1
|
Komkov AY, Urazbakhtin SZ, Saliutina MV, Komech EA, Shelygin YA, Nugmanov GA, Shubin VP, Smirnova AO, Bobrov MY, Tsukanov AS, Snezhkina AV, Kudryavtseva AV, Lebedev YB, Mamedov IZ. SeqURE - a new copy-capture based method for sequencing of unknown Retroposition events. Mob DNA 2020; 11:33. [PMID: 33317630 PMCID: PMC7734759 DOI: 10.1186/s13100-020-00228-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Background Retroelements (REs) occupy a significant part of all eukaryotic genomes including humans. The majority of retroelements in the human genome are inactive and unable to retrotranspose. Dozens of active copies are repressed in most normal tissues by various cellular mechanisms. These copies can become active in normal germline and brain tissues or in cancer, leading to new retroposition events. The consequences of such events and their role in normal cell functioning and carcinogenesis are not yet fully understood. If new insertions occur in a small portion of cells they can be found only with the use of specific methods based on RE enrichment and high-throughput sequencing. The downside of the high sensitivity of such methods is the presence of various artifacts imitating real insertions, which in many cases cannot be validated due to lack of the initial template DNA. For this reason, adequate assessment of rare (< 1%) subclonal cancer specific RE insertions is complicated. Results Here we describe a new copy-capture technique which we implemented in a method called SeqURE for Sequencing Unknown of Retroposition Events that allows for efficient and reliable identification of new genomic RE insertions. The method is based on the capture of copies of target molecules (copy-capture), selective amplification and sequencing of genomic regions adjacent to active RE insertions from both sides. Importantly, the template genomic DNA remains intact and can be used for validation experiments. In addition, we applied a novel system for testing method sensitivity and precisely showed the ability of the developed method to reliably detect insertions present in 1 out of 100 cells and a substantial portion of insertions present in 1 out of 1000 cells. Using advantages of the method we showed the absence of somatic Alu insertions in colorectal cancer samples bearing tumor-specific L1HS insertions. Conclusions This study presents the first description and implementation of the copy-capture technique and provides the first methodological basis for the quantitative assessment of RE insertions present in a small portion of cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-020-00228-6.
Collapse
Affiliation(s)
- Alexander Y Komkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. .,Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | | | - Maria V Saliutina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Yuri A Shelygin
- Ryzhikh National Medical Research Centre for Coloproctology of the Ministry of Health of Russia, Moscow, Russia
| | - Gaiaz A Nugmanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vitaliy P Shubin
- Ryzhikh National Medical Research Centre for Coloproctology of the Ministry of Health of Russia, Moscow, Russia
| | | | - Mikhail Y Bobrov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Alexey S Tsukanov
- Ryzhikh National Medical Research Centre for Coloproctology of the Ministry of Health of Russia, Moscow, Russia
| | - Anastasia V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuri B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. .,Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. .,V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia. .,Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Suntsova MV, Buzdin AA. Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics 2020; 21:535. [PMID: 32912141 PMCID: PMC7488140 DOI: 10.1186/s12864-020-06962-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Chimpanzees are the closest living relatives of humans. The divergence between human and chimpanzee ancestors dates to approximately 6,5-7,5 million years ago. Genetic features distinguishing us from chimpanzees and making us humans are still of a great interest. After divergence of their ancestor lineages, human and chimpanzee genomes underwent multiple changes including single nucleotide substitutions, deletions and duplications of DNA fragments of different size, insertion of transposable elements and chromosomal rearrangements. Human-specific single nucleotide alterations constituted 1.23% of human DNA, whereas more extended deletions and insertions cover ~ 3% of our genome. Moreover, much higher proportion is made by differential chromosomal inversions and translocations comprising several megabase-long regions or even whole chromosomes. However, despite of extensive knowledge of structural genomic changes accompanying human evolution we still cannot identify with certainty the causative genes of human identity. Most structural gene-influential changes happened at the level of expression regulation, which in turn provoked larger alterations of interactome gene regulation networks. In this review, we summarized the available information about genetic differences between humans and chimpanzees and their potential functional impacts on differential molecular, anatomical, physiological and cognitive peculiarities of these species.
