1
|
Trasviña-Arenas C, Hashemian M, Malek M, Merrill S, Fisher AJ, David SS. Crystal structure of MutYX: A novel clusterless adenine DNA glycosylase with a distinct C-terminal domain and 8-Oxoguanine recognition sphere. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631205. [PMID: 39803464 PMCID: PMC11722440 DOI: 10.1101/2025.01.03.631205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events. Herein, we determined the first crystal structure of a clusterless MutY complexed with DNA. On the basis of the dramatic structural divergence from canonical MutYs, we refer to this as representative of a clusterless MutY subgroup "MutYX". Interestingly, MutYX compensates for the missing [4Fe-4S] cofactor to maintain positioning of catalytic residues by expanding a pre-existing α-helix and acquisition of the new α-helix. Surprisingly, MutYX also acquired a new C-terminal domain that uniquely recognizes OG using residue Gln201 and Arg209. Adenine glycosylase assays and binding affinity measurements indicate that Arg209 is the primary residue responsible to specificity for OG:A lesions, while Gln201 bridges OG and Arg209. Surprisingly, replacement of Arg209 and Gln201 with Ala increases activity toward G:A mismatches. The MutYX structure serves as an example of devolution, capturing structural features required to retain function in the absence of a metal cofactor considered indispensable.
Collapse
Affiliation(s)
- C.H. Trasviña-Arenas
- Department of Chemistry & Graduate Program in Chemistry and Chemical Biology, University of California, Davis, California, 95616, United States
- Current address; Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CIE-Cinvestav), Mexico City, 14330, Mexico
| | - Mohammad Hashemian
- Department of Chemistry & Graduate Program in Chemistry and Chemical Biology, University of California, Davis, California, 95616, United States
| | - Melody Malek
- Department of Chemistry & Graduate Program in Chemistry and Chemical Biology, University of California, Davis, California, 95616, United States
| | - Steven Merrill
- Department of Chemistry & Graduate Program in Chemistry and Chemical Biology, University of California, Davis, California, 95616, United States
| | - Andrew J. Fisher
- Department of Chemistry & Graduate Program in Chemistry and Chemical Biology, University of California, Davis, California, 95616, United States
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Sheila S. David
- Department of Chemistry & Graduate Program in Chemistry and Chemical Biology, University of California, Davis, California, 95616, United States
| |
Collapse
|
2
|
He C, He G, Feng Y. Structural basis of phage transcriptional regulation. Structure 2024; 32:1031-1039. [PMID: 39067444 DOI: 10.1016/j.str.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Phages are the most prevalent and diverse entities in the biosphere and represent the simplest systems that are capable of self-replication. Many fundamental concepts of transcriptional regulation were revealed through phage studies. The replication of phages within bacteria entails the hijacking of the host transcription machinery. Typically, this is accomplished through proteins and RNAs encoded by the phage genome that bind to the host RNA polymerase and modify its characteristics. Understanding these processes offers valuable insights into the mechanisms of bacterial transcription itself. Historically, X-ray crystallography has been the major tool for elucidating the structural basis of phage transcriptional regulation. In recent years, the application of cryoelectron microscopy has not only allowed the exploration of protein-protein and protein-nucleic acid interactions at near-atomic resolution but also captured transient intermediate states, further expanding our mechanistic understanding of phage transcriptional regulation.
Collapse
Affiliation(s)
- Chuchu He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guanchen He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging Injury Diseases of Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
3
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
4
|
Zhao M, Gao B, Wen A, Feng Y, Lu YQ. Structural basis of λCII-dependent transcription activation. Structure 2023; 31:968-974.e3. [PMID: 37269829 DOI: 10.1016/j.str.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
The CII protein of bacteriophage λ activates transcription from the phage promoters PRE, PI, and PAQ by binding to two direct repeats that straddle the promoter -35 element. Although genetic, biochemical, and structural studies have elucidated many aspects of λCII-mediated transcription activation, no precise structure of the transcription machinery in the process is available. Here, we report a 3.1-Å cryo-electron microscopy (cryo-EM) structure of an intact λCII-dependent transcription activation complex (TAC-λCII), which comprises λCII, E. coli RNAP-σ70 holoenzyme, and the phage promoter PRE. The structure reveals the interactions between λCII and the direct repeats responsible for promoter specificity and the interactions between λCII and RNAP α subunit C-terminal domain responsible for transcription activation. We also determined a 3.4-Å cryo-EM structure of an RNAP-promoter open complex (RPo-PRE) from the same dataset. Structural comparison between TAC-λCII and RPo-PRE provides new insights into λCII-dependent transcription activation.
