1
|
Muñoz-Velasco I, Herrera-Escamilla AK, Vázquez-Salazar A. Nucleolar origins: challenging perspectives on evolution and function. Open Biol 2025; 15:240330. [PMID: 40068812 PMCID: PMC11896706 DOI: 10.1098/rsob.240330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
The nucleolus, once considered a mere 'ribosome factory', is now recognized as a dynamic hub influencing nearly every aspect of cellular life, from genome organization to stress response and ageing. Despite being a hallmark of eukaryotic cells, recent discoveries reveal that even prokaryotes exhibit nucleolus-like structures, hinting at ancient origins for nucleolar functions. This review explores the evolutionary journey of the nucleolus, tracing its roots back to early life and examining its structural and functional diversity across domains. We highlight key nucleolar proteins that play vital roles not only in ribosome production but also in regulating cell cycle, DNA repair and cellular stress, linking nucleolar activity directly to health and disease. Dysfunctions in nucleolar processes are implicated in cancer, ribosomopathies and neurodegenerative disorders, positioning the nucleolus as a critical target for innovative therapeutic strategies. As advanced imaging and molecular techniques unlock deeper insights into both canonical and mysterious non-canonical roles, the nucleolus stands as a model for how cellular microenvironments can evolve to meet complex biological demands. By addressing open questions surrounding the evolution of the nucleolus, its organization and diverse functions, the ideas presented here aim to contribute to the ongoing discussion, challenging traditional paradigms and suggesting new avenues for uncovering the fundamental principles that drive cellular life.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Departamento de Biología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Gemler BT, Warner BR, Bundschuh R, Fredrick K. Identification of leader-trailer helices of precursor ribosomal RNA in all phyla of bacteria and archaea. RNA (NEW YORK, N.Y.) 2024; 30:1264-1276. [PMID: 39043438 PMCID: PMC11404451 DOI: 10.1261/rna.080091.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Ribosomal RNAs are transcribed as part of larger precursor molecules. In Escherichia coli, complementary RNA segments flank each rRNA and form long leader-trailer (LT) helices, which are crucial for subunit biogenesis in the cell. A previous study of 15 representative species suggested that most but not all prokaryotes contain LT helices. Here, we use a combination of in silico folding and covariation methods to identify and characterize LT helices in 4464 bacterial and 260 archaeal organisms. Our results suggest that LT helices are present in all phyla, including Deinococcota, which had previously been suspected to lack LT helices. In very few organisms, our pipeline failed to detect LT helices for both 16S and 23S rRNA. However, a closer case-by-case look revealed that LT helices are indeed present but escaped initial detection. Over 3600 secondary structure models, many well supported by nucleotide covariation, were generated. These structures show a high degree of diversity. Yet, all exhibit extensive base-pairing between the leader and trailer strands, in line with a common and essential function.
Collapse
MESH Headings
- Nucleic Acid Conformation
- RNA, Archaeal/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- Archaea/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- Bacteria/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Precursors/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Base Sequence
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/chemistry
- Base Pairing
Collapse
Affiliation(s)
- Bryan T Gemler
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin R Warner
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ralf Bundschuh
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Singh S, Singh J, Varshney U. Lamotrigine-mediated rescue of RsgA-deficient Escherichia coli reveals another role of IF2 in ribosome biogenesis. J Bacteriol 2024; 206:e0011924. [PMID: 38837341 PMCID: PMC11270870 DOI: 10.1128/jb.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
