors do not present alterations in classical MMR genes. Here we discovered that specific missense mutations in the MutL homolog MLH2, which is dispensable for MMR, confer a dominant mutator phenotype in S. cerevisiae. MLH2 mutations elevated frameshift mutation rates, and caused accumulation of long-lasting nuclear MMR foci. Both aspects of this phenotype were suppressed by mutations predicted to prevent the binding of Mlh2 to DNA. Genetic analysis revealed that mlh2 dominant mutations interfere with both Exonuclease 1 (Exo1)-dependent and Exo1-independent MMR. Lastly, we demonstrate that a homolog mutation in human hPMS1 results in a dominant mutator phenotype. Our data support a model in which yeast Mlh1-Mlh2 or hMLH1-hPMS1 mutant complexes act as roadblocks on DNA preventing MMR, unraveling a novel mechanism that can account for MSI in human cancer.
Collapse
|
7
|
Purhonen J, Banerjee R, McDonald AE, Fellman V, Kallijärvi J. A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase. Nucleic Acids Res 2020; 48:e87. [PMID: 32573728 PMCID: PMC7470940 DOI: 10.1093/nar/gkaa516] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Deoxyribonucleoside triphosphates (dNTPs) are vital for the biosynthesis and repair of DNA. Their cellular concentration peaks during the S phase of the cell cycle. In non-proliferating cells, dNTP concentrations are low, making their reliable quantification from tissue samples of heterogeneous cellular composition challenging. Partly because of this, the current knowledge related to the regulation of and disturbances in cellular dNTP concentrations derive mostly from cell culture experiments with little corroboration at the tissue or organismal level. Here, we fill the methodological gap by presenting a simple non-radioactive microplate assay for the quantification of dNTPs with a minimum requirement of 4-12 mg of biopsy material. In contrast to published assays, this assay is based on long synthetic single-stranded DNA templates (50-200 nucleotides), an inhibitor-resistant high-fidelity DNA polymerase, and the double-stranded-DNA-binding EvaGreen dye. The assay quantified reliably less than 50 fmol of each of the four dNTPs and discriminated well against ribonucleotides. Additionally, thermostable RNAse HII-mediated nicking of the reaction products and a subsequent shift in their melting temperature allowed near-complete elimination of the interfering ribonucleotide signal, if present. Importantly, the assay allowed measurement of minute dNTP concentrations in mouse liver, heart and skeletal muscle.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Rishi Banerjee
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | | | - Vineta Fellman
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland.,Department of Clinical Sciences, Lund, Pediatrics, Lund University, Sweden.,Children's Hospital, Helsinki University Hospital, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|