1
|
Bag S, Chand K, Burman MD, Vertueux S, Chorell E, Bhowmik S. Exploring i-Motif DNA binding with benzothiazolino Coumarins: Synthesis, Screening, and spectroscopic insights. Bioorg Chem 2025; 156:108227. [PMID: 39893993 DOI: 10.1016/j.bioorg.2025.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
I-motif (iM) DNA structures are dynamic cytosine-rich secondary structures that are increasingly recognized for their roles in transcriptional regulation, genomic stability, and for their potential as therapeutic targets in cancer. Despite their significance, the development of selective small-molecule probes for iM DNA remains a challenge. In this study, a series of iminocoumarin-benzothaizole derivatives were designed, synthesized, and subjected to extensive screening to explore their interactions with various iM DNA constructs, including H-Telo, HRAS1, HRAS2, VEGF, and BCL2, as well as duplex DNA. This revealed compounds that display specific and strong interactions with H-Telo, HRAS1, or HRAS2 iM DNA structures depending on their substitution pattern. Detailed spectroscopic investigations revealed the details of how these compounds interact with the iM DNAs, resulting in hypochromic and bathochromic effects, fluorescence enhancements, and increased lifetimes. Furthermore, compounds with unique light-up properties in the presence of HRAS1, VEGF, and BCL2 iM DNA was identified, which has potential as a light-up probes for iM DNA studies in cellular environments. Additionally, circular dichroism (CD) and thermal melting studies confirmed that the compounds stabilized iM DNA without altering its topology, while FT-IR spectroscopy identified structural modifications in iM DNA upon binding. The synthesis of structurally diverse substituents, coupled with extensive spectroscopic, fluorescence, and thermodynamic screening, provided critical insights into structure-activity relationships. Overall, these findings highlight the potential of this compound class to be further developed as selective iM DNA-binding agents and light-up probes, paving the way for innovative diagnostic tools and therapeutic approaches targeting iM DNA in cancer and other diseases.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, Kolkata 700009 India
| | - Karam Chand
- Department of Chemistry, Umeå University SE-901 87 Umeå, Sweden
| | - Mangal Deep Burman
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, Kolkata 700009 India
| | - Steven Vertueux
- Department of Chemistry, Umeå University SE-901 87 Umeå, Sweden
| | - Erik Chorell
- Department of Chemistry, Umeå University SE-901 87 Umeå, Sweden.
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, Kolkata 700009 India; Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondicherry 607402, India.
| |
Collapse
|
2
|
Pratihar S, Venkatesh R, Mattath MN, Govindaraju T. Identification and detection of conserved G-quadruplex in monkeypox virus using conformation specific fluorogenic probe. Chem Commun (Camb) 2024; 60:13004-13007. [PMID: 39344814 DOI: 10.1039/d4cc03726j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Identifying distinct noncanonical structures in pathogenic genomes is crucial for developing new diagnostic tools. This study uncovers stable G-quadruplex (GQ) structures in conserved DNA sequences unique to the monkeypox virus (MPV). Furthermore, we developed a method for the detection of target GQ using a fluorogenic probe.
Collapse
Affiliation(s)
- Sumon Pratihar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, 560064 Karnataka, India.
| | - Ramjayakumar Venkatesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, 560064 Karnataka, India.
| | - Mohamed Nabeel Mattath
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, 560064 Karnataka, India.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, 560064 Karnataka, India.
| |
Collapse
|
3
|
Liu J, Sun L, Hong Y, Deng J, Luo Q, Zeng R, Chen W. Near-infrared fluorescent probe for sensitive detection and imaging of DNA G4s in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124489. [PMID: 38788507 DOI: 10.1016/j.saa.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
G-quadruplexs (G4s), four-stranded nucleic acid secondary structures, which formed by guanine-rich sequences play a vital role in human biological systems. Studies have shown that the formation of G4s is closely related to tumor development and apoptosis, which is considered as a new target for the development of anti-tumor drugs. Therefore, it is important to develop novel probes for G4s imaging. In this article, we engineered a near-infrared fluorescent probe (TOH) which can be activated by DNA G4s in living cells and tumor. TOH exhibits high selectivity to the structure of DNA G4s with the limit of detection for DNA G4s (Mito-0.5-2) is calculated to be 0.43 nM. Imaging studies of different cell lines revealed that the brighter fluorescence in cancer cell lines than in normal, indicating that DNA G4s maybe highly express in tumor cell lines. Simultaneously, TOH is also introduced into live tumor tissue imaging and found that the fluorescence intensity of tumor is the brightest relative to normal tissue, further validating the high expression of DNA G4s structures in tumor tissue. These features demonstrate TOH not only have the ability to image DNA G4 structures in real time, but also may have tumor diagnostic capabilities.
