1
|
Hu Y, Dong H, Chen H, Shen X, Li H, Wen Q, Wang F, Qi Y, Shen J. PoSnf1 affects cellulose utilization through interaction with cellobiose transporter in Pleurotus ostreatus. Int J Biol Macromol 2024; 275:133503. [PMID: 38944091 DOI: 10.1016/j.ijbiomac.2024.133503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Pleurotus ostreatus is one of the most cultivated edible fungi worldwide, but its lignocellulose utilization efficiency is relatively low (<50 %), which eventually affects the biological efficiency of P. ostreatus. Improving cellulase production and activity will contribute to enhancing the lignocellulose-degrading capacity of P. ostreatus. AMP-activated/Snf1 protein kinase plays important roles in regulating carbon and energy metabolism. The Snf1 homolog (PoSnf1) in P. ostreatus was obtained and analyzed using bioinformatics. The cellulose response of PoSnf1, the effect of the phosphorylation level of PoSnf1 on the expression of cellulose degradation-related genes, the putative proteins that interact with the phosphorylated PoSnf1 (P-PoSnf1), the cellobiose transport function of two sugar transporters (STP1 and STP2), and the interactions between PoSnf1 and STP1/STP2 were studied in this research. We found that cellulose treatment improved the phosphorylation level of PoSnf1, which further affected cellulase activity and the expression of most cellulose degradation-related genes. A total of 1, 024 proteins putatively interacting with P-PoSnf1 were identified, and they were enriched mainly in the substances transport and metabolism. Most of the putative cellulose degradation-related protein-coding genes could respond to cellulose. Among the P-PoSnf1-interacting proteins, the functions of two sugar transporters (STP1 and STP2) were further studied, and the results showed that both could transport cellobiose and were indirectly regulated by P-PoSnf1, and that STP2 could directly interact with PoSnf1. The results of this study indicated that PoSnf1 plays an important role in regulating the expression of cellulose degradation genes possibly by affecting cellobiose transport.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haozhe Dong
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haolan Chen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Xiaoye Shen
- College of Food Science and Technology, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Huihui Li
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Qing Wen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yuancheng Qi
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Jinwen Shen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| |
Collapse
|
2
|
Rong Z, Zheng K, Chen J, Jin X. The cross talk of ubiquitination and chemotherapy tolerance in colorectal cancer. J Cancer Res Clin Oncol 2024; 150:154. [PMID: 38521878 PMCID: PMC10960765 DOI: 10.1007/s00432-024-05659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Ubiquitination, a highly adaptable post-translational modification, plays a pivotal role in maintaining cellular protein homeostasis, encompassing cancer chemoresistance-associated proteins. Recent findings have indicated a potential correlation between perturbations in the ubiquitination process and the emergence of drug resistance in CRC cancer. Consequently, numerous studies have spurred the advancement of compounds specifically designed to target ubiquitinates, offering promising prospects for cancer therapy. In this review, we highlight the role of ubiquitination enzymes associated with chemoresistance to chemotherapy via the Wnt/β-catenin signaling pathway, epithelial-mesenchymal transition (EMT), and cell cycle perturbation. In addition, we summarize the application and role of small compounds that target ubiquitination enzymes for CRC treatment, along with the significance of targeting ubiquitination enzymes as potential cancer therapies.
Collapse
Affiliation(s)
- Ze Rong
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Jun Chen
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo, 315211, China.
| |
Collapse
|
3
|
Mukherjee A, Hossain Z, Erben E, Ma S, Choi JY, Kim HS. Identification of a small-molecule inhibitor that selectively blocks DNA-binding by Trypanosoma brucei replication protein A1. Nat Commun 2023; 14:4390. [PMID: 37474515 PMCID: PMC10359466 DOI: 10.1038/s41467-023-39839-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Replication Protein A (RPA) is a broadly conserved complex comprised of the RPA1, 2 and 3 subunits. RPA protects the exposed single-stranded DNA (ssDNA) during DNA replication and repair. Using structural modeling, we discover an inhibitor, JC-229, that targets RPA1 in Trypanosoma brucei, the causative parasite of African trypanosomiasis. The inhibitor is highly toxic to T. brucei cells, while mildly toxic to human cells. JC-229 treatment mimics the effects of TbRPA1 depletion, including DNA replication inhibition and DNA damage accumulation. In-vitro ssDNA-binding assays demonstrate that JC-229 inhibits the activity of TbRPA1, but not the human ortholog. Indeed, despite the high sequence identity with T. cruzi and Leishmania RPA1, JC-229 only impacts the ssDNA-binding activity of TbRPA1. Site-directed mutagenesis confirms that the DNA-Binding Domain A (DBD-A) in TbRPA1 contains a JC-229 binding pocket. Residue Serine 105 determines specific binding and inhibition of TbRPA1 but not T. cruzi and Leishmania RPA1. Our data suggest a path toward developing and testing highly specific inhibitors for the treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Aditi Mukherjee
- Public Health Research Institute, Rutgers Biomedical Health Sciences, Newark, NJ, 07103, USA
| | - Zakir Hossain
- Department of Chemistry and Biochemistry, Queens College, New York, NY, 11367, USA
| | - Esteban Erben
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Provincia de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Provincia de Buenos Aires, Argentina
| | - Shuai Ma
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, New York, NY, 11367, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Hee-Sook Kim
- Public Health Research Institute, Rutgers Biomedical Health Sciences, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, 07103, USA.
