1
|
Kubo N, Chen PB, Hu R, Ye Z, Sasaki H, Ren B. H3K4me1 facilitates promoter-enhancer interactions and gene activation during embryonic stem cell differentiation. Mol Cell 2024; 84:1742-1752.e5. [PMID: 38513661 PMCID: PMC11069443 DOI: 10.1016/j.molcel.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Histone H3 lysine 4 mono-methylation (H3K4me1) marks poised or active enhancers. KMT2C (MLL3) and KMT2D (MLL4) catalyze H3K4me1, but their histone methyltransferase activities are largely dispensable for transcription during early embryogenesis in mammals. To better understand the role of H3K4me1 in enhancer function, we analyze dynamic enhancer-promoter (E-P) interactions and gene expression during neural differentiation of the mouse embryonic stem cells. We found that KMT2C/D catalytic activities were only required for H3K4me1 and E-P contacts at a subset of candidate enhancers, induced upon neural differentiation. By contrast, a majority of enhancers retained H3K4me1 in KMT2C/D catalytic mutant cells. Surprisingly, H3K4me1 signals at these KMT2C/D-independent sites were reduced after acute depletion of KMT2B, resulting in aggravated transcriptional defects. Our observations therefore implicate KMT2B in the catalysis of H3K4me1 at enhancers and provide additional support for an active role of H3K4me1 in enhancer-promoter interactions and transcription in mammalian cells.
Collapse
Affiliation(s)
- Naoki Kubo
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA; Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Poshen B Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA; Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Rong Hu
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Zhen Ye
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA; Center for Epigenomics, Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
2
|
Ren Z, Zheng Z, Feng X. Role of gut microbes in acute lung injury/acute respiratory distress syndrome. Gut Microbes 2024; 16:2440125. [PMID: 39658851 PMCID: PMC11639474 DOI: 10.1080/19490976.2024.2440125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
Acute lung injury (ALI) is an acute, diffuse inflammatory lung condition triggered by factors of severe infections, trauma, shock, burns, ischemia-reperfusion, and mechanical ventilation. It is primarily characterized by refractory hypoxemia and respiratory distress. The more severe form, acute respiratory distress syndrome (ARDS), can progress to multi-organ failure and has a high mortality rate. Despite extensive research, the exact pathogenesis of ALI and ARDS remains complex and not fully understood. Recent advancements in studying the gut microecology of patients have revealed the critical role that gut microbes play in ALI/ARDS onset and progression. While the exact mechanisms are still under investigation, evidence increasingly points to the influence of gut microbes and their metabolites on ALI/ARDS. This review aims to summarize the role of gut microbes and their metabolites in ALI/ARDS caused by various triggers. Moreover, it explores potential mechanisms and discusses how gut microbe-targeting interventions might offer new clinical strategies for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Zixuan Ren
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Chen Y, Zhou H, Wu H, Lu W, He Y. Abnormal Fetal Lung of Hoxa1 -/- Piglets Is Rescued by Maternal Feeding with All-Trans Retinoic Acid. Animals (Basel) 2023; 13:2850. [PMID: 37760250 PMCID: PMC10525738 DOI: 10.3390/ani13182850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neonatal Hoxa1-/- piglets were characterized by dyspnea owing to the Hoxa1 mutation, and maternal administration with ATRA alleviated the dyspnea of neonatal Hoxa1-/- piglets. The purpose of this experiment was to explore how maternal ATRA administration rescued the abnormal fetal lungs of Hoxa1-/- piglets. Samples of the lungs were collected from neonatal Hoxa1-/- and non-Hoxa1-/- piglets delivered by sows in the control group, and from neonatal Hoxa1-/- piglets born by sows administered with ATRA at 4 mg/kg body weight on dpc 12, 13, or 14, respectively. These were used for the analysis of ELISA, histological morphology, immunofluorescence staining, immunohistochemistry staining, and quantitative real-time PCR. The results indicate that the Hoxa1 mutation had adverse impacts on the development of the alveoli and pulmonary microvessels of Hoxa1-/- piglets. Maternal administration with ATRA at 4 mg/kg body weight on dpc 14 rescued the abnormal lung development of Hoxa1-/- piglets by increasing the IFN-γ concentration (p < 0.05), airspace area (p < 0.01) and pulmonary microvessel density (p < 0.01); increasing the expression of VEGFD (p < 0.01), PDGFD (p < 0.01), KDR (p < 0.01), ID1 (p < 0.01), and NEDD4 (p < 0.01); and decreasing the septal wall thickness (p < 0.01) and the expression of SFTPC (p < 0.01) and FOXO3 (p < 0.01). Maternal administration with ATRA plays a vital role in rescuing the abnormal development of lung of Hoxa1-/- fetal piglets.