Collapse
Affiliation(s)
- Maria V Suntsova
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow, Russia
| | - Anton A Buzdin
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow, Russia. .,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, Russia. .,Omicsway Corp, Walnut, CA, USA. .,Moscow Institute of Physics and Technology (National Research University), 141700, Moscow, Russia.
| |
Collapse
|
3
|
Komkov AY, Minervina AA, Nugmanov GA, Saliutina MV, Khodosevich KV, Lebedev YB, Mamedov IZ. An advanced enrichment method for rare somatic retroelement insertions sequencing. Mob DNA 2018; 9:31. [PMID: 30450130 PMCID: PMC6208084 DOI: 10.1186/s13100-018-0136-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background There is increasing evidence that the transpositional activity of retroelements (REs) is not limited to germ line cells, but often occurs in tumor and normal somatic cells. Somatic transpositions were found in several human tissues and are especially typical for the brain. Several computational and experimental approaches for detection of somatic retroelement insertions was developed in the past few years. These approaches were successfully applied to detect somatic insertions in clonally expanded tumor cells. At the same time, identification of somatic insertions presented in small proportion of cells, such as neurons, remains a considerable challenge. Results In this study, we developed a normalization procedure for library enrichment by DNA sequences corresponding to rare somatic RE insertions. Two rounds of normalization increased the number of fragments adjacent to somatic REs in the sequenced sample by more than 26-fold, and the number of identified somatic REs was increased by 8-fold. Conclusions The developed technique can be used in combination with vast majority of modern RE identification approaches and can dramatically increase their capacity to detect rare somatic RE insertions in different types of cells. Electronic supplementary material The online version of this article (10.1186/s13100-018-0136-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Y Komkov
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela str. 1, Moscow, 117997 Russia
| | - Anastasia A Minervina
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia
| | - Gaiaz A Nugmanov
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia
| | - Mariia V Saliutina
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia
| | - Konstantin V Khodosevich
- 3Biotech Research and Innovation Centre, Copenhagen University, Ole Maaløes Vej 5, Copenhagen, 2200 Denmark
| | - Yuri B Lebedev
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia
| | - Ilgar Z Mamedov
- 1Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya str. 16/10, Moscow, 117997 Russia.,4Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997 Russia
| |
Collapse
|
4
|
Suntsova M, Garazha A, Ivanova A, Kaminsky D, Zhavoronkov A, Buzdin A. Molecular functions of human endogenous retroviruses in health and disease. Cell Mol Life Sci 2015; 72:3653-75. [PMID: 26082181 PMCID: PMC11113533 DOI: 10.1007/s00018-015-1947-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022]
Abstract
Human endogenous retroviruses (HERVs) and related genetic elements form 504 distinct families and occupy ~8% of human genome. Recent success of high-throughput experimental technologies facilitated understanding functional impact of HERVs for molecular machinery of human cells. HERVs encode active retroviral proteins, which may exert important physiological functions in the body, but also may be involved in the progression of cancer and numerous human autoimmune, neurological and infectious diseases. The spectrum of related malignancies includes, but not limits to, multiple sclerosis, psoriasis, lupus, schizophrenia, multiple cancer types and HIV. In addition, HERVs regulate expression of the neighboring host genes and modify genomic regulatory landscape, e.g., by providing regulatory modules like transcription factor binding sites (TFBS). Indeed, recent bioinformatic profiling identified ~110,000 regulatory active HERV elements, which formed at least ~320,000 human TFBS. These and other peculiarities of HERVs might have played an important role in human evolution and speciation. In this paper, we focus on the current progress in understanding of normal and pathological molecular niches of HERVs, on their implications in human evolution, normal physiology and disease. We also review the available databases dealing with various aspects of HERV genetics.
Collapse
Affiliation(s)
- Maria Suntsova
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.
| | - Andrew Garazha
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.
| | - Alena Ivanova
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
| | - Dmitry Kaminsky
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
| | - Alex Zhavoronkov
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
- Department of Translational and Regenerative Medicine, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow, 141700, Russia.
| | - Anton Buzdin
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, 1, Akademika Kurchatova sq., Moscow, 123182, Russia.
| |
Collapse
|
5
|
Macfarlane CM, Badge RM. Genome-wide amplification of proviral sequences reveals new polymorphic HERV-K(HML-2) proviruses in humans and chimpanzees that are absent from genome assemblies. Retrovirology 2015; 12:35. [PMID: 25927962 PMCID: PMC4422153 DOI: 10.1186/s12977-015-0162-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, the human population census of proviruses of the Betaretrovirus-like human endogenous retroviral (HERV-K) (HML-2) family has been compiled from a limited number of complete genomes, making it certain that rare polymorphic loci are under-represented and are yet to be described. RESULTS Here we describe a suppression PCR-based method called genome-wide amplification of proviral sequences (GAPS) that selectively amplifies DNA fragments containing the termini of HERV-K(HML-2) proviral sequences and their flanking genomic sequences. We analysed the HERV-K(HML-2) proviral content of 101 unrelated humans, 4 common chimpanzees and three centre d'etude du polymorphisme humain (CEPH) pedigrees (44 individuals). The technique isolated HERV-K(HML-2) proviruses that had integrated in the genomes of the great apes throughout their divergence and included evolutionarily young elements still unfixed for presence/absence. CONCLUSIONS By examining the HERV-K(HML-2) proviral content of 145 humans we detected a new insertionally polymorphic Type I HERV-K(HML-2) provirus. We also observed provirus versus solo long terminal repeat (LTR) polymorphism within humans at a previously unreported, but ancient, locus. Finally, we report two novel chimpanzee specific proviruses, one of which is dimorphic for a provirus versus solo LTR. Thus GAPS enables the isolation of uncharacterised HERV-K(HML-2) proviral sequences and provides a direct means to assess inter-individual genetic variation associated with HERV-K(HML-2) proviruses.