Collapse
Affiliation(s)
- Junjie Liu
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Leying Sun
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Yongxiang Hong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jie Deng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Qingyun Luo
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Rongying Zeng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China.
| | - Wen Chen
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
4
|
Wang R, Song K, Wei Z, Sun Y, Sun X, Hu Y. The Intramolecular Charge Transfer Mechanism by Which Chiral Self-Assembled H 8-BINOL Vesicles Enantioselectively Recognize Amino Alcohols. Int J Mol Sci 2024; 25:5606. [PMID: 38891794 PMCID: PMC11171953 DOI: 10.3390/ijms25115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The chiral H8-BINOL derivatives R-1 and R-2 were efficiently synthesized via a Suzuki coupling reaction, and they can be used as novel dialdehyde fluorescent probes for the enantioselective recognition of R/S-2-amino-1-phenylethanol. In addition, R-1 is much more effective than R-2. Scanning electron microscope images and X-ray analyses show that R-1 can form supramolecular vesicles through the self-assembly effect of the π-π force and strong hydrogen bonding. As determined via analysis, the fluorescence of the probe was significantly enhanced by mixing a small amount of S-2-amino-1-phenylethanol into R-1, with a redshift of 38 nm, whereas no significant fluorescence response was observed in R-2-amino-1-phenylethanol. The enantioselective identification of S-2-amino-1-phenylethanol by the probe R-1 was further investigated through nuclear magnetic titration and fluorescence kinetic experiments and DFT calculations. The results showed that this mechanism was not only a simple reactive probe but also realized object recognition through an ICT mechanism. As the intramolecular hydrogen bond activated the carbonyl group on the probe R-1, the carbonyl carbon atom became positively charged. As a strong nucleophile, the amino group of S-2-amino-1-phenylethanol first transferred the amino electrons to a carbonyl carbocation, resulting in a significantly enhanced fluorescence of the probe R-1 and a 38 nm redshift. Similarly, S-2-amino-1-phenylethanol alone caused severe damage to the self-assembled vesicle structure of the probe molecule itself due to its spatial structure, which made R-1 highly enantioselective towards it.
Collapse
Affiliation(s)
- Rong Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Kaiyue Song
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhaoqin Wei
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yue Sun
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xiaoxia Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yu Hu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Wang RX, Ou Y, Chen Y, Ren TB, Yuan L, Zhang XB. Rational Design of NIR-II G-Quadruplex Fluorescent Probes for Accurate In Vivo Tumor Metastasis Imaging. J Am Chem Soc 2024; 146:11669-11678. [PMID: 38644738 DOI: 10.1021/jacs.3c13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Accurate in vivo imaging of G-quadruplexes (G4) is critical for understanding the emergence and progression of G4-associated diseases like cancer. However, existing in vivo G4 fluorescent probes primarily operate within the near-infrared region (NIR-I), which limits their application accuracy due to the short emission wavelength. The transition to second near-infrared (NIR-II) fluorescent imaging has been of significant interest, as it offers reduced autofluorescence and deeper tissue penetration, thereby facilitating more accurate in vivo imaging. Nonetheless, the advancement of NIR-II G4 probes has been impeded by the absence of effective probe design strategies. Herein, through a "step-by-step" rational design approach, we have successfully developed NIRG-2, the first small-molecule fluorescent probe with NIR-II emission tailored for in vivo G4 detection. Molecular docking calculations reveal that NIRG-2 forms stable hydrogen bonds and strong π-π interactions with G4 structures, which effectively inhibit twisted intramolecular charge transfer (TICT) and, thereby, selectively illuminate G4 structures. Due to its NIR-II emission (940 nm), large Stokes shift (90 nm), and high selectivity, NIRG-2 offers up to 47-fold fluorescence enhancement and a tissue imaging depth of 5 mm for in vivo G4 detection, significantly outperforming existing G4 probes. Utilizing NIRG-2, we have, for the first time, achieved high-contrast visualization of tumor metastasis through lymph nodes and precise tumor resection. Furthermore, NIRG-2 proves to be highly effective and reliable in evaluating surgical and drug treatment efficacy in cancer lymphatic metastasis models. We are optimistic that this study not only provides a crucial molecular tool for an in-depth understanding of G4-related diseases in vivo but also marks a promising strategy for the development of clinical NIR-II G4-activated probes.
Collapse
Affiliation(s)
- Ren-Xuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yifeng Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yushi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Bag S, Bhowmik S. Fluorescence Spectroscopy: A Useful Method to Explore the Interactions of Small Molecule Ligands with DNA Structures. Methods Mol Biol 2024; 2719:33-49. [PMID: 37803111 DOI: 10.1007/978-1-0716-3461-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Small molecule ligands-DNA interactions have recently received a lot of attention in the fields of life sciences, medicine, and chemical sciences. To decode these interactions, many strategies have been developed. DNA is the primary target for a wide range of drugs that may interact with DNA in particular or non-specific ways and impact its activities. Fluorescence spectroscopy is a highly advanced and non-invasive technology for measuring the concentrations of substrates and products or identifying characteristic processing states. Small molecule ligands-DNA interaction studies are beneficial not only in comprehending the method of interaction, but also in synthesizing DNA-targeted particular drugs. Several small compounds that bind to DNA are clinically established therapeutic medicines, while their specific mechanism of action is unknown. Figuring out their molecular recognizing patterns is the only way to construct innovative compounds that can target specific DNA sequences with strong affinities. This book chapter will mostly explore several fluorescence spectroscopic methodologies used to investigate interactions between small molecule ligands and DNA. In addition, we provide many approaches for determining a drug's binding mode with DNA. These strategies produce data that is both trustworthy and easy to comprehend. All of the knowledge gained by studying these fluorescence spectroscopies are supposed to lead to the development of more efficient new pharmaceuticals that might aid in the treatment of diseases.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India.