Collapse
Affiliation(s)
- Yixin Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- Department of Animal Science, Ganzhou Polytechnic, Ganzhou 341000, China
| | - Haimei Zhou
- Department of Animal Science, Jiangxi Agricultural Engineering College, Zhangshu 331200, China;
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
4
|
Bi J, Wang W, Zhang M, Zhang B, Liu M, Su G, Chen F, Chen B, Shi T, Zheng Y, Zhao X, Zhao Z, Shi J, Li P, Zhang L, Lu W. KLF4 inhibits early neural differentiation of ESCs by coordinating specific 3D chromatin structure. Nucleic Acids Res 2022; 50:12235-12250. [PMID: 36477888 PMCID: PMC9757050 DOI: 10.1093/nar/gkac1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Neural differentiation of embryonic stem cells (ESCs) requires precisely orchestrated gene regulation, a process governed in part by changes in 3D chromatin structure. How these changes regulate gene expression in this context remains unclear. In this study, we observed enrichment of the transcription factor KLF4 at some poised or closed enhancers at TSS-linked regions of genes associated with neural differentiation. Combination analysis of ChIP, HiChIP and RNA-seq data indicated that KLF4 loss in ESCs induced changes in 3D chromatin structure, including increased chromatin interaction loops between neural differentiation-associated genes and active enhancers, leading to upregulated expression of neural differentiation-associated genes and therefore early neural differentiation. This study suggests KLF4 inhibits early neural differentiation by regulation of 3D chromatin structure, which is a new mechanism of early neural differentiation.
Collapse
Affiliation(s)
| | | | - Meng Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Baoying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Man Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Bohan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Tengfei Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Yaoqiang Zheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Peng Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Lei Zhang
- Correspondence may also be addressed to Lei Zhang. Tel: +86 22 23503617; Fax: +86 22 23503617;
| | - Wange Lu
- To whom correspondence should be addressed. Tel: +86 22 23503617; Fax: +86 22 23503617;
| |
Collapse
|
5
|
Su G, Wang W, Zhao X, Chen J, Zheng J, Liu M, Bi J, Guo D, Chen B, Zhao Z, Shi J, Zhang L, Lu W. Enhancer architecture-dependent multilayered transcriptional regulation orchestrates RA signaling-induced early lineage differentiation of ESCs. Nucleic Acids Res 2021; 49:11575-11595. [PMID: 34723340 PMCID: PMC8599802 DOI: 10.1093/nar/gkab1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Signaling pathway-driven target gene transcription is critical for fate determination of embryonic stem cells (ESCs), but enhancer-dependent transcriptional regulation in these processes remains poorly understood. Here, we report enhancer architecture-dependent multilayered transcriptional regulation at the Halr1–Hoxa1 locus that orchestrates retinoic acid (RA) signaling-induced early lineage differentiation of ESCs. We show that both homeobox A1 (Hoxa1) and Hoxa adjacent long non-coding RNA 1 (Halr1) are identified as direct downstream targets of RA signaling and regulated by RARA/RXRA via RA response elements (RAREs). Chromosome conformation capture-based screens indicate that RA signaling promotes enhancer interactions essential for Hoxa1 and Halr1 expression and mesendoderm differentiation of ESCs. Furthermore, the results also show that HOXA1 promotes expression of Halr1 through binding to enhancer; conversely, loss of Halr1 enhances interaction between Hoxa1 chromatin and four distal enhancers but weakens interaction with chromatin inside the HoxA cluster, leading to RA signaling-induced Hoxa1 overactivation and enhanced endoderm differentiation. These findings reveal complex transcriptional regulation involving synergistic regulation by enhancers, transcription factors and lncRNA. This work provides new insight into intrinsic molecular mechanisms underlying ESC fate determination during RA signaling-induced early differentiation.