Collapse
Affiliation(s)
- Catriona M Macfarlane
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Richard M Badge
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
6
|
The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS One 2015; 10:e0117854. [PMID: 25689626 PMCID: PMC4331437 DOI: 10.1371/journal.pone.0117854] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/04/2015] [Indexed: 01/19/2023] Open
Abstract
Retroelement activity is a common source of polymorphisms in human genome. The mechanism whereby retroelements contribute to the intraindividual genetic heterogeneity by inserting into the DNA of somatic cells is gaining increasing attention. Brain tissues are suspected to accumulate genetic heterogeneity as a result of the retroelements somatic activity. This study aims to expand our understanding of the role retroelements play in generating somatic mosaicism of neural tissues. Whole-genome Alu and L1 profiling of genomic DNA extracted from the cerebellum, frontal cortex, subventricular zone, dentate gyrus, and the myocardium revealed hundreds of somatic insertions in each of the analyzed tissues. Interestingly, the highest concentration of such insertions was detected in the dentate gyrus—the hotspot of adult neurogenesis. Insertions of retroelements and their activity could produce genetically diverse neuronal subsets, which can be involved in hippocampal-dependent learning and memory.
Collapse
|
7
|
Kurnosov AA, Ustiugova SV, Pogorelyĭ MV, Komkov AI, Bolotin DA, Khodosevich KV, Mamedov IZ, Lebedev IB. [A novel approach to identification of somatic retroelements' insertions in human genome]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 39:466-76. [PMID: 24707728 DOI: 10.1134/s1068162013040110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The activity of retroelements is one of the factors leading to genetic variability of the modern humans. Insertions of retroelements may result in alteration of gene expression and functional diversity between cells. In recent years an increasing amount of data indicating an elevated level of retroelements' mobilisation in some human and animal tissues has been reported. Therefore, the development of a system for the detection of somatic retroposition events is required. Here we describe a novel approach to the whole-genome identification of somatic retroelemts' insertions in human genome. The developed approach was applied for the comparisons of somatic mosaicism levels in two tissues of the investigated individual. A total of 3410 insertions of retroelements belonging to AluYa5 subfamily were identified.
Collapse
|
8
|
Sistiaga-Poveda M, Jugo BM. Evolutionary dynamics of endogenous Jaagsiekte sheep retroviruses proliferation in the domestic sheep, mouflon and Pyrenean chamois. Heredity (Edinb) 2014; 112:571-8. [PMID: 24690757 DOI: 10.1038/hdy.2013.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 10/22/2013] [Accepted: 11/13/2013] [Indexed: 11/10/2022] Open
Abstract
The oncogenic exogenous Jaagsiekte sheep retrovirus (JSRV), responsible for ovine pulmonary adenocarcinoma, has several endogenous counterparts termed enJSRVs. Although many of these elements have been inactivated over time by the accumulation of deleterious mutations or internal recombination leading to solo long terminal repeat (LTR) formation, several members of enJSRVs have been identified as nearly intact and probably represent recent integration events. To determine the level of enJSRV polymorphism in the sheep population and related species, we have undertaken a study by characterizing enJSRVs copies and independent integration sites in six domestic sheep and two wild species of the sheep lineage. enJSRVs copies were detected by amplifying the env-LTR region by PCR, and for the detection of the insertion sites, we used two approaches: (1) an in silico approach based on the recently published Sheep Reference Genome Assembly (OARv3.0) and (2) an experimental approach based on PCR suppression and inverse PCR techniques. In total, 103 enJSRV sequences were generated across 10 individuals and enJSRV integrations were found on 11 of the 28 sheep chromosomes. These findings suggest that there are still uncharacterized enJSRVs, and that some of the integration sites are variable among the different species, breeds of the same species, subspecies and geographic locations.