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India.
| |
Collapse
|
7
|
Babagond V, Katagi K, Pandith A, Akki M, Jaggal A. Unique development of a new dual application probe for selective detection of antiparallel G-quadruplex sequences. Analyst 2023; 148:5507-5513. [PMID: 37789760 DOI: 10.1039/d3an01109g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
G-Quadruplex (G4) structures play vital roles in many biological processes; consequently, they have been implicated in various human diseases like cancer, Alzheimer's disease etc. The selective detection of G4 DNA structures is of great interest for understanding their roles and biological functions. Hence, development of multifunctional fluorescent probes is indeed essential. In this investigation, we have synthesized a quinolinium based dual application probe (QnMF) that presents molecular rotor properties. This dual application molecular rotor is able to detect selectively antiparallel G4 sequences (22AG in 100 mM NaCl) through a turn-on response over other G4 topologies. The QnMF also contains a distinct fluorine-19 that undergoes a significant chemical shift in response to microenvironmental changes around the molecule when bound to G4 structures. The probe QnMF exhibits significantly brighter fluorescence emissions in glycerol (ε × ϕ = 2800 cm-1 M-1) and relatively less brighter fluorescence emissions in methanol (ε × ϕ = 40.5 cm-1 M-1). The restricted rotation inherent property of the QnMF molecular rotor is responsible for brighter fluorescence and leads to enhancement in the fluorescence upon binding to the G4 structure. Overall, the probe's dual detection method makes it useful for monitoring the G4 structures that are abundant and plays a vital role in living organisms.
Collapse
Affiliation(s)
- Vardhaman Babagond
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| | - Kariyappa Katagi
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| | - Anup Pandith
- International Ph.D. Program in Biomedical Engineering (IPBME), College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan, Republic of China
| | - Mahesh Akki
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| | - Ashwini Jaggal
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| |
Collapse
|
8
|
Wu H, He Y, Deng H, Liang Y, Xiang L, Tang X, Li X, Yuan Z, Lin B, Chen S, Zhang J. 7-Guanidinyl Coumarins: Synthesis, Photophysical Properties, and Application to Exploit the Pd-Catalyzed Release of Guanidines. J Org Chem 2023; 88:11504-11513. [PMID: 37549384 DOI: 10.1021/acs.joc.3c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Molecular manipulation of guanidino-containing biomolecules in a cellular environment is fundamental to exploiting protein function and drug release, but currently, there is a lack of suitable methods for reaction screening and monitoring. To exploit the potential of the fluorescent method in this respect, herein, we evaluated a novel array of 7-guanidinyl coumarins by incorporating different substituted guanidino moieties into a coumarin scaffold. These compounds were prepared by guanidinylation reagent S-methylisothiourea or TFA-protected pyrazole-carboxamidine. Examination of their photophysical properties revealed that the fluorescence emission of alkyloxycarbonyl-substituted guanidinyl coumarin was significantly enhanced as compared with the unsubstituted analogue. This dramatic fluorescence difference enabled preliminary exploitation of the Pd-catalyzed release of allyloxycarbonyl (Alloc)-caged guanidinyl coumarin-6 in living cells.
Collapse
Affiliation(s)
- Haiting Wu
- Artemisinin Research Center & The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yiting He
- Artemisinin Research Center & The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huiying Deng
- Artemisinin Research Center & The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yunshi Liang
- Artemisinin Research Center & The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lingling Xiang
- Artemisinin Research Center & The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xueping Tang
- Artemisinin Research Center & The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xueying Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 510405, China
| | - Zhijun Yuan
- Artemisinin Research Center & The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bohong Lin
- Artemisinin Research Center & The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong 510405, China
| | - Jing Zhang
- Artemisinin Research Center & The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
9
|
Deiana M, Chand K, Chorell E, Sabouri N. Parallel G-Quadruplex DNA Structures from Nuclear and Mitochondrial Genomes Trigger Emission Enhancement in a Nonfluorescent Nano-aggregated Fluorine-Boron-Based Dye. J Phys Chem Lett 2023; 14:1862-1869. [PMID: 36779779 PMCID: PMC9940295 DOI: 10.1021/acs.jpclett.2c03301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 05/28/2023]
Abstract
Molecular self-assembly is a powerful tool for the development of functional nanostructures with adaptive optical properties. However, in aqueous solution, the hydrophobic effects in the monomeric units often afford supramolecular architectures with typical side-by-side π-stacking arrangement with compromised emissive properties. Here, we report on the role of parallel DNA guanine quadruplexes (G4s) as supramolecular disaggregating-capture systems capable of coordinating a zwitterionic fluorine-boron-based dye and promoting activation of its fluorescence signal. The dye's high binding affinity for parallel G4s compared to nonparallel topologies leads to a selective disassembly of the dye's supramolecular state upon contact with parallel G4s. This results in a strong and selective disaggregation-induced emission that signals the presence of parallel G4s observable by the naked eye and inside cells. The molecular recognition strategy reported here will be useful for a multitude of affinity-based applications with potential in sensing and imaging systems.