Collapse
Affiliation(s)
- Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bo Gao
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou 310058, China.
| | - Yuan-Qiang Lu
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
5
|
Shi J, Wang L, Wen A, Wang F, Zhang Y, Yu L, Li F, Jin Y, Feng Z, Li J, Yang Y, Gao F, Zhang Y, Feng Y, Wang S, Zhao W, Lin W. Structural basis of three different transcription activation strategies adopted by a single regulator SoxS. Nucleic Acids Res 2022; 50:11359-11373. [PMID: 36243985 PMCID: PMC9638938 DOI: 10.1093/nar/gkac898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Transcription activation is established through extensive protein–protein and protein–DNA interactions that allow an activator to engage and remodel RNA polymerase. SoxS, a global transcription activator, diversely regulates subsets of stress response genes with different promoters, but the detailed SoxS-dependent transcription initiation mechanisms remain obscure. Here, we report cryo-EM structures of three SoxS-dependent transcription activation complexes (SoxS-TACI, SoxS-TACII and SoxS-TACIII) comprising of Escherichia coli RNA polymerase (RNAP), SoxS protein and three representative classes of SoxS-regulated promoters. The structures reveal that SoxS monomer orchestrates transcription initiation through specific interactions with the promoter DNA and different conserved domains of RNAP. In particular, SoxS is positioned in the opposite orientation in SoxS-TACIII to that in SoxS-TACI and SoxS-TACII, unveiling a novel mode of transcription activation. Strikingly, two universally conserved C-terminal domains of alpha subunit (αCTD) of RNAP associate with each other, bridging SoxS and region 4 of σ70. We show that SoxS interacts with RNAP directly and independently from DNA, remodeling the enzyme to activate transcription from cognate SoxS promoters while repressing transcription from UP-element containing promoters. Our data provide a comprehensive summary of SoxS-dependent promoter architectures and offer new insights into the αCTD contribution to transcription control in bacteria.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqiong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, 510631 Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, 510631 Guangzhou, Guangdong, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhen Feng
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujiao Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Gao
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Zhang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shuang Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210023, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Shi J, Wang F, Li F, Wang L, Xiong Y, Wen A, Jin Y, Jin S, Gao F, Feng Z, Li J, Zhang Y, Shang Z, Wang S, Feng Y, Lin W. Structural basis of transcription activation by Rob, a pleiotropic AraC/XylS family regulator. Nucleic Acids Res 2022; 50:5974-5987. [PMID: 35641097 PMCID: PMC9178005 DOI: 10.1093/nar/gkac433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Rob, which serves as a paradigm of the large AraC/XylS family transcription activators, regulates diverse subsets of genes involved in multidrug resistance and stress response. However, the underlying mechanism of how it engages bacterial RNA polymerase and promoter DNA to finely respond to environmental stimuli is still elusive. Here, we present two cryo-EM structures of Rob-dependent transcription activation complex (Rob-TAC) comprising of Escherichia coli RNA polymerase (RNAP), Rob-regulated promoter and Rob in alternative conformations. The structures show that a single Rob engages RNAP by interacting with RNAP αCTD and σ70R4, revealing their generally important regulatory roles. Notably, by occluding σ70R4 from binding to -35 element, Rob specifically binds to the conserved Rob binding box through its consensus HTH motifs, and retains DNA bending by aid of the accessory acidic loop. More strikingly, our ligand docking and biochemical analysis demonstrate that the large Rob C-terminal domain (Rob CTD) shares great structural similarity with the global Gyrl-like domains in effector binding and allosteric regulation, and coordinately promotes formation of competent Rob-TAC. Altogether, our structural and biochemical data highlight the detailed molecular mechanism of Rob-dependent transcription activation, and provide favorable evidences for understanding the physiological roles of the other AraC/XylS-family transcription factors.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Xiong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sha Jin
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fei Gao
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhen Feng
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Zhang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuo Shang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210023, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Huang C, Liu X, Chen Y, Zhou J, Li W, Ding N, Huang L, Chen J, Zhang Z. A Novel Family of Winged-Helix Single-Stranded DNA-Binding Proteins from Archaea. Int J Mol Sci 2022; 23:ijms23073455. [PMID: 35408816 PMCID: PMC8998557 DOI: 10.3390/ijms23073455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
The winged helix superfamily comprises a large number of structurally related nucleic acid-binding proteins. While these proteins are often shown to bind dsDNA, few are known to bind ssDNA. Here, we report the identification and characterization of Sul7s, a novel winged-helix single-stranded DNA binding protein family highly conserved in Sulfolobaceae. Sul7s from Sulfolobus islandicus binds ssDNA with an affinity approximately 15-fold higher than that for dsDNA in vitro. It prefers binding oligo(dT)30 over oligo(dC)30 or a dG-rich 30-nt oligonucleotide, and barely binds oligo(dA)30. Further, binding by Sul7s inhibits DNA strand annealing, but shows little effect on the melting temperature of DNA duplexes. The solution structure of Sul7s determined by NMR shows a winged helix-turn-helix fold, consisting of three α-helices, three β-strands, and two short wings. It interacts with ssDNA via a large positively charged binding surface, presumably resulting in ssDNA deformation. Our results shed significant light on not only non-OB fold single-stranded DNA binding proteins in Archaea, but also the divergence of the winged-helix proteins in both function and structure during evolution.