Collapse
Affiliation(s)
- M Sistiaga-Poveda
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - B M Jugo
- Genetics, Physical Anthropology and Animal Physiology Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
9
|
Agoni L, Lenz J, Guha C. Variant splicing and influence of ionizing radiation on human endogenous retrovirus K (HERV-K) transcripts in cancer cell lines. PLoS One 2013; 8:e76472. [PMID: 24204631 PMCID: PMC3799738 DOI: 10.1371/journal.pone.0076472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/27/2013] [Indexed: 11/17/2022] Open
Abstract
Human endogenous retrovirus K (HERV-K) is the most intact retrovirus in the human genome. There are multiple full-length or near full-length HERV-K proviruses in it. To analyze which HERV-K proviruses give rise to viral transcripts in cancer cell lines and to test whether ionizing radiation can alter the levels of HERV-K transcripts, RT-PCR studies were undertaken using multiple human cancer cell lines. Primers from several positions in the viral genome were used and included pairs designed to cross splice junctions in viral RNAs. In the absence of ionizing radiation, transcripts were detected from multiple HERV-K proviruses in cell lines from human prostate, cervical, head and neck, or breast cancers, and the proviruses from which the transcripts originated varied among the different lines. Only one of 13 cell lines tested (cervical cancer line C33A) failed to show HERV-K transcripts. Spliced RNAs detected included viral RNAs spliced as expected at the conventional viral splice sites, plus several alternatively spliced RNAs. Alternatively spliced transcripts arose from specific proviruses, and were detected in most of the cell lines used. Quantitative RT-PCR was performed to assess the effects of ionizing radiation. These analyses showed that HERV-K transcripts were elevated in four of twelve lines tested, specifically all three prostate cancer lines used and one breast cancer line. The increases were transient, peaking at 24 hours following a single dose of gamma-irradiation that ranged from 2.5 to 20 Gy, and returning to baseline levels by 72 hours. In summary, these studies showed that ionizing radiation can affect the levels of HERV-K transcripts in cells, and these effects vary among different cells. The changes in HERV-K transcript levels might affect multiple biological processes in cells, and future studies of the effects of ionizing radiation on HERV-K are worth pursuing.
Collapse
Affiliation(s)
- Lorenzo Agoni
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | | |
Collapse
|
10
|
Agoni L, Guha C, Lenz J. Detection of Human Endogenous Retrovirus K (HERV-K) Transcripts in Human Prostate Cancer Cell Lines. Front Oncol 2013; 3:180. [PMID: 23847768 PMCID: PMC3705622 DOI: 10.3389/fonc.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are transcribed in many cancers including prostate cancer. Human endogenous retrovirus K (HERV-K) of the HML2 subtype is the most recently integrated and most intact retrovirus in the human genome, with many of the viral genomes encoding full- or partial-length viral proteins. To assess transcripts of HERV-K in prostate cancer cell lines and identify the specific HERV-K elements in the human genome that are transcribed, reverse transcriptase-PCR (RT-PCR) and cDNA sequencing were undertaken. Strand-specific RT-PCR, plasmid subcloning, and cDNA sequencing detected the presence of HERV-K(HML2) coding strand transcripts within four prostate cell lines (LNCaP, DU145, PC3, and VCaP). RT-PCR across splice junctions revealed splicing variants for env gene mRNA in three cell lines, two involving previously undescribed alternative splice sites. To determine the HERV-K loci from which the transcripts arose, RepeatMasker was used to compile a list of over 200 HERV-K internal genome segment fragments and over 1,000 HERV-K solo long terminal repeat (LTR) fragments in the human genome. Surprisingly, the sequences identified from internal positions of the viral genome were mostly smaller segments, while the LTRs were relatively intact. Possible reasons for this are discussed. The transcripts in the cell lines tested, arose from several HERV-K loci, with some proviruses being detected in multiple cell lines and others in only one of the four used. In some instances, transcripts from viral antisense strands was also detected. In addition, transcripts from both strands of solo LTRs were detected. These data show that transcripts from HERV-K loci commonly occur in prostate cancer cell lines and that transcription of either strand can occur. They also emphasize the importance of single nucleotide level analysis to identify the specific, individual HERV-K loci that are transcribed, and indicate that HERV-K expression in prostate cancer warrants further study.
Collapse
Affiliation(s)
- Lorenzo Agoni
- Department of Pathology, Albert Einstein College of Medicine , Bronx, NY , USA
| | | | | |
Collapse
|
11
|
Baskaev K, Garazha A, Gaifullin N, Suntsova MV, Zabolotneva AA, Buzdin AA. nMETR: technique for facile recovery of hypomethylation genomic tags. Gene 2012; 498:75-80. [PMID: 22353364 DOI: 10.1016/j.gene.2012.01.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 11/27/2022]
Abstract
Genome-wide methylation studies frequently lack adequate controls to estimate proportions of background reads in the resulting datasets. To generate appropriate control pools, we developed technique termed nMETR (non-methylated tag recovery) based on digestion of genomic DNA with methylation-sensitive restriction enzyme, ligation of adapter oligonucleotide and PCR amplification of non-methylated sites associated with genomic repetitive elements. The protocol takes only two working days to generate amplicons for deep sequencing. We applied nMETR for human DNA using BspFNI enzyme and retrotransposon Alu-specific primers. 454-sequencing enabled identification of 1113 nMETR tag sites, of them ~65% were parts of CpG islands. Representation of reads inversely correlated with methylation levels, thus confirming nMETR fidelity. We created software that eliminates background reads and enables to map and annotate individual tags on human genome. nMETR tags may serve as the controls for large-scale epigenetic studies and for identifying unmethylated transposable elements located close to genomic CpG islands.