Collapse
Affiliation(s)
- Marco Deiana
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Karam Chand
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Erik Chorell
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Nasim Sabouri
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
10
|
Holden L, Gkika KS, Burke CS, Long C, Keyes TE. Selective, Disruptive Luminescent Ru(II) Polypyridyl Probes of G-Quadruplex. Inorg Chem 2023; 62:2213-2227. [PMID: 36703307 PMCID: PMC9906756 DOI: 10.1021/acs.inorgchem.2c03903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sensors capable of transducing G-quadruplex DNA binding are important both in solution and for imaging and interrogation in cellulo. Ru(II)-based light switches incorporating dipyridylphenazine (dppz) ligands are effective probes for recognition and imaging of DNA and its polymorphs including G-quadruplex, although selectivity is a limitation. While the majority of Ru(II)-based light switches reported to date, stabilize the quadruplex, imaging/theranostic probes that can disrupt G4s are of potentially enormous value in study and therapy for a range of disease states. We report here, on a Ru(II) complex (Ru-PDC3) that assembles the light switch capability of a Ru(II) dipyridylphenazine complex with the well-known G4-selective ligand Phen-DC3, into a single structure. The complex shows the anticipated light switch effect and strong affinity for G4 structures. Affinity depended on the G4 topology and sequence, but across all structures bar one, it was roughly an order of magnitude greater than for duplex or single-stranded DNA. Moreover, photophysical and Raman spectral data showed clear discrimination between duplex DNA and G4-bound structures offering the prospect of discrimination in imaging as well as in solution. Crucially, unlike the constituent components of the probe, Ru-PDC3 is a powerful G4 disrupter. From circular dichroism (CD), a reduction of ellipticity of the G4 between 70 and 95% was observed depending on topology and in many cases was accompanied by an induced CD signal for the metal complex. The extent of change in ellipticity is amongst the largest reported for small-molecule ligand G4 binding. While a promising G4 probe, without modification, the complex is fully water-soluble and readily permeable to live cells.
Collapse
|
11
|
Geng X, Zhang Y, Li S, Liu L, Yao R, Liu L, Gao J. Design, synthesis, and biological evaluation of novel benzimidazolyl isoxazole derivatives as potential c-Myc G4 stabilizers to suppress c-Myc transcription and myeloma growth. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Selective light-up of dimeric G-quadruplex forming aptamers for efficient VEGF165 detection. Int J Biol Macromol 2022; 224:344-357. [DOI: 10.1016/j.ijbiomac.2022.10.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
13
|
Verma S, Patidar RK, Tiwari R, Velayutham R, Ranjan N. Fragment-Based Design of Small Molecules to Study DNA Minor Groove Recognition. J Phys Chem B 2022; 126:7310-7320. [DOI: 10.1021/acs.jpcb.2c04825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Smita Verma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India,
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Rajesh Kumar Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India,
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India,
| | - Ravichandiran Velayutham
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India,
| |
Collapse
|
14
|
Venkata Suseela Y, Sengupta P, Roychowdhury T, Panda S, Talukdar S, Chattopadhyay S, Chatterjee S, Govindaraju T. Targeting Oncogene Promoters and Ribosomal RNA Biogenesis by G-Quadruplex Binding Ligands Translate to Anticancer Activity. ACS BIO & MED CHEM AU 2022; 2:125-139. [PMID: 37101746 PMCID: PMC10114666 DOI: 10.1021/acsbiomedchemau.1c00039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
G-Quadruplex (GQ) nucleic acids are promising therapeutic targets in anticancer research due to their structural robustness, polymorphism, and gene-regulatory functions. Here, we presented the structure-activity relationship of carbazole-based monocyanine ligands using region-specific functionalization with benzothiazole (TCA and TCZ), lepidine (LCA and LCZ), and quinaldine (QCA and QCZ) acceptor moieties and evaluated their binding profiles with different oncogenic GQs. Their differential turn-on fluorescence emission upon GQ binding confirmed the GQ-to-duplex selectivity of all carbazole ligands, while the isothermal titration calorimetry results showed selective interactions of TCZ and TCA to c-MYC and BCL-2 GQs, respectively. The aldehyde group in TCA favors stacking interactions with the tetrad of BCL-2 GQ, whereas TCZ provides selective groove interactions with c-MYC GQ. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) showed that these molecules interfere with the recruitment of specific transcription factors at c-MYC and BCL-2 promoters and stabilize the promoter GQ structures to inhibit their constitutive transcription in cancer cells. Their intrinsic turn-on fluorescence response with longer lifetimes upon GQ binding allowed real-time visualization of GQ structures at subcellular compartments. Confocal microscopy revealed the uptake of these ligands in the nucleoli, resulting in nucleolar stress. ChIP studies further confirmed the inhibition of Nucleolin occupancy at multiple GQ-enriched regions of ribosomal DNA (rDNA) promoters, which arrested rRNA biogenesis. Therefore, carbazole ligands act as the "double-edged swords" to arrest c-MYC and BCL-2 overexpression as well as rRNA biogenesis, triggering synergistic inhibition of multiple oncogenic pathways and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Yelisetty Venkata Suseela
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Pallabi Sengupta