RsgA (small ribosomal subunit, 30S, GTPase), a late-stage biogenesis factor, releases RbfA from 30S-RbfA complex. Escherichia coli ΔrsgA (deleted for rsgA) shows a slow growth phenotype and an increased accumulation of 17S rRNA (precursor of 16S rRNA) and the ribosomal subunits. Here, we show that the rescue of the ΔrsgA strain by multicopy infB (IF2) is enhanced by simultaneous overexpression of initiator tRNA (i-tRNA), suggesting a role of initiation complex formation in growth rescue. The synergistic effect of IF2/i-tRNA is accompanied by increased processing of 17S rRNA (to 16S), and protection of the 16S rRNA 3'-minor domain. Importantly, we show that an IF2-binding anticonvulsant drug, lamotrigine (Ltg), also rescues the ΔrsgA strain growth. The rescue is accompanied by increased processing of 17S rRNA, protection of the 3'-minor domain of 16S rRNA, and increased 70S ribosomes in polysome profiles. However, Ltg becomes inhibitory to the ΔrsgA strain whose growth was already rescued by an L83R mutation in rbfA. Interestingly, like wild-type infB, overproduction of LtgRinfB alleles (having indel mutations in their domain II) also rescues the ΔrsgA strain (independent of Ltg). Our observations suggest the dual role of IF2 in rescuing the ΔrsgA strain. First, together with i-tRNA, IF2 facilitates the final steps of processing of 17S rRNA. Second, a conformer of IF2 functionally compensates for RsgA, albeit poorly, during 30S biogenesis. IMPORTANCE RsgA is a late-stage ribosome biogenesis factor. Earlier, infB (IF2) was isolated as a multicopy suppressor of the Escherichia coli ΔrsgA strain. How IF2 rescued the strain growth remained unclear. This study reveals that (i) the multicopy infB-mediated growth rescue of E. coli ΔrsgA and the processing of 17S precursor to 16S rRNA in the strain are enhanced upon simultaneous overexpression of initiator tRNA and (ii) a conformer of IF2, whose occurrence increases when IF2 is overproduced or when E. coli ΔrsgA is treated with Ltg (an anticonvulsant drug that binds to domain II of IF2), compensates for the function of RsgA. Thus, this study reveals yet another role of IF2 in ribosome biogenesis.
Collapse
MESH Headings
- Lamotrigine/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Prokaryotic Initiation Factor-2/genetics
- Prokaryotic Initiation Factor-2/metabolism
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/drug effects
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/drug effects
- Ribosome Subunits, Large, Bacterial/genetics
- Ribosome Subunits, Large, Bacterial/metabolism
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Gene Deletion
- Amino Acid Sequence
- Sequence Analysis, Protein
- Mutation
Collapse
Affiliation(s)
- Sudhir Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jitendra Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
4
|
Liu M, Ding Y, Ye Q, Wu S, Gu Q, Chen L, Zhang Y, Wei X, Deng M, Zhang J, Wu Q, Wang J. Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples. Crit Rev Food Sci Nutr 2024; 65:2031-2045. [PMID: 38441497 DOI: 10.1080/10408398.2024.2322141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qinghua Ye
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Shi Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qihui Gu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Ling Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Youxiong Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Xianhu Wei
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Meiqing Deng
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Hao Y, Hulscher RM, Zinshteyn B, Woodson SA. Late consolidation of rRNA structure during co-transcriptional assembly in E. coli by time-resolved DMS footprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574868. [PMID: 38260533 PMCID: PMC10802402 DOI: 10.1101/2024.01.10.574868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The production of new ribosomes requires proper folding of the rRNA and the addition of more than 50 ribosomal proteins. The structures of some assembly intermediates have been determined by cryo-electron microscopy, yet these structures do not provide information on the folding dynamics of the rRNA. To visualize the changes in rRNA structure during ribosome assembly in E. coli cells, transcripts were pulse-labeled with 4-thiouridine and the structure of newly made rRNA probed at various times by dimethyl sulfate modification and mutational profiling sequencing (4U-DMS-MaPseq). The in-cell DMS modification patterns revealed that many long-range rRNA tertiary interactions and protein binding sites through the 16S and 23S rRNA remain partially unfolded 1.5 min after transcription. By contrast, the active sites were continually shielded from DMS modification, suggesting that these critical regions are guarded by cellular factors throughout assembly. Later, bases near the peptidyl tRNA site exhibited specific rearrangements consistent with the binding and release of assembly factors. Time-dependent structure-probing in cells suggests that many tertiary interactions throughout the new ribosomal subunits remain mobile or unfolded until the late stages of subunit maturation.