Collapse
Affiliation(s)
- Konstantin Baskaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow 117997, Russia
| | | | | | | | | | | |
Collapse
|
12
|
Singh V, Mishra RK. RISCI--Repeat Induced Sequence Changes Identifier: a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify repeat induced sequence changes in closely related genomes. BMC Bioinformatics 2010; 11:609. [PMID: 21184688 PMCID: PMC3024322 DOI: 10.1186/1471-2105-11-609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/26/2010] [Indexed: 01/19/2023] Open
Abstract
Background - The availability of multiple whole genome sequences has facilitated in silico identification of fixed and polymorphic transposable elements (TE). Whereas polymorphic loci serve as makers for phylogenetic and forensic analysis, fixed species-specific transposon insertions, when compared to orthologous loci in other closely related species, may give insights into their evolutionary significance. Besides, TE insertions are not isolated events and are frequently associated with subtle sequence changes concurrent with insertion or post insertion. These include duplication of target site, 3' and 5' flank transduction, deletion of the target locus, 5' truncation or partial deletion and inversion of the transposon, and post insertion changes like inter or intra element recombination, disruption etc. Although such changes have been studied independently, no automated platform to identify differential transposon insertions and the associated array of sequence changes in genomes of the same or closely related species is available till date. To this end, we have designed RISCI - 'Repeat Induced Sequence Changes Identifier' - a comprehensive, comparative genomics-based, in silico subtractive hybridization pipeline to identify differential transposon insertions and associated sequence changes using specific alignment signatures, which may then be examined for their downstream effects. Results - We showcase the utility of RISCI by comparing full length and truncated L1HS and AluYa5 retrotransposons in the reference human genome with the chimpanzee genome and the alternate human assemblies (Celera and HuRef). Comparison of the reference human genome with alternate human assemblies using RISCI predicts 14 novel polymorphisms in full length L1HS, 24 in truncated L1HS and 140 novel polymorphisms in AluYa5 insertions, besides several insertion and post insertion changes. We present comparison with two previous studies to show that RISCI predictions are broadly in agreement with earlier reports. We also demonstrate its versatility by comparing various strains of Mycobacterium tuberculosis for IS 6100 insertion polymorphism. Conclusions - RISCI combines comparative genomics with subtractive hybridization, inferring changes only when exclusive to one of the two genomes being compared. The pipeline is generic and may be applied to most transposons and to any two or more genomes sharing high sequence similarity. Such comparisons, when performed on a larger scale, may pull out a few critical events, which may have seeded the divergence between the two species under comparison.
Collapse
Affiliation(s)
- Vipin Singh
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | |
Collapse
|
13
|
Khodosevich K, Lebedev Y, Sverdlov E. Endogenous retroviruses and human evolution. Comp Funct Genomics 2010; 3:494-8. [PMID: 18629260 PMCID: PMC2448423 DOI: 10.1002/cfg.216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 10/09/2002] [Indexed: 11/12/2022] Open
Abstract
Humans share about 99% of their genomic DNA with chimpanzees and bonobos; thus, the differences between these species are unlikely to be in gene content but could be
caused by inherited changes in regulatory systems. Endogenous retroviruses (ERVs)
comprise ∼ 5% of the human genome. The LTRs of ERVs contain many regulatory
sequences, such as promoters, enhancers, polyadenylation signals and factor-binding
sites. Thus, they can influence the expression of nearby human genes. All known
human-specific LTRs belong to the HERV-K (human ERV) family, the most active
family in the human genome. It is likely that some of these ERVs could have integrated
into regulatory regions of the human genome, and therefore could have had an impact
on the expression of adjacent genes, which have consequently contributed to human
evolution. This review discusses possible functional consequences of ERV integration
in active coding regions.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 16/10 Miklukho-Maklaya, Moscow 117997, Russia.
| | | | | |
Collapse
|
14
|
Amosova AL, Komkov AI, Ustiugova SV, Mamedov IZ, Lebedev IB. [Retroposons in modern human genome evolution]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 35:779-88. [PMID: 20208577 DOI: 10.1134/s1068162009060053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ascertainment of the rates and driving forces of human genome evolution along with the genetic diversity of populations or separate population groups remains a topical problem of fundamental and applied genomics. According to the results of comparative analysis, the most numerous human genome structure peculiarities are connected with the distribution of mobile genetic retroelements - LTR, LINE1, SVA, and Alu repeats. Due to the wide distribution in different genome loci, conversed retropositional activity, and the retroelements regulatory potential, let us regard them as one of the significant evolutionary driving forces and the source of human genome variability. In the current review, we summarize published data and recent results of our research aimed at the analysis of the evolutionary impact of the young retroelements group on the function and variability of the human genome. We examine modern approaches of the polygenomic identification of polymorphic retroelements inserts. Using an original Internet resource, we analyze special features of the genomic polymorphic inserts of Alu repeats. We thoroughly characterize the strategy of large-scale functional analysis of polymorphic retroelement inserts. The presented results confirm the hypothesis of the roles of retroelements as active cis regulatory elements that are able to modulate surrounding genes.