Collapse
Affiliation(s)
- Can Huang
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.H.); (W.L.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Xuehui Liu
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.L.); (Y.C.)
| | - Yuanyuan Chen
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.L.); (Y.C.)
| | - Junshi Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Wenqian Li
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.H.); (W.L.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Niannian Ding
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Chen
- MOE Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.H.); (W.L.)
- Correspondence: (J.C.); (Z.Z.); Tel.: +86-10-64806988 (Z.Z.)
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (J.Z.); (N.D.); (L.H.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.C.); (Z.Z.); Tel.: +86-10-64806988 (Z.Z.)
| |
Collapse
|
8
|
Müller AU, Kummer E, Schilling CM, Ban N, Weber-Ban E. Transcriptional control of mycobacterial DNA damage response by sigma adaptation. SCIENCE ADVANCES 2021; 7:eabl4064. [PMID: 34851662 PMCID: PMC8635444 DOI: 10.1126/sciadv.abl4064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
Transcriptional activator PafBC is the key regulator of the mycobacterial DNA damage response and controls around 150 genes, including genes involved in the canonical SOS response, through an unknown molecular mechanism. Using a combination of biochemistry and cryo–electron microscopy, we demonstrate that PafBC in the presence of single-stranded DNA activates transcription by reprogramming the canonical −10 and −35 promoter specificity of RNA polymerase associated with the housekeeping sigma subunit. We determine the structure of this transcription initiation complex, revealing a unique mode of promoter recognition, which we term “sigma adaptation.” PafBC inserts between DNA and sigma factor to mediate recognition of hybrid promoters lacking the −35 but featuring the canonical −10 and a PafBC-specific −26 element. Sigma adaptation may constitute a more general mechanism of transcriptional control in mycobacteria.
Collapse
|
9
|
Shi J, Li F, Wen A, Yu L, Wang L, Wang F, Jin Y, Jin S, Feng Y, Lin W. Structural basis of transcription activation by the global regulator Spx. Nucleic Acids Res 2021; 49:10756-10769. [PMID: 34530448 PMCID: PMC8501982 DOI: 10.1093/nar/gkab790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Spx is a global transcriptional regulator in Gram-positive bacteria and has been inferred to efficiently activate transcription upon oxidative stress by engaging RNA polymerase (RNAP) and promoter DNA. However, the precise mechanism by which it interacts with RNAP and promoter DNA to initiate transcription remains obscure. Here, we report the cryo-EM structure of an intact Spx-dependent transcription activation complex (Spx-TAC) from Bacillus subtilis at 4.2 Å resolution. The structure traps Spx in an active conformation and defines key interactions accounting for Spx-dependent transcription activation. Strikingly, an oxidized Spx monomer engages RNAP by simultaneously interacting with the C-terminal domain of RNAP alpha subunit (αCTD) and σA. The interface between Spx and αCTD is distinct from those previously reported activators, indicating αCTD as a multiple target for the interaction between RNAP and various transcription activators. Notably, Spx specifically wraps the conserved -44 element of promoter DNA, thereby stabilizing Spx-TAC. Besides, Spx interacts extensively with σA through three different interfaces and promotes Spx-dependent transcription activation. Together, our structural and biochemical results provide a novel mechanistic framework for the regulation of bacterial transcription activation and shed new light on the physiological roles of the global Spx-family transcription factors.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sha Jin
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| |
Collapse
|
10
|
Brodolin K, Morichaud Z. Region 4 of the RNA polymerase σ subunit counteracts pausing during initial transcription. J Biol Chem 2021; 296:100253. [PMID: 33380428 PMCID: PMC7948647 DOI: 10.1074/jbc.ra120.016299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/24/2023] Open
Abstract
All cellular genetic information is transcribed into RNA by multisubunit RNA polymerases (RNAPs). The basal transcription initiation factors of cellular RNAPs stimulate the initial RNA synthesis via poorly understood mechanisms. Here, we explored the mechanism employed by the bacterial factor σ in promoter-independent initial transcription. We found that the RNAP holoenzyme lacking the promoter-binding domain σ4 is ineffective in de novo transcription initiation and displays high propensity to pausing upon extension of RNAs 3 to 7 nucleotides in length. The nucleotide at the RNA 3' end determines the pause lifetime. The σ4 domain stabilizes short RNA:DNA hybrids and suppresses pausing by stimulating RNAP active-center translocation. The antipausing activity of σ4 is modulated by its interaction with the β subunit flap domain and by the σ remodeling factors AsiA and RbpA. Our results suggest that the presence of σ4 within the RNA exit channel compensates for the intrinsic instability of short RNA:DNA hybrids by increasing RNAP processivity, thus favoring productive transcription initiation. This "RNAP boosting" activity of the initiation factor is shaped by the thermodynamics of RNA:DNA interactions and thus, should be relevant for any factor-dependent RNAP.