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Tanaya Roychowdhury
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suman Panda
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Sangita Talukdar
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Samit Chattopadhyay
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
15
|
Sakamoto T, Yu Z, Otani Y. Dual-Color Fluorescence Switch-On Probe for Imaging G-Quadruplex and Double-Stranded DNA in Living Cells. Anal Chem 2022; 94:4269-4276. [PMID: 35234461 DOI: 10.1021/acs.analchem.1c04804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A tripodal quinone-cyanine dye having one donor and three acceptors, that is, one quinone and three N-methylbenzothiazolium moieties, QCy(MeBT)3, was synthesized by simple Knoevenagel condensation between 2-hydroxybenzene-1,3,5-tricarbaldehyde and N-methyl-2-methylbenzothiazolium iodide. The 700 nm (λex, 570 nm) and 600 nm (λex, 470 nm) fluorescence emission of QCy(MeBT)3 was significantly and individually enhanced with the addition of G-quadruplex (G4) DNA and double-stranded DNA (dsDNA), respectively. The results of docking simulations and the response against the viscosity change revealed that the dual-fluorescence response was caused by the difference in the binding mode of QCy(MeBT)3 depending on the DNA structure. The results of fluorescence microscopy imaging experiments using QCy(MeBT)3 suggested that G4 DNAs and dsDNAs in the cell nucleus can be imaged with near-infrared (NIR, 700 nm) and red (600 nm) fluorescence emissions. Furthermore, pyridostatin-induced G4 formation in the living cells can be imaged with NIR fluorescence. The results indicated that QCy(MeBT)3 has huge potential to be a NIR-fluorescent molecular probe for analyzing the structural dynamics of nucleic acids in living cells with a normal fluorescence microscope.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan.,Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Zehui Yu
- Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Yuto Otani
- Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| |
Collapse
|
16
|
Long W, Zheng BX, Li Y, Huang XH, Lin DM, Chen CC, Hou JQ, Ou TM, Wong WL, Zhang K, Lu YJ. Rational design of small-molecules to recognize G-quadruplexes of c-MYC promoter and telomere and the evaluation of their in vivo antitumor activity against breast cancer. Nucleic Acids Res 2022; 50:1829-1848. [PMID: 35166828 PMCID: PMC8887543 DOI: 10.1093/nar/gkac090] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging. We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity. The ligands are designed to establish multi-site interactions in the G4-binding pocket. This structural feature may render the molecules higher selectivity toward c-MYC G4s than other structures. The ligand–G4 interaction studied with 1H NMR may suggest a stacking interaction with the terminal G-tetrad. Moreover, the intracellular co-localization study with BG4 and cellular competition experiments with BRACO-19 may suggest that the binding targets of the ligands in cells are most probably G4-structures. Furthermore, the ligands that either preferentially bind to c-MYC promoter or telomeric G4s are able to downregulate markedly the c-MYC and hTERT gene expression in MCF-7 cells, and induce senescence and DNA damage to cancer cells. The in vivo antitumor activity of the ligands in MCF-7 tumor-bearing mice is also demonstrated.
Collapse
Affiliation(s)
- Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ying Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dan-Min Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Cui-Cui Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jin-Qiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.,Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Tian-Miao Ou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P.R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
17
|
A fluorescent molecular rotor for the selective detection of the hybrid-conformation 22AG G-Quadruplex. Bioorg Med Chem Lett 2022; 55:128462. [PMID: 34813881 DOI: 10.1016/j.bmcl.2021.128462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023]
Abstract
G-quadruplex (G4) DNA plays a vital role in myriad biological process and is linked to several human diseases, including Alzheimer's disease. Probing G4s with fluorescent probes can provide a better understanding their mechanisms of action and of their roles in Nature. In this study we developed a quinolinium-vinylaniline molecular rotor probe, featuring a diethylaminosalicylaldehyde unit that could discriminate the hybrid-22AG G4 sequence selectively amongst other G4 sequences. This probe underwent a significant red-shift upon binding to the target G4 (broad 575 nm → sharp 630 nm) with enhanced fluorescence (up to 14-fold). We suspect that the vinylaniline unit of the molecular rotor, when bound to the hybrid-22 A G4, experienced restricted rotation, thereby undergoing enhanced intramolecular charge transfer. The presence of the diethylaminosalicylaldehyde moiety appeared to play a major role in the enhanced selectivity toward the 22AG G4.
Collapse
|
18
|
Oshchepkov AS, Reznichenko O, Xu D, Morozov BS, Granzhan A, Kataev EA. Dye-functionalized phosphate-binding macrocycles: from nucleotide to G-quadruplex recognition and "turn-on" fluorescence sensing. Chem Commun (Camb) 2021; 57:10632-10635. [PMID: 34581337 DOI: 10.1039/d1cc04096k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel strategy to design "turn-on" fluorescent receptors for G-quadruplexes of DNA is presented, which relies on the connection of phosphate binding macrocycles (PBM) with naphthalimide dyes. A new PBM-dye family was synthesized and evaluated in terms of binding and detection of nucleotides and DNA G-quadruplexes of different topologies.