Collapse
|
15
|
Mamedov IZ, Shagina IA, Kurnikova MA, Novozhilov SN, Shagin DA, Lebedev YB. A new set of markers for human identification based on 32 polymorphic Alu insertions. Eur J Hum Genet 2010; 18:808-14. [PMID: 20179741 DOI: 10.1038/ejhg.2010.22] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A number of genetic systems for human genetic identification based on short tandem repeats or single nucleotide polymorphisms are widely used for crime detection, kinship studies and in analysis of victims of mass disasters. Here, we have developed a new set of 32 molecular genetic markers for human genetic identification based on polymorphic retroelement insertions. Allele frequencies were determined in a group of 90 unrelated individuals from four genetically distant populations of the Russian Federation. The mean match probability and probability of paternal exclusion, calculated based on population data, were 5.53 x 10(-14) and 99.784%, respectively. The developed system is cheap and easy to use as compared to all previously published methods. The application of fluorescence-based methods for allele discrimination allows to use the human genetic identification set in automatic and high-throughput formats.
Collapse
Affiliation(s)
- Ilgar Z Mamedov
- Laboratory of Comparative and Functional Genomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
16
|
Mamedov IZ, Amosova AL, Fisunov GY, Lebedev YB. A new polymorphic retroelement database (PRED) for the human genome. Mol Biol 2008. [DOI: 10.1134/s0026893308040213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Takabatake T, Ishihara H, Ohmachi Y, Tanaka I, Nakamura MM, Fujikawa K, Hirouchi T, Kakinuma S, Shimada Y, Oghiso Y, Tanaka K. Microarray-based global mapping of integration sites for the retrotransposon, intracisternal A-particle, in the mouse genome. Nucleic Acids Res 2008; 36:e59. [PMID: 18450814 PMCID: PMC2425471 DOI: 10.1093/nar/gkn235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian genomes contain numerous evolutionary harbored mobile elements, a part of which are still active and may cause genomic instability. Their movement and positional diversity occasionally result in phenotypic changes and variation by causing altered expression or disruption of neighboring host genes. Here, we describe a novel microarray-based method by which dispersed genomic locations of a type of retrotransposon in a mammalian genome can be identified. Using this method, we mapped the DNA elements for a mouse retrotransposon, intracisternal A-particle (IAP), within genomes of C3H/He and C57BL/6J inbred mouse strains; consequently we detected hundreds of probable IAP cDNA-integrated genomic regions, in which a considerable number of strain-specific putative insertions were included. In addition, by comparing genomic DNAs from radiation-induced myeloid leukemia cells and its reference normal tissue, we detected three genomic regions around which an IAP element was integrated. These results demonstrate the first successful genome-wide mapping of a retrotransposon type in a mammalian genome.
Collapse
Affiliation(s)
- Takashi Takabatake
- Department of Radiobiology, Institute for Environmental Sciences, 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E. At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J Virol 2006; 80:10752-62. [PMID: 17041225 PMCID: PMC1641792 DOI: 10.1128/jvi.00871-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report the first genome-wide comparison of in vivo promoter activities of a group of human-specific endogenous retroviruses in healthy and cancerous germ line tissues. To this end, we employed a recently developed technique termed genomic repeat expression monitoring. We found that at least 50% of human-specific long terminal repeats (LTRs) possessed promoter activity, and many of them were up- or downregulated in a seminoma. Individual LTRs were expressed at markedly different levels, ranging from approximately 0.001 to approximately 3% of the housekeeping beta-actin gene transcript level. We demonstrated that the main factors affecting the LTR promoter activity were the LTR type (5'-proviral, 3' proviral, or solitary) and position with regard to genes. The averaged promoter strengths of solitary and 3'-proviral LTRs were almost identical in both tissues, whereas 5'-proviral LTRs displayed two- to fivefold higher promoter activities. The relative content of promoter-active LTRs in gene-rich regions was significantly higher than that in gene-poor loci. This content was maximal in those regions where LTRs "overlapped" readthrough transcripts. Although many promoter-active LTRs were mapped near known genes, no clear-cut correlation was observed between transcriptional activities of genes and neighboring LTRs. Our data also suggest a selective suppression of transcription for LTRs located in gene introns.