Collapse
Affiliation(s)
- Guangsong Su
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Wenbin Wang
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Xueyuan Zhao
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jun Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jian Zheng
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Man Liu
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jinfang Bi
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Dianhao Guo
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Bohan Chen
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Zhongfang Zhao
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Jiandang Shi
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Lei Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| | - Wange Lu
- College of Life Sciences, Nankai University, 94 Weijin Road, 300071 Tianjin City, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, 300071 Tianjin City, China
| |
Collapse
|
6
|
Chen B, He A, Bi J, Sun S, Ma Y, Wang W, Guo D, Chen J, Qian Y, Shi T, Nie G, Zhao Z, Shi J, Yang H, Zhang L, Lu W. Long-range gene regulation network of the MGMT enhancer modulates glioma cell sensitivity to temozolomide. J Genet Genomics 2021; 48:946-949. [PMID: 34417124 DOI: 10.1016/j.jgg.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Bohan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Anshun He
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinfang Bi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shupeng Sun
- Department of Neurosurgery, Tianjin Huanhu Hospital, School of Medicine, Nankai University, 6 Jizhao Road, Tianjin 300350, China
| | - Yiping Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dianhao Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jun Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuyang Qian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tengfei Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Guohui Nie
- Department of Otolaryngology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hongzhen Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
7
|
Chen B, Ma Y, Bi J, Wang W, He A, Su G, Zhao Z, Shi J, Zhang L. Regulation Network of Colorectal-Cancer-Specific Enhancers in the Progression of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22158337. [PMID: 34361106 PMCID: PMC8348541 DOI: 10.3390/ijms22158337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022] Open
Abstract
Enhancers regulate multiple genes via higher-order chromatin structures, and they further affect cancer progression. Epigenetic changes in cancer cells activate several cancer-specific enhancers that are silenced in normal cells. These cancer-specific enhancers are potential therapeutic targets of cancer. However, the functions and regulation networks of colorectal-cancer-specific enhancers are still unknown. In this study, we profile colorectal-cancer-specific enhancers and reveal their regulation network through the analysis of HiChIP data that were derived from a colorectal cancer cell line and Hi-C and RNA-seq data that were derived from tissue samples by in silico analysis and in vitro experiments. Enhancer-promoter loops in colorectal cancer cells containing colorectal-cancer-specific enhancers are involved in more than 50% of the topological associated domains (TADs) changed in colorectal cancer cells compared to normal colon cells. In addition, colorectal-cancer-specific enhancers interact with 152 genes that are significantly and highly expressed in colorectal cancer cells. These colorectal-cancer-specific enhancer target genes include ITGB4, RECQL4, MSLN, and GDF15. We propose that the regulation network of colorectal-cancer-specific enhancers plays an important role in the progression of colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Zhang
- Correspondence: ; Tel./Fax: +86-(22)-23503617
| |
Collapse
|
8
|
Tang D, Zhang Z, Zboril E, Wetzel MD, Xu X, Zhang W, Chen L, Liu Z. Pontin Functions as A Transcriptional Co-activator for Retinoic Acid-induced HOX Gene Expression. J Mol Biol 2021; 433:166928. [PMID: 33713676 PMCID: PMC8184613 DOI: 10.1016/j.jmb.2021.166928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Pontin is a AAA+ ATPase protein that has functions in various biological contexts including gene transcription regulation, chromatin remodeling, DNA damage sensing and repair, as well as assembly of protein and ribonucleoprotein complexes. Pontin is known to regulate the transcription of several important signaling pathways, including Wnt signaling. However, its role in early embryonic signaling regulation remains unclear. Retinoic acid (RA) signaling plays a central role in vertebrate development. Using an in vivo biotin tagging technology, we mapped the genome-wide binding pattern of Pontin before and after RA-induced differentiation in the pluripotent embryo carcinoma cell line NTERA-2. Biotin ChIP-seq revealed significant changes in genome-wide Pontin binding sites upon RA stimulation. We also identified a substantial amount of overlapping binding peaks between Pontin and RARα, especially on all of the HOX gene loci (A-D clusters). Pontin knockdown experiments showed that its chromatin binding at the HOX gene clusters is required for RA-induced HOX gene expression. Furthermore, we performed Global Run-On sequencing (GRO-seq) to map de novo transcripts genome-wide and found that Pontin knockdown significantly diminished nascent HOX gene transcripts, indicating that Pontin regulates HOX gene expression at the transcriptional level. Finally, proteomic analysis demonstrated that Pontin associates with chromatin organization/remodeling complexes and various other functional complexes. Altogether, we have demonstrated that Pontin is a critical transcriptional co-activator for RA-induced HOX gene activation.