Collapse
Affiliation(s)
- Aleksandr S Oshchepkov
- Department of Chemistry and Pharmacy, University Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany. .,Institute of Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Oksana Reznichenko
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, Bât. 110, Centre Universitaire Paris Sud, F-91405 Orsay, France
| | - Dan Xu
- Institute of Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Boris S Morozov
- Department of Chemistry and Pharmacy, University Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany. .,Institute of Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, Bât. 110, Centre Universitaire Paris Sud, F-91405 Orsay, France
| | - Evgeny A Kataev
- Department of Chemistry and Pharmacy, University Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany. .,CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, Bât. 110, Centre Universitaire Paris Sud, F-91405 Orsay, France
| |
Collapse
|
19
|
Teng FY, Jiang ZZ, Guo M, Tan XZ, Chen F, Xi XG, Xu Y. G-quadruplex DNA: a novel target for drug design. Cell Mol Life Sci 2021; 78:6557-6583. [PMID: 34459951 PMCID: PMC11072987 DOI: 10.1007/s00018-021-03921-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.
Collapse
Affiliation(s)
- Fang-Yuan Teng
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zong-Zhe Jiang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao-Zhen Tan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, 61, Avenue du Président Wilson, 94235, Cachan, France.
| | - Yong Xu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, and Sichuan Clinical Research Center for Nephropathy, and Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
20
|
Deiana M, Obi I, Andreasson M, Tamilselvi S, Chand K, Chorell E, Sabouri N. A Minimalistic Coumarin Turn-On Probe for Selective Recognition of Parallel G-Quadruplex DNA Structures. ACS Chem Biol 2021; 16:1365-1376. [PMID: 34328300 PMCID: PMC8397291 DOI: 10.1021/acschembio.1c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
G-quadruplex (G4)
DNA structures are widespread in the human genome
and are implicated in biologically important processes such as telomere
maintenance, gene regulation, and DNA replication. Guanine-rich sequences
with potential to form G4 structures are prevalent in the promoter
regions of oncogenes, and G4 sites are now considered as attractive
targets for anticancer therapies. However, there are very few reports
of small “druglike” optical G4 reporters that are easily
accessible through one-step synthesis and that are capable of discriminating
between different G4 topologies. Here, we present a small water-soluble
light-up fluorescent probe that features a minimalistic amidinocoumarin-based
molecular scaffold that selectively targets parallel G4 structures
over antiparallel and non-G4 structures. We showed that this biocompatible
ligand is able to selectively stabilize the G4 template resulting
in slower DNA synthesis. By tracking individual DNA molecules, we
demonstrated that the G4-stabilizing ligand perturbs DNA replication
in cancer cells, resulting in decreased cell viability. Moreover,
the fast-cellular entry of the probe enabled detection of nucleolar
G4 structures in living cells. Finally, insights gained from the structure–activity
relationships of the probe suggest the basis for the recognition of
parallel G4s, opening up new avenues for the design of new biocompatible
G4-specific small molecules for G4-driven theranostic applications.
Collapse
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Måns Andreasson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Shanmugam Tamilselvi
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Karam Chand
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Erik Chorell
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
21
|
Yu Z, Hendricks AL, Cowan JA. G-quadruplex targeting chemical nucleases as a nonperturbative tool for analysis of cellular G-quadruplex DNA. iScience 2021; 24:102661. [PMID: 34189433 PMCID: PMC8215219 DOI: 10.1016/j.isci.2021.102661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022] Open
Abstract
G-quadruplex structures are associated with various biological activities, while in vivo evidence is essential to confirm the formation of G-quadruplexes inside cells. Most conventional agents that recognize G-quadruplex, including antibodies and small-molecule G-quadruplex ligands, either stabilize the G-quadruplex or prevent G-quadruplex unfolding by helicase, thereby artificially increasing the G-quadruplex levels in cells. Unambiguous study of G-quadruplexes at natural cellular levels requires agents that do not enhance the stability of G-quadruplex. Herein, we report the first example of nonperturbative chemical nucleases that do not influence the stability of G-quadruplex telomeric DNA but can selectively cleave G-quadruplex DNA over duplex DNA. These chemical nucleases can be readily taken up by cells and promote selective cleavage of telomeric DNA with low levels of nonselective DNA cleavage of other regions of the genome. The cleavage of G-quadruplex telomeric DNA by nonperturbative chemical nucleases confirms the formation of G-quadruplex telomeric DNA in live cells. Novel chemical nucleases exhibit no effect on G-quadruplex telomeric DNA stability Selective nucleases cleave G-quadruplex DNA over duplex DNA Cleavage of G-quadruplex telomeric DNA motifs confirms their existence in cells
Collapse
Affiliation(s)
- Zhen Yu
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Amber L. Hendricks
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - James A. Cowan
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Corresponding author
| |
Collapse
|
22
|
Sun R, Guo X, Yang D, Tang Y, Lu J, Sun H. c-Myc G-quadruplex is sensitively and specifically recognized by a fluorescent probe. Talanta 2021; 226:122125. [PMID: 33676679 DOI: 10.1016/j.talanta.2021.122125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
The G-quadruplex structure formed by the c-myc gene sequence has attracted much attention due to its important physiological function in biology and wide application in nanotechnology. So far, probes capable of recognition of c-myc G-quadruplex with both high specificity and sensitivity are still scarce. This work presented a cyanine dye fluorescent probe named Cy-1, which has almost no fluorescence in aqueous solution, but showing more than 1000-fold fluorescence enhancement for recognizing c-myc G-quadruplex. Cy-1 also has good specificity and can selectively recognize c-myc G-quadruplex from other a variety of G-quadruplex and non-G-quadruplex structures. These properties make Cy-1 a promising probe for c-myc G-quadruplex recognition in nanotechnology or biology.