Collapse
Affiliation(s)
- Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique, Univ Montpellier, Montpellier, France; Institut national de la santé et de la recherche médicale, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France.
| | - Zakia Morichaud
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique, Univ Montpellier, Montpellier, France
| |
Collapse
|
11
|
Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol 2020; 19:95-109. [PMID: 33122819 DOI: 10.1038/s41579-020-00450-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Transcription of DNA is a fundamental process in all cellular organisms. The enzyme responsible for transcription, RNA polymerase, is conserved in general architecture and catalytic function across the three domains of life. Diverse mechanisms are used among and within the different branches to regulate transcription initiation. Mechanistic studies of transcription initiation in bacteria are especially amenable because the promoter recognition and melting steps are much less complicated than in eukaryotes or archaea. Also, bacteria have critical roles in human health as pathogens and commensals, and the bacterial RNA polymerase is a proven target for antibiotics. Recent biophysical studies of RNA polymerases and their inhibition, as well as transcription initiation and transcription factors, have detailed the mechanisms of transcription initiation in phylogenetically diverse bacteria, inspiring this Review to examine unifying and diverse themes in this process.
Collapse
|
12
|
Vishwakarma RK, Brodolin K. The σ Subunit-Remodeling Factors: An Emerging Paradigms of Transcription Regulation. Front Microbiol 2020; 11:1798. [PMID: 32849409 PMCID: PMC7403470 DOI: 10.3389/fmicb.2020.01798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Transcription initiation is a key checkpoint and highly regulated step of gene expression. The sigma (σ) subunit of RNA polymerase (RNAP) controls all transcription initiation steps, from recognition of the -10/-35 promoter elements, upon formation of the closed promoter complex (RPc), to stabilization of the open promoter complex (RPo) and stimulation of the primary steps in RNA synthesis. The canonical mechanism to regulate σ activity upon transcription initiation relies on activators that recognize specific DNA motifs and recruit RNAP to promoters. This mini-review describes an emerging group of transcriptional regulators that form a complex with σ or/and RNAP prior to promoter binding, remodel the σ subunit conformation, and thus modify RNAP activity. Such strategy is widely used by bacteriophages to appropriate the host RNAP. Recent findings on RNAP-binding protein A (RbpA) from Mycobacterium tuberculosis and Crl from Escherichia coli suggest that activator-driven changes in σ conformation can be a widespread regulatory mechanism in bacteria.
Collapse
Affiliation(s)
- Rishi Kishore Vishwakarma
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
14
|
Wang Z, Liang Y, Liu H, Wang Y, Wang H, Liu B. Resonance assignments of bacteriophage SPO1 Gp49 protein. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:111-114. [PMID: 31939002 DOI: 10.1007/s12104-020-09929-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Recent applications of phage therapy in localized wound and drug-resistant bacterial infection have brought bacteriophage back to the spotlight. While these works demonstrated the safety and effectiveness of engineered bacteriophages in human patients, the exact molecular machinery behind the bacteria killing remains largely uncharacterized. This is particularly noticable outside Escherichia coli phages, as most studies are based on bacteriophages of this Gram-negative model bacterium. In the attempt to extent our understanding to the bacteriophage of Gram-positive bacteria, we chose the host hijacking module of Bacillus subtilis phage SPO1 for systemic functional and structural studies. Gp49, an acidic protein located within operon 4 of this module, is believed to have a role during the host takeover event. Here we describe the complete resonance assignment of Gp49, which shares no sequence homology with any known protein, as the basis for the structure determination and further mechanism study.
Collapse
Affiliation(s)
- Zhihao Wang
- BioBank, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yingzi Liang
- BioBank, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hui Liu
- BioBank, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yawen Wang
- BioBank, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bing Liu
- BioBank, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
15
|
Abstract
Bacteriophages employ small proteins to usurp host molecular machinery, thereby interfering with central metabolic processes in infected bacteria. Generally, phages inhibit or redirect host transcription to favor transcription of their own genomes. Mechanistic and structural studies of phage-modulated host transcription may provide inspirations for the development of novel antibacterial substances.
Collapse
Affiliation(s)
- Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|