Collapse
Affiliation(s)
- Dan Tang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Emily Zboril
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael D Wetzel
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Zhang
- Jiangxi Institute of Respiratory Disease, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
9
|
Zheng J, Su G, Wang W, Zhao X, Liu M, Bi J, Zhao Z, Shi J, Lu W, Zhang L. Two Enhancers Regulate HoxB Genes Expression During Retinoic Acid-Induced Early Embryonic Stem Cells Differentiation Through Long-Range Chromatin Interactions. Stem Cells Dev 2021; 30:683-695. [PMID: 34030475 DOI: 10.1089/scd.2021.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Homeobox B cluster (HoxB) genes play important roles in retinoic acid (RA)-induced early embryonic stem cells (ESCs) differentiation. Knowledge of regulation network of HoxB is important to further unveil the mechanism of ESCs differentiation. In this study, we identified two enhancers that were activated by RA treatment and 4C data showed long-range interactions between HoxB genes and the two enhancers. CRISPR/Cas9-mediated individual or compound deletion of the two enhancers significantly inhibits HoxB gene expression, and transcriptome analysis revealed that RA-induced early ESCs differentiation was blocked in the enhancer KO cells. We propose new mechanism by which two enhancers regulate HoxB gene expression by different regulation modes during RA-induced early ESCs differentiation through long-range chromatin interactions.
Collapse
Affiliation(s)
- Jian Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guangsong Su
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Man Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinfang Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
10
|
CTCF-binding element regulates ESC differentiation via orchestrating long-range chromatin interaction between enhancers and HoxA. J Biol Chem 2021; 296:100413. [PMID: 33581110 PMCID: PMC7960549 DOI: 10.1016/j.jbc.2021.100413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Proper expression of Homeobox A cluster genes (HoxA) is essential for embryonic stem cell (ESC) differentiation and individual development. However, mechanisms controlling precise spatiotemporal expression of HoxA during early ESC differentiation remain poorly understood. Herein, we identified a functional CTCF-binding element (CBE+47) closest to the 3'-end of HoxA within the same topologically associated domain (TAD) in ESC. CRISPR-Cas9-mediated deletion of CBE+47 significantly upregulated HoxA expression and enhanced early ESC differentiation induced by retinoic acid (RA) relative to wild-type cells. Mechanistic analysis by chromosome conformation capture assay (Capture-C) revealed that CBE+47 deletion decreased interactions between adjacent enhancers, enabling formation of a relatively loose enhancer-enhancer interaction complex (EEIC), which overall increased interactions between that EEIC and central regions of HoxA chromatin. These findings indicate that CBE+47 organizes chromatin interactions between its adjacent enhancers and HoxA. Furthermore, deletion of those adjacent enhancers synergistically inhibited HoxA activation, suggesting that these enhancers serve as an EEIC required for RA-induced HoxA activation. Collectively, these results provide new insight into RA-induced HoxA expression during early ESC differentiation, also highlight precise regulatory roles of the CTCF-binding element in orchestrating high-order chromatin structure.
Collapse
|
11
|
Sun N, Dou X, Tang Z, Zhang D, Ni N, Wang J, Gao H, Ju Y, Dai X, Zhao C, Gu P, Ji J, Feng C. Bio-inspired chiral self-assemblies promoted neuronal differentiation of retinal progenitor cells through activation of metabolic pathway. Bioact Mater 2020; 6:990-997. [PMID: 33102941 PMCID: PMC7560590 DOI: 10.1016/j.bioactmat.2020.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
Retinal degeneration is a main class of ocular diseases. So far, retinal progenitor cell (RPC) transplantation has been the most potential therapy for it, in which promoting RPCs neuronal differentiation remains an unmet challenge. To address this issue, innovatively designed L/ d - phenylalanine based chiral nanofibers (LPG and DPG) are employed and it finds that chirality of fibers can efficiently regulate RPCs differentiation. qPCR, western blot, and immunofluorescence analysis show that right-handed helical DPG nanofibers significantly promote RPCs neuronal differentiation, whereas left-handed LPG nanofibers decrease this effect. These effects are mainly ascribed to the stereoselective interaction between chiral helical nanofibers and retinol-binding protein 4 (RBP4, a key protein in the retinoic acid (RA) metabolic pathway). The findings of chirality-dependent neuronal differentiation provide new strategies for treatment of neurodegenerative diseases via optimizing differentiation of transplanted stem cells on chiral nanofibers.