| |
Collapse
|
4
|
Black JA, Reis-Cunha JL, Cruz AK, Tosi LR. Life in plastic, it's fantastic! How Leishmania exploit genome instability to shape gene expression. Front Cell Infect Microbiol 2023; 13:1102462. [PMID: 36779182 PMCID: PMC9910336 DOI: 10.3389/fcimb.2023.1102462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Leishmania are kinetoplastid pathogens that cause leishmaniasis, a debilitating and potentially life-threatening infection if untreated. Unusually, Leishmania regulate their gene expression largely post-transcriptionally due to the arrangement of their coding genes into polycistronic transcription units that may contain 100s of functionally unrelated genes. Yet, Leishmania are capable of rapid and responsive changes in gene expression to challenging environments, often instead correlating with dynamic changes in their genome composition, ranging from chromosome and gene copy number variations to the generation of extrachromosomal DNA and the accumulation of point mutations. Typically, such events indicate genome instability in other eukaryotes, coinciding with genetic abnormalities, but for Leishmania, exploiting these products of genome instability can provide selectable substrates to catalyse necessary gene expression changes by modifying gene copy number. Unorthodox DNA replication, DNA repair, replication stress factors and DNA repeats are recognised in Leishmania as contributors to this intrinsic instability, but how Leishmania regulate genome plasticity to enhance fitness whilst limiting toxic under- or over-expression of co-amplified and co-transcribed genes is unclear. Herein, we focus on fresh, and detailed insights that improve our understanding of genome plasticity in Leishmania. Furthermore, we discuss emerging models and factors that potentially circumvent regulatory issues arising from polycistronic transcription. Lastly, we highlight key gaps in our understanding of Leishmania genome plasticity and discuss future studies to define, in higher resolution, these complex regulatory interactions.
Collapse
Affiliation(s)
- Jennifer A. Black
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,The Wellcome Centre for Integrative Parasitology, School of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom,*Correspondence: Luiz. R.O. Tosi, ; Jennifer A. Black,
| | | | - Angela. K. Cruz
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz. R.O. Tosi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil,*Correspondence: Luiz. R.O. Tosi, ; Jennifer A. Black,
| |
Collapse
|
5
|
Yan J, Zhuang L, Wang Y, Jiang Y, Tu Z, Dong C, Chen Y, Zhu Y. Inhibitors of cell cycle checkpoint target Wee1 kinase - a patent review (2003-2022). Expert Opin Ther Pat 2022; 32:1217-1244. [PMID: 36620912 DOI: 10.1080/13543776.2022.2166827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION DNA damage repair in most malignancies with mutation of p53 is more dependent on the G2/M checkpoint. Wee1 kinase is a key regulator of the G2/M checkpoint. If Wee1 is inhibited, it results in cells with unrepaired DNA damage entering mitosis prematurely, leading to mitotic catastrophe and subsequent cell death via the apoptotic program. Therefore, inhibition of Wee1 kinase which overexpressed in several cancer cell lines has emerged as a promising therapy for cancer treatment. AREAS COVERED This review summarizes for the first time the structures of small-molecule inhibitors of Wee1 reported in patents published from 2003 to 2022 and the recent clinical developments. It also provides perspectives on the challenges and the future directions. We used different methods to search different databases (PubMed, Reaxys, clinicaltrials.gov)for the literature we needed. EXPERT OPINION Although the small-molecule inhibitors of Wee1, Adavosertib, and ZN-C3 have entered the clinical phase II, the clinical toxicity exhibited by Adavosertib remains the subject of greater concern. The use of Wee1 inhibitors as monotherapy or in combination therapy remains the main trend in Wee1 inhibitors at present.