Collapse
Affiliation(s)
- Ranran Sun
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiaomeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dawei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
23
|
Pandith A, Nagarajachari U, Siddappa RKG, Lee S, Park CJ, Sannathammegowda K, Seo YJ. Loop-mediated fluorescent probes for selective discrimination of parallel and antiparallel G-Quadruplexes. Bioorg Med Chem 2021; 35:116077. [PMID: 33631656 DOI: 10.1016/j.bmc.2021.116077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Herein we report simple pyridinium (1-3) and quinolinium (4) salts for the selective recognition of G-quadruplexes (G4s). Among them, the probe 1, interestingly, selectively discriminated parallel (c-KIT-1, c-KIT-2, c-MYC) G4s from anti-parallel/hybrid (22AG, HRAS-1, BOM-17, TBA) G4s at pH 7.2, through a switch on response in the far-red window. Significant changes in the absorption (broad 575 nm → sharp 505 nm) and emission of probe 1 at 620 nm, attributed to selective interaction with parallel G4s, resulted in complete disaggregation-induced monomer emission. Symmetrical push/pull molecular confinements across the styryl units in probe 1 enhanced the intramolecular charge transfer (ICT) by restricting the free rotation of CC units in the presence of sterically less hindered and highly accessible G4 surface/bottom tetrads in the parallel G4s, which is relatively lower extent in antiparallel/hybrid G4s. We confirm that the disaggregation of probe 1 was very effective in the presence of parallel G4-forming ODNs, due to the presence of highly available free surface area, resulting in additional π-stacking interactions. The selective sensing capabilities of probe 1 were analyzed using UV-Vis spectroscopy, fluorescence spectroscopy, molecular dynamics (MD)-based simulation studies, and 1H NMR spectroscopy. This study should afford insights for the future design of selective compounds targeting parallel G4s.
Collapse
Affiliation(s)
- Anup Pandith
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | | | | | - Sungjin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | | | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
24
|
Ross J, Miron CE, Plescia J, Laplante P, McBride K, Moitessier N, Möröy T. Targeting MYC: From understanding its biology to drug discovery. Eur J Med Chem 2020; 213:113137. [PMID: 33460833 DOI: 10.1016/j.ejmech.2020.113137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023]
Abstract
The MYC oncogene is considered to be a high priority target for clinical intervention in cancer patients due to its aberrant activation in more than 50% of human cancers. Direct small molecule inhibition of MYC has traditionally been hampered by its intrinsically disordered nature and lack of both binding site and enzymatic activity. In recent years, however, a number of strategies for indirectly targeting MYC have emerged, guided by the advent of protein structural information and the growing set of computational tools that can be used to accelerate the hit to lead process in medicinal chemistry. In this review, we provide an overview of small molecules developed for clinical applications of these strategies, which include stabilization of the MYC guanine quadruplex, inhibition of BET factor BRD4, and disruption of the MYC:MAX heterodimer. The recent identification of novel targets for indirect MYC inhibition at the protein level is also discussed.
Collapse
Affiliation(s)
- Julie Ross
- Institut de recherches cliniques de Montréal (IRCM), 110 Pine Ave W., Montréal, Québec, H2W 1R7, Canada
| | - Caitlin E Miron
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| | - Jessica Plescia
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| | - Patricia Laplante
- AmorChem II Ventures Inc., 4 Westmount Sq. Bureau 160, Westmount, Québec, H3Z 2S6, Canada
| | - Kevin McBride
- AmorChem II Ventures Inc., 4 Westmount Sq. Bureau 160, Westmount, Québec, H3Z 2S6, Canada
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada.