Collapse
Affiliation(s)
- Yumeng Hao
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ryan M. Hulscher
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Sarah A. Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. mSystems 2023; 8:e0103723. [PMID: 37909716 PMCID: PMC10746267 DOI: 10.1128/msystems.01037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
7
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
8
|
Hauk P, Weeks R, Ostermeier M. A CRISPR-dCas9 System for Assaying and Selecting for RNase III Activity In Vivo in Escherichia coli. CRISPR J 2023; 6:43-51. [PMID: 36493370 DOI: 10.1089/crispr.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonuclease III (RNase III) and RNase III-like ribonucleases have a wide range of important functions and are found in all organisms, yet a simple and high-throughput in vivo method for measuring RNase III activity does not exist. Typical methods for measuring RNase III activity rely on in vitro RNA analysis or in vivo methods that are not suitable for high-throughput analysis. In this study, we describe our development of a deactivated Cas9 (dCas9)-based in vivo assay for RNase III activity that utilizes RNase III's cleavage of the 5'-untranslated region (UTR) of its own messenger RNA. The key molecule in the system is a hybrid guide RNA (gRNA) between the 5'-UTR of RNase III and gGFP, a gRNA that works with dCas9 to repress GFP expression. This fusion must be cleaved by RNase III for full GFP repression. Our system uses GFP fluorescence to report on Escherichia coli RNase III activity in culture and on an individual cell basis, making it effective for selecting individual cells through fluorescence-activated cell sorting. Homology between enzymes within the RNase III family suggests this assay might be adapted to measure the activity of other enzymes in the RNase III family such as human Dicer or Drosha.
Collapse
Affiliation(s)
- Pricila Hauk
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ryan Weeks
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Selenium stress response of the fruit origin strain Fructobacillus tropaeoli CRL 2034. Appl Microbiol Biotechnol 2023; 107:1329-1339. [PMID: 36680586 DOI: 10.1007/s00253-023-12379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023]
Abstract
The fruit-origin strain Fructobacillus tropaeoli CRL 2034 can biotransform selenium into seleno-nanoparticles and selenocysteine. The proteomic analysis of F. tropaeoli CRL 2034 exposed to 5 and 100 ppm of Se showed a dose-dependent response since 19 and 77 proteins were deregulated, respectively. In the presence of 5 ppm of Se, the deregulated proteins mainly belonged to the categories of energy production and conversion or had unknown functions, while when cells were grown with 100 ppm of Se, most of the proteins were grouped into amino acid transport and metabolism, nucleotide transport and metabolism, or into unknown functions. However, under both Se conditions, glutathione reductases were overexpressed (1.8-3.1-fold), while mannitol 2-dehydrogenase was downregulated (0.54-0.19-fold), both enzymes related to oxidative stress functions. Mannitol 2-dehydrogenase was the only enzyme found that contained SeCys, and its activity was 1.27-fold increased after 5 ppm of Se exposure. Our results suggest that F. tropaeoli CRL 2034 counteracts Se stress by overexpressing proteins related to oxidative stress resistance and changing the membrane hydrophobicity, which may improve its survival under (food) storage and positively influence its adhesion to intestinal cells. Selenized cells of F. tropaeoli CRL 2034 could be used for producing Se-enriched fermented foods. KEY POINTS: • Selenized cells of F. tropaeoli showed enhanced resistance to oxidative stress. • SeCys was found in the Fructobacillus mannitol 2-dehydrogenase polypeptide chain. • F. tropaeoli mannitol 2-dehydrogenase activity was highest when exposed to selenium.
Collapse
|
10
|
Singh S, Lahry K, Mandava CS, Singh J, Shah RA, Sanyal S, Varshney U. Lamotrigine compromises the fidelity of initiator tRNA recruitment to the ribosomal P-site by IF2 and the RbfA release from 30S ribosomes in Escherichia coli. RNA Biol 2023; 20:681-692. [PMID: 37676049 PMCID: PMC10486304 DOI: 10.1080/15476286.2023.2253395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Lamotrigine (Ltg), an anticonvulsant drug, targets initiation factor 2 (IF2), compromises ribosome biogenesis and causes toxicity to Escherichia coli. However, our understanding of Ltg toxicity in E. coli remains unclear. While our in vitro assays reveal no effects of Ltg on the ribosome-dependent GTPase activity of IF2 or its role in initiation as measured by dipeptide formation in a fast kinetics assay, the in vivo experiments show that Ltg causes accumulation of the 17S precursor of 16S rRNA and leads to a decrease in polysome levels in E. coli. IF2 overexpression in E. coli increases Ltg toxicity. However, the overexpression of initiator tRNA (i-tRNA) protects it from the Ltg toxicity. The depletion of i-tRNA or overexpression of its 3GC mutant (lacking the characteristic 3GC base pairs in anticodon stem) enhances Ltg toxicity, and this enhancement in toxicity is synthetic with IF2 overexpression. The Ltg treatment itself causes a detectable increase in IF2 levels in E. coli and allows initiation with an elongator tRNA, suggesting compromise in the fidelity/specificity of IF2 function. Also, Ltg causes increased accumulation of ribosome-binding factor A (RbfA) on 30S ribosomal subunit. Based on our genetic and biochemical investigations, we show that Ltg compromises the function of i-tRNA/IF2 complex in ribosome maturation.