Collapse
Affiliation(s)
- Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow 117997, Russia.
| | | | | | | |
Collapse
|
19
|
Abstract
Mobile elements represent a unique and under-utilized set of tools for molecular ecologists. They are essentially homoplasy-free characters with the ability to be genotyped in a simple and efficient manner. Interpretation of the data generated using mobile elements can be simple compared to other genetic markers. They exist in a wide variety of taxa and are useful over a wide selection of temporal ranges within those taxa. Furthermore, their mode of evolution instills them with another advantage over other types of multilocus genotype data: the ability to determine loci applicable to a range of time spans in the history of a taxon. In this review, I discuss the application of mobile element markers, especially short interspersed elements (SINEs), to phylogenetic and population data, with an emphasis on potential applications to molecular ecology.
Collapse
Affiliation(s)
- David A Ray
- Department of Biology, West Virginia University, 53 Campus Dr, Morgantown, WV 26506, USA.
| |
Collapse
|
20
|
Kovalskaya E, Buzdin A, Gogvadze E, Vinogradova T, Sverdlov E. Functional human endogenous retroviral LTR transcription start sites are located between the R and U5 regions. Virology 2006; 346:373-8. [PMID: 16337666 DOI: 10.1016/j.virol.2005.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/10/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
Human endogenous retroviruses (HERVs) occupy about 5% of human DNA and are thought to be remnants of ancient retroviral infections of human ancestors' germ cells. HERVs can modify expression of host cell genes through their cis-regulatory elements concentrated in their long terminal repeats (LTRs). Although numerous HERV-related RNAs were identified in the human transcriptome, for most of them, it remains unclear whether they are LTR-promoted or read-through products initiated from neighboring genomic promoters. Here, we describe mapping of transcriptional start sites within solitary and proviral LTRs of the HERV-K (HML-2) human-specific subfamily of endogenous retroviruses. Surprisingly, the transcription was initiated predominantly from the very 3' termini of the LTR R regions. The data presented here may shed light on adaptive coevolution of human endogenous retroviruses with their host cells.
Collapse
Affiliation(s)
- Elena Kovalskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow 117997, Russia
| | | | | | | | | |
Collapse
|
21
|
Buzdin A, Vinogradova T, Lebedev Y, Sverdlov E. Genome-wide experimental identification and functional analysis of human specific retroelements. Cytogenet Genome Res 2005; 110:468-74. [PMID: 16093700 DOI: 10.1159/000084980] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 12/18/2003] [Indexed: 12/24/2022] Open
Abstract
Retroelements (REs) actively reshape genomes through genomic rearrangements, creation of new genes and modulation of the regulatory machinery of existing genes, thus introducing genomic novelties which potentially may be subject to natural selection. Thousands of RE integrations, presumably distinguishing the human and chimpanzee genomes, might well be involved in modern human speciation. In this self-review we describe our recent results on genome-wide identification of human specific RE integrations and their transcriptional activity obtained with three new experimental techniques (TGDA, DiffIR and SDDIR) developed by us for such studies. A new mechanism of the formation of retroelements involving template switches during L1-mediated mRNA reverse transcription, revealed in this research, will also be described in the review.
Collapse
Affiliation(s)
- A Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | |
Collapse
|
22
|
Macfarlane C, Simmonds P. Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations. J Mol Evol 2005; 59:642-56. [PMID: 15693620 DOI: 10.1007/s00239-004-2656-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient germ cell infection by exogenous retroviruses and occupy up to 8% of the human genome. It has been suggested that HERV sequences have contributed to primate evolution by regulating the expression of cellular genes and mediating chromosome rearrangements. After integration approximately 28 million years ago, members of the HERV-K (HML-2) family have continued to amplify and recombine. To investigate the utility of HML-2 polymorphisms as markers for the study of more recent human evolution, we compiled a list of the structure and integration sites of sequences that are unique to humans and screened each insertion for polymorphism within the human genome databases. Of the total of 74 HML-2 sequences, 18 corresponded to complete or near-complete proviruses, 49 were solitary long terminal repeats (LTRs), 6 were incomplete LTRs, and 1 was a SVA retrotransposon. A number of different allelic configurations were identified including the alternation of a provirus and solitary LTR. We developed polymerase chain reaction-based assays for seven HML-2 loci and screened 109 human DNA samples from Africa, Europe, Asia, and Southeast Asia. Our results indicate that the diversity of HML-2 elements is higher in African than non-African populations, with population differentiation values ranging from 0.6 to 9.8%. These findings denote a recent expansion from Africa. We compare the phylogenetic relationships of HML-2 sequences that are unique to humans and consider whether these elements have played a role in the remodeling of the hominid genome.