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), 110 Pine Ave W., Montréal, Québec, H2W 1R7, Canada; Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada; Division of Experimental Medicine, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada.
| |
Collapse
|
25
|
Suseela YV, Satha P, Murugan NA, Govindaraju T. Recognition of G-quadruplex topology through hybrid binding with implications in cancer theranostics. Theranostics 2020; 10:10394-10414. [PMID: 32929356 PMCID: PMC7482797 DOI: 10.7150/thno.48675] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
The selective recognition and imaging of oncogene specific G-quadruplex (GQ) structures holds great promise in the development of diagnostic therapy (theranostics) for cancer and has been challenging due to their structural dynamics and diversity. We report selective recognition of GQ by a small molecule through unique hybrid loop stacking and groove binding mode with turn on far-red fluorescence response and anticancer activity demonstrating the potential implications for GQ-targeted cancer theranostics. Methods: Biophysical investigation reveal the turn on far-red emission property of TGP18 for selective recognition of GQ. In cellulo studies including DNA damage and oxidative stress evaluation guided us to perform in vitro (3D spheroid) and in vivo (xenograft mice model) anti-cancer activity, and tumor tissue imaging to assess the theranostic potential of TGP18. Results: Neocuproine-based far-red turn on fluorescence probe TGP18 shows GQ-to-duplex selectivity and specifically recognizes BCL-2 GQ with high affinity through a unique hybrid binding mode involving loop-stacking and groove interactions. Our study reveals that the selective recognition originating from the distinct loop structure of GQ that alters the overall probe interaction and binding affinity. TGP18 binding to anti-apoptotic BCL-2 GQ ablates the pro-survival function and elicit anti-cancer activity by inducing apoptosis in cancer cells. We deciphered that inhibition of BCL-2 transcription synergized with signaling cascade of nucleolar stress, DNA damage and oxidative stress in triggering apoptosis signaling pathway. Conclusion: Intervention of GQ mediated lethality by TGP18 has translated into anti-cancer activity in both in vitro 3D spheroid culture and in vivo xenograft models of lung and breast cancer with superior efficacy for the former. In vivo therapeutic efficacy supplemented with tumor 3D spheroid and tissue imaging potential define the role of TGP18 in GQ-targeted cancer theranostics.
Collapse
|
26
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|
27
|
|
28
|
Wu TY, Huang Q, Huang ZS, Hu MH, Tan JH. A drug-like imidazole-benzothiazole conjugate inhibits malignant melanoma by stabilizing the c-MYC G-quadruplex. Bioorg Chem 2020; 99:103866. [PMID: 32330737 DOI: 10.1016/j.bioorg.2020.103866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Aberrant expression of c-MYC oncogene is significantly associated with the occurrence and development of malignant melanoma. Suppression of the c-MYC transcriptional activity accordingly provides a new idea for treating melanoma. Notably, stabilizing the G-quadruplex (G4) structure in the promoter is proved to be effective in downregulating c-MYC transcription. In this work, we developed a drug-like imidazole-benzothiazole conjugate called IZTZ-1, which was confirmed to preferentially stabilize the promoter G4 and thus lower c-MYC expression. Intracellular assays revealed that IZTZ-1 induced cell cycle arrest, apoptosis, thereby inhibiting cell proliferation. Furthermore, IZTZ-1 was demonstrated to effectively inhibit tumor growth in a melanoma mouse model. Consequently, IZTZ-1 showed good potential in the treatment of melanoma. This study provides an alternative strategy to treat melanoma by targeting the c-MYC G4.
Collapse
Affiliation(s)
- Tian-Ying Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Huang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming-Hao Hu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
29
|
Jin J, Hou J, Long W, Zhang X, Lu YJ, Li D, Zhang K, Wong WL. Synthesis of fluorescent G-quadruplex DNA binding ligands for the comparison of terminal group effects in molecular interaction: Phenol versus methoxybenzene. Bioorg Chem 2020; 99:103821. [PMID: 32279036 DOI: 10.1016/j.bioorg.2020.103821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 01/25/2023]
Abstract
A number of new fluorescent nucleic acid binding ligands were synthesized by utilizing the non-specific thiazole orange dye as the basic scaffold for molecular design. Under simple synthetic conditions, the molecular scaffold of thiazole orange bridged with a terminal side-group (phenol or methoxybenzene) becomes more flexible because the newly added ethylene bridge is relatively less rigid than the methylene of thiazole orange. It was found that these molecules showed better selectivity towards G-quadruplex DNA structure in molecular interactions with different type of nucleic acids. The difference in terms of induced DNA-ligand interaction signal, selectivity, and binding affinity of the ligands with the representative nucleic acids including single-stranded DNA, double-stranded DNA, telomere and promoter G4-DNA and ribosomal RNA were investigated. The position of the terminal methoxyl groups was found showing strong influence both on binding affinity and fluorescent discrimination among 19 nucleic acids tested. The ligand with a methoxyl group substituted at the meta-position of the styryl moiety exhibited the best fluorescent recognition performance towards telo21 G4-DNA. A good linear relationship between the induced fluorescent binding signal and the concentration of telo21 was obtained. The comparison of ligand-DNA interaction properties including equilibrium binding constants, molecular docking, G4-conformation change and stabilization ability for G4-structures was also conducted. Two cancer cell lines (human prostate cancer cell (PC3) and human hepatoma cell (hepG2)) were selected to explore the inhibitory effect of the ligands on the cancer cell growth. The IC50 values obtained in the MTT assay for the two cancer cells were found in the range of 3.4-10.8 μM.
Collapse
Affiliation(s)
- Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China; Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Wei Long
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|