Collapse
Affiliation(s)
- Sudhir Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Jitendra Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
11
|
Chen YA, Chen GW, Ku HH, Huang TC, Chang HY, Wei CI, Tsai YH, Chen TY. Differential Proteomic Analysis of Listeria monocytogenes during High-Pressure Processing. BIOLOGY 2022; 11:biology11081152. [PMID: 36009779 PMCID: PMC9405252 DOI: 10.3390/biology11081152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary High-pressure processing (HPP) is a prevailing non-thermal food preservation technology. The inactivation mechanisms of Listeria monocytogenes under sub-lethal to lethal damage by different levels of HPP treatments were conducted by label-free quantitative proteomic analysis. HPP might promote translation initiation due to upregulation of most ribosomal subunits and initiation factors. However, protein synthesis was arrested according to the shortage of proteins responsible for elongation, termination and recycling. The quantitative proteomics approaches provide fundamental information on L. monocytogenes under different HPP pressures, and provide theoretical support for HPP against Listeriosis illness and for promotion of safer ready-to-eat foods. Abstract High-pressure processing (HPP) is a prevailing non-thermal food preservation technology. The inactivation mechanisms of Listeria monocytogenes under HPP at 200 and 400 MPa for 3 min were investigated by label-free quantitative proteomic analysis and functional enrichment analysis in the Kyoto Encyclopedia of Genes and Genomes. HPP treatment at 400 MPa exhibited significant effects on proteins involved in translation, carbon, carbohydrate, lipid and energy metabolism, and peptidoglycan biosynthesis. HPP increased most ribosomal subunits and initiation factors, suggesting it might shift ribosomal biogenesis to translation initiation. However, protein synthesis was impaired by the shortage of proteins responsible for elongation, termination and recycling. HPP stimulated several ATP-dependent Clp proteases, and the global transcriptional regulator Spx, associating with activation of the stress-activated sigma factor Sigma B (σB) and the transcriptional activator positive regulatory factor A (PrfA) regulons. The quantitative proteomics approaches provide fundamental information on L. monocytogenes under different HPP pressures, and provide theoretical support for HPP against Listeriosis illness and for promotion of safer ready-to-eat foods.
Collapse
Affiliation(s)
- Yi-An Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
| | - Guan-Wen Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
| | - Hao-Hsiang Ku
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hsin-Yi Chang
- Graduate Institute of Medical Sciences, Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Cheng-I Wei
- Department of Nutrition &Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (Y.-A.C.); (G.-W.C.)
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 5124); Fax: +886-2-2462-8750
| |
Collapse
|
12
|
Wang M, Wang H, Wang P, Fu HH, Li CY, Qin QL, Liang Y, Wang M, Chen XL, Zhang YZ, Zhang W. TCA cycle enhancement and uptake of monomeric substrates support growth of marine Roseobacter at low temperature. Commun Biol 2022; 5:705. [PMID: 35835984 PMCID: PMC9283371 DOI: 10.1038/s42003-022-03631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Members of the marine Roseobacter group are ubiquitous in global oceans, but their cold-adaptive strategies have barely been studied. Here, as represented by Loktanella salsilacus strains enriched in polar regions, we firstly characterized the metabolic features of a cold-adapted Roseobacter by multi-omics, enzyme activities, and carbon utilization procedures. Unlike in most cold-adapted microorganisms, the TCA cycle is enhanced by accumulating more enzyme molecules, whereas genes for thiosulfate oxidation, sulfate reduction, nitrate reduction, and urea metabolism are all expressed at lower abundance when L. salsilacus was growing at 5 °C in comparison with higher temperatures. Moreover, a carbon-source competition experiment has evidenced the preferential use of glucose rather than sucrose at low temperature. This selective utilization is likely to be controlled by the carbon source uptake and transformation steps, which also reflects an economic calculation balancing energy production and functional plasticity. These findings provide a mechanistic understanding of how a Roseobacter member and possibly others as well counteract polar constraints. The metabolic adaptation of Loktanella salsilacus strains to cold involves an increase of enzymes involved in the TCA cycle and preferential use of glucose rather than sucrose at low temperature, providing insights into how Roseobacter adapts in polar regions.