Collapse
Affiliation(s)
- Catriona Macfarlane
- Center for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh, Scotland EH9 1QH, UK.
| | | |
Collapse
|
23
|
Mamedov IZ, Arzumanyan ES, Amosova AL, Lebedev YB, Sverdlov ED. Whole-genome experimental identification of insertion/deletion polymorphisms of interspersed repeats by a new general approach. Nucleic Acids Res 2005; 33:e16. [PMID: 15673711 PMCID: PMC548376 DOI: 10.1093/nar/gni018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new experimental technique for genome-wide detection of integration sites of polymorphic retroelements (REs) is described. The technique allows one to reveal the absence of a retroelement in an individual genome provided that this retroelement is present in at least one of several other genomes under comparison. Since quite a number of genomes are compared simultaneously, the search for polymorphic REs insertions is very efficient. The technique includes two whole-genome selective PCR amplifications of sequences flanking REs: one for a particular genome and another one for a mixture of ten different genomes. A subsequent subtractive hybridization of the obtained amplicons with DNA of a particular genome as driver results in isolation of polymorphic insertions. The technique was successfully applied for identification of 41 new polymorphic human AluYa5/Ya8 insertions. Among them, 18 individual Alu elements first sequenced in this work were not found in the available human genome databases. This result suggests that significant part of polymorphic REs were not identified during genome sequencing and remain to be detected and characterized. The proposed method does not depend on preliminary knowledge of evolutionary history of retroelements and can be applied for identification of insertion/deletion polymorphic markers in genomes of different species.
Collapse
Affiliation(s)
- Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia.
| | | | | | | | | |
Collapse
|
24
|
Mamedov I, Lebedev Y, Hunsmann G, Khusnutdinova E, Sverdlov E. A rare event of insertion polymorphism of a HERV-K LTR in the human genome. Genomics 2005; 84:596-9. [PMID: 15498467 DOI: 10.1016/j.ygeno.2004.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
Human endogenous retroviruses (HERVs), which constitute a significant part of the human genome, might have a serious impact on primate evolution. Over a hundred insertions of HERV-K(HML-2) family members distinguish the human genome from other primate genomes. However, only three cases of insertion polymorphisms have been reported so far, all for endogenous HERV-K proviruses. This suggests that some retroviral integrations occurred rather recently in human genome evolution. In this report, we describe a very rare case of true insertion polymorphism of a solitary HERV-K LTR in the human genome. Distribution of the LTR-containing allele was tested in 5 Africans and 83 individuals from three Russian populations. The allele frequency appeared to be relatively high in populations of both European and Asian origin. The detected polymorphic LTR could be a useful molecular genetic marker of the corresponding genomic region.
Collapse
Affiliation(s)
- I Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, 117997 Moscow, Russia.
| | | | | | | | | |
Collapse
|
25
|
Mamedov IZ, Lebedev YB, Sverdlov ED. Unusually long target site duplications flanking some of the long terminal repeats of human endogenous retrovirus K in the human genome. J Gen Virol 2004; 85:1485-1488. [PMID: 15166432 DOI: 10.1099/vir.0.19717-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs) make up a substantial part of the human genome. HERVs and solitary long terminal repeats (solo LTRs) are usually flanked by 4–6 nt short direct repeats through the well-known mechanism of their integration. A number of solo LTRs flanked by unusually long direct repeats were detected in the human genome. These unusual structures might be a product of an alternative virus insertion mechanism.
Collapse
Affiliation(s)
- Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Yuri B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Eugene D Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| |
Collapse
|
26
|
Badge RM, Alisch RS, Moran JV. ATLAS: a system to selectively identify human-specific L1 insertions. Am J Hum Genet 2003; 72:823-38. [PMID: 12632328 PMCID: PMC1180347 DOI: 10.1086/373939] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Accepted: 12/30/2002] [Indexed: 11/03/2022] Open
Abstract
Retrotransposition of L1 LINEs (long interspersed elements) continues to sculpt the human genome. However, because recent insertions are dimorphic, they are not fully represented in sequence databases. Here, we have developed a system, termed "ATLAS" (amplification typing of L1 active subfamilies), that enables the selective amplification and display of DNA fragments containing the termini of human-specific L1s and their respective flanking sequences. We demonstrate that ATLAS is robust and that the resultant display patterns are highly reproducible, segregate in Centre d'Etude du Polymorphisme Humain pedigrees, and provide an individual-specific fingerprint. ATLAS also allows the identification of L1s that are absent from current genome databases, and we show that some of these L1s can retrotranspose at high frequencies in cultured human cells. Finally, we demonstrate that ATLAS also can identify single-nucleotide polymorphisms within a subset of older, primate-specific L1s. Thus, ATLAS provides a simple, high-throughput means to assess genetic variation associated with L1 retrotransposons.
Collapse
Affiliation(s)
- Richard M. Badge
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor; and Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Reid S. Alisch
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor; and Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - John V. Moran
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor; and Department of Genetics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
27
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2447381 DOI: 10.1002/cfg.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|