Collapse
Affiliation(s)
- Jingxue Yan
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| | - Lili Zhuang
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| | - Yong Wang
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| | - Yiqing Jiang
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| | - Zhenlin Tu
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| | - Chao Dong
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
6
|
Brusini L, D'Archivio S, McDonald J, Wickstead B. Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex. Front Cell Infect Microbiol 2021; 11:641174. [PMID: 33834005 PMCID: PMC8023272 DOI: 10.3389/fcimb.2021.641174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
Kinetochores perform an essential role in eukaryotes, coupling chromosomes to the mitotic spindle. In model organisms they are composed of a centromere-proximal inner kinetochore and an outer kinetochore network that binds to microtubules. In spite of universal function, the composition of kinetochores in extant eukaryotes differs greatly. In trypanosomes and other Kinetoplastida, kinetochores are extremely divergent, with most components showing no detectable similarity to proteins in other systems. They may also be very different functionally, potentially binding to the spindle directly via an inner-kinetochore protein. However, we do not know the extent of the trypanosome kinetochore, and proteins interacting with a highly divergent Ndc80/Nuf2-like protein (KKIP1) suggest the existence of more centromere-distal complexes. Here we use quantitative proteomics from multiple start-points to define a stable 9-protein kinetoplastid outer kinetochore (KOK) complex. This complex incorporates proteins recruited from other nuclear processes, exemplifying the role of moonlighting proteins in kinetochore evolution. The outer kinetochore complex is physically distinct from inner-kinetochore proteins, but nanometer-scale label separation shows that KKIP1 bridges the two plates in the same orientation as Ndc80. Moreover, KKIP1 exhibits substantial elongation at metaphase, altering kinetochore structure in a manner consistent with pulling at the outer plate. Together, these data suggest that the KKIP1/KOK likely constitute the extent of the trypanosome outer kinetochore and that this assembly binds to the spindle with sufficient strength to stretch the kinetochore, showing design parallels may exist in organisms with very different kinetochore composition.
Collapse
Affiliation(s)
- Lorenzo Brusini
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Simon D'Archivio
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Sygnature Discovery, Nottingham, United Kingdom
| | - Jennifer McDonald
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
7
|
Baker N, Catta-Preta CMC, Neish R, Sadlova J, Powell B, Alves-Ferreira EVC, Geoghegan V, Carnielli JBT, Newling K, Hughes C, Vojtkova B, Anand J, Mihut A, Walrad PB, Wilson LG, Pitchford JW, Volf P, Mottram JC. Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival. Nat Commun 2021; 12:1244. [PMID: 33623024 PMCID: PMC7902614 DOI: 10.1038/s41467-021-21360-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023] Open
Abstract
Differentiation between distinct stages is fundamental for the life cycle of intracellular protozoan parasites and for transmission between hosts, requiring stringent spatial and temporal regulation. Here, we apply kinome-wide gene deletion and gene tagging in Leishmania mexicana promastigotes to define protein kinases with life cycle transition roles. Whilst 162 are dispensable, 44 protein kinase genes are refractory to deletion in promastigotes and are likely core genes required for parasite replication. Phenotyping of pooled gene deletion mutants using bar-seq and projection pursuit clustering reveal functional phenotypic groups of protein kinases involved in differentiation from metacyclic promastigote to amastigote, growth and survival in macrophages and mice, colonisation of the sand fly and motility. This unbiased interrogation of protein kinase function in Leishmania allows targeted investigation of organelle-associated signalling pathways required for successful intracellular parasitism.
Collapse
Affiliation(s)
- N Baker
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - C M C Catta-Preta
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - R Neish
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - J Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - B Powell
- Department of Mathematics, University of York, York, UK
| | - E V C Alves-Ferreira
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - V Geoghegan
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - J B T Carnielli
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - K Newling
- Department of Biology, University of York, York, UK
| | - C Hughes
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - B Vojtkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J Anand
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - A Mihut
- Department of Biology, University of York, York, UK
| | - P B Walrad
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - L G Wilson
- York Biomedical Research Institute, University of York, York, UK
- Department of Physics, University of York, York, UK
| | - J W Pitchford
- Department of Biology, University of York, York, UK
- Department of Mathematics, University of York, York, UK
| | - P Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J C Mottram
- York Biomedical Research Institute, University of York, York, UK.
- Department of Biology, University of York, York, UK.
| |
Collapse
|
8
|
Nerusheva OO, Ludzia P, Akiyoshi B. Identification of four unconventional kinetoplastid kinetochore proteins KKT22-25 in Trypanosoma brucei. Open Biol 2019; 9:190236. [PMID: 31795916 PMCID: PMC6936259 DOI: 10.1098/rsob.190236] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The kinetochore is a multi-protein complex that drives chromosome segregation in eukaryotes. It assembles onto centromere DNA and interacts with spindle microtubules during mitosis and meiosis. Although most eukaryotes have canonical kinetochore proteins, kinetochores of evolutionarily divergent kinetoplastid species consist of at least 20 unconventional kinetochore proteins (KKT1–20). In addition, 12 proteins (KKT-interacting proteins 1–12, KKIP1–12) are known to localize at kinetochore regions during mitosis. It remains unclear whether KKIP proteins interact with KKT proteins. Here, we report the identification of four additional kinetochore proteins, KKT22–25, in Trypanosoma brucei. KKT22 and KKT23 constitutively localize at kinetochores, while KKT24 and KKT25 localize from S phase to anaphase. KKT23 has a Gcn5-related N-acetyltransferase domain, which is not found in any kinetochore protein known to date. We also show that KKIP1 co-purifies with KKT proteins, but not with KKIP proteins. Finally, our affinity purification of KKIP2/3/4/6 identifies a number of proteins as their potential interaction partners, many of which are implicated in RNA binding or processing. These findings further support the idea that kinetoplastid kinetochores are unconventional.
Collapse
Affiliation(s)
- Olga O Nerusheva
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|