Collapse
Affiliation(s)
- Na Sun
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240, Shanghai, China
| | - Zhimin Tang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dandan Zhang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ni Ni
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiajing Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Huiqin Gao
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yahan Ju
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaochan Dai
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240, Shanghai, China
| | - Ping Gu
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jing Ji
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 200240, Shanghai, China
| |
Collapse
|
12
|
Liu W, Li N, Zhang M, Liu Y, Sun J, Zhang S, Peng S, Hua J. Eif2s3y regulates the proliferation of spermatogonial stem cells via Wnt6/<beta>-catenin signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118790. [PMID: 32621839 DOI: 10.1016/j.bbamcr.2020.118790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/06/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is globally expressed in all tissues and plays important roles in regulating global and gene-specific mRNA translation initiation. It has been noticed that Eif2s3y plays crucial roles in spermatogenesis, however, the mechanism remains unclear. In the current study, transgenic Eif2s3y mice were generated to test our hypothesis that the Eif2s3y promotes the proliferation of spermatogonial stem cells (SSCs). Transgenic Eif2s3y mouse had enhanced SSCs proliferation rate when compared to WT mouse. Interesting, the testes from transgenic Eif2s3y mouse had increased Active-β-catenin protein expression and higher expression pattern of Wnt ligand Wnt6 when compared to testes from WT mouse. This study revealed novel roles of Eif2s3y in the activation Wnt6/β-catenin signal pathway in SSCs. Taken together, we identified Eif2s3y-Wnt6-β-catenin as a critical pathway in the regulation of spermatogenesis, which provides a platform for investigating the molecular mechanisms of male reproduction.
Collapse
Affiliation(s)
- Wenqing Liu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuan Liu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Jing Sun
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi, China.
| |
Collapse
|
13
|
Ghasemi R, Struthers H, Wilson ER, Spencer DH. Contribution of CTCF binding to transcriptional activity at the HOXA locus in NPM1-mutant AML cells. Leukemia 2020; 35:404-416. [PMID: 32398790 PMCID: PMC7657955 DOI: 10.1038/s41375-020-0856-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
Abstract
Transcriptional regulation of the HOXA genes is thought to involve CTCF-mediated chromatin loops and the opposing actions of the COMPASS and Polycomb epigenetic complexes. We investigated the role of these mechanisms at the HOXA cluster in AML cells with the common NPM1c mutation, which express both HOXA and HOXB genes. CTCF binding at the HOXA locus is conserved across primary AML samples, regardless of HOXA gene expression, and defines a continuous chromatin domain marked by COMPASS-associated histone H3 trimethylation in NPM1-mutant primary AML samples. Profiling of the three-dimensional chromatin architecture in primary AML samples with the NPM1c mutation identified chromatin loops between the HOXA cluster and loci in the SNX10 and SKAP2 genes, and an intergenic region located 1.4 Mbp upstream of the HOXA locus. Deletion of CTCF binding sites in the NPM1-mutant OCI-AML3 AML cell line reduced multiple long-range interactions, but resulted in CTCF-independent loops with sequences in SKAP2 that were marked by enhancer-associated histone modifications in primary AML samples. HOXA gene expression was maintained in CTCF binding site mutants, indicating that transcriptional activity at the HOXA locus in NPM1-mutant AML cells may be sustained through persistent interactions with SKAP2 enhancers, or by intrinsic factors within the HOXA gene cluster.
Collapse
Affiliation(s)
- Reza Ghasemi
- Division of Oncology, Department of Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heidi Struthers
- Division of Oncology, Department of Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elisabeth R Wilson
- Division of Oncology, Department of Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Spencer
- Division of Oncology, Department of Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO, USA. .,McDonnell Genome Institute, Washington University, St. Louis, MO, USA.
| |
Collapse
|
14
|
A HOTAIR regulatory element modulates glioma cell sensitivity to temozolomide through long-range regulation of multiple target genes. Genome Res 2020; 30:155-163. [PMID: 31953347 PMCID: PMC7050528 DOI: 10.1101/gr.251058.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
Abstract
Temozolomide (TMZ) is a frequently used chemotherapy for glioma; however, chemoresistance is a major problem limiting its effectiveness. Thus, knowledge of mechanisms underlying this outcome could improve patient prognosis. Here, we report that deletion of a regulatory element in the HOTAIR locus increases glioma cell sensitivity to TMZ and alters transcription of multiple genes. Analysis of a combination of RNA-seq, Capture Hi-C, and patient survival data suggests that CALCOCO1 and ZC3H10 are target genes repressed by the HOTAIR regulatory element and that both function in regulating glioma cell sensitivity to TMZ. Rescue experiments and 3C data confirmed this hypothesis. We propose a new regulatory mechanism governing glioma cell TMZ sensitivity.
Collapse
|