Collapse
Affiliation(s)
- Meng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Huan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qi-Long Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266373, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China. .,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266373, China.
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
13
|
Evsyutina DV, Semashko TA, Galyamina MA, Kovalchuk SI, Ziganshin RH, Ladygina VG, Fisunov GY, Pobeguts OV. Molecular Basis of the Slow Growth of Mycoplasma hominis on Different Energy Sources. Front Cell Infect Microbiol 2022; 12:918557. [PMID: 35873139 PMCID: PMC9301678 DOI: 10.3389/fcimb.2022.918557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Mycoplasma hominis is an opportunistic urogenital pathogen in vertebrates. It is a non-glycolytic species that produces energy via arginine degradation. Among genital mycoplasmas, M. hominis is the most commonly reported to play a role in systemic infections and can persist in the host for a long time. However, it is unclear how M. hominis proceeds under arginine limitation. The recent metabolic reconstruction of M. hominis has demonstrated its ability to catabolize deoxyribose phosphate to produce ATP. In this study, we cultivated M. hominis on two different energy sources (arginine and thymidine) and demonstrated the differences in growth rate, antibiotic sensitivity, and biofilm formation. Using label-free quantitative proteomics, we compared the proteome of M. hominis under these conditions. A total of 466 proteins were identified from M. hominis, representing approximately 85% of the predicted proteome, while the levels of 94 proteins changed significantly. As expected, we observed changes in the levels of metabolic enzymes. The energy source strongly affects the synthesis of enzymes related to RNA modifications and ribosome assembly. The translocation of lipoproteins and other membrane-associated proteins was also impaired. Our study, the first global characterization of the proteomic switching of M. hominis in arginine-deficiency media, illustrates energy source-dependent control of pathogenicity factors and can help to determine the mechanisms underlying the interaction between the growth rate and fitness of genome-reduced bacteria.
Collapse
Affiliation(s)
- Daria V. Evsyutina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
- Department of Systems and Synthetic Biology, Scientific Research Institute for Systems Biology and Medicine Nauchniy proezd 18, Moscow, Russia
- *Correspondence: Daria V. Evsyutina,
| | - Tatiana A. Semashko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
- Department of Systems and Synthetic Biology, Scientific Research Institute for Systems Biology and Medicine Nauchniy proezd 18, Moscow, Russia
| | - Maria A. Galyamina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10, Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10, Moscow, Russia
| | - Valentina G. Ladygina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
| | - Gleb Y. Fisunov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
- Department of Systems and Synthetic Biology, Scientific Research Institute for Systems Biology and Medicine Nauchniy proezd 18, Moscow, Russia
| | - Olga V. Pobeguts
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
| |
Collapse
|
14
|
A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms 2022; 10:microorganisms10071289. [PMID: 35889007 PMCID: PMC9324126 DOI: 10.3390/microorganisms10071289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
The increasing demand for petroleum products generates needs for innovative and reliable methods for cleaning up crude oil spills. Annually, several oil spills occur around the world, which brings numerous ecological and environmental disasters on the surface of deep seawaters like oceans. Biological and physico-chemical remediation technologies can be efficient in terms of spill cleanup and microorganisms—mainly bacteria—are the main ones responsible for petroleum hydrocarbons (PHCs) degradation such as crude oil. Currently, biodegradation is considered as one of the most sustainable and efficient techniques for the removal of PHCs. However, environmental factors associated with the functioning and performance of microorganisms involved in hydrocarbon-degradation have remained relatively unclear. This has limited our understanding on how to select and inoculate microorganisms within technologies of cleaning and to optimize physico-chemical remediation and degradation methods. This review article presents the latest discoveries in bioremediation techniques such as biostimulation, bioaugmentation, and biosurfactants as well as immobilization strategies for increasing the efficiency. Besides, environmental affecting factors and microbial strains engaged in bioremediation and biodegradation of PHCs in marines are discussed.
Collapse
|
15
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
16
|
Lenarčič T, Niemann M, Ramrath DJF, Calderaro S, Flügel T, Saurer M, Leibundgut M, Boehringer D, Prange C, Horn EK, Schneider A, Ban N. Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Proc Natl Acad Sci U S A 2022; 119:e2114710118. [PMID: 35042777 PMCID: PMC8784144 DOI: 10.1073/pnas.2114710118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) play a central role in synthesizing mitochondrial inner membrane proteins responsible for oxidative phosphorylation. Although mitoribosomes from different organisms exhibit considerable structural variations, recent insights into mitoribosome assembly suggest that mitoribosome maturation follows common principles and involves a number of conserved assembly factors. To investigate the steps involved in the assembly of the mitoribosomal small subunit (mt-SSU) we determined the cryoelectron microscopy structures of middle and late assembly intermediates of the Trypanosoma brucei mitochondrial small subunit (mt-SSU) at 3.6- and 3.7-Å resolution, respectively. We identified five additional assembly factors that together with the mitochondrial initiation factor 2 (mt-IF-2) specifically interact with functionally important regions of the rRNA, including the decoding center, thereby preventing premature mRNA or large subunit binding. Structural comparison of assembly intermediates with mature mt-SSU combined with RNAi experiments suggests a noncanonical role of mt-IF-2 and a stepwise assembly process, where modular exchange of ribosomal proteins and assembly factors together with mt-IF-2 ensure proper 9S rRNA folding and protein maturation during the final steps of assembly.
Collapse
Affiliation(s)
- Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Moritz Niemann
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - David J F Ramrath
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Salvatore Calderaro
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Timo Flügel
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Céline Prange
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Elke K Horn
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
17
|
Schedlbauer A, Iturrioz I, Ochoa-Lizarralde B, Diercks T, López-Alonso JP, Lavin JL, Kaminishi T, Çapuni R, Dhimole N, de Astigarraga E, Gil-Carton D, Fucini P, Connell SR. A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit. SCIENCE ADVANCES 2021; 7:7/23/eabf7547. [PMID: 34088665 PMCID: PMC8177701 DOI: 10.1126/sciadv.abf7547] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/20/2021] [Indexed: 05/03/2023]
Abstract
While a structural description of the molecular mechanisms guiding ribosome assembly in eukaryotic systems is emerging, bacteria use an unrelated core set of assembly factors for which high-resolution structural information is still missing. To address this, we used single-particle cryo-electron microscopy to visualize the effects of bacterial ribosome assembly factors RimP, RbfA, RsmA, and RsgA on the conformational landscape of the 30S ribosomal subunit and obtained eight snapshots representing late steps in the folding of the decoding center. Analysis of these structures identifies a conserved secondary structure switch in the 16S ribosomal RNA central to decoding site maturation and suggests both a sequential order of action and molecular mechanisms for the assembly factors in coordinating and controlling this switch. Structural and mechanistic parallels between bacterial and eukaryotic systems indicate common folding features inherent to all ribosomes.
Collapse
Affiliation(s)
- Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Idoia Iturrioz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Borja Ochoa-Lizarralde
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Jorge Pedro López-Alonso
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | | | - Tatsuya Kaminishi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Department of Genetics, Graduate School of Medicine, Osaka University, Japan
| | - Retina Çapuni
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Neha Dhimole
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Elisa de Astigarraga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - David Gil-Carton
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Paola Fucini
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Sean R Connell
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
18
|
Laptev I, Dontsova O, Sergiev P. Epitranscriptomics of Mammalian Mitochondrial Ribosomal RNA. Cells 2020; 9:E2181. [PMID: 32992603 PMCID: PMC7600485 DOI: 10.3390/cells9102181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Modified nucleotides are present in all ribosomal RNA molecules. Mitochondrial ribosomes are unique to have a set of methylated residues that includes universally conserved ones, those that could be found either in bacterial or in archaeal/eukaryotic cytosolic ribosomes and those that are present exclusively in mitochondria. A single pseudouridine within the mt-rRNA is located in the peptidyltransferase center at a position similar to that in bacteria. After recent completion of the list of enzymes responsible for the modification of mammalian mitochondrial rRNA it became possible to summarize an evolutionary history, functional role of mt-rRNA modification enzymes and an interplay of the mt-rRNA modification and mitoribosome assembly process, which is a goal of this review.
Collapse
Affiliation(s)
- Ivan Laptev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (I.L.); (O.D.)
| | - Olga Dontsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (I.L.); (O.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Petr Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (I.L.); (O.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|