1
|
Xiong J, He Z, Wang L, Fan C, Chao J. DNA Origami-Enabled Gene Localization of Repetitive Sequences. J Am Chem Soc 2024; 146:6317-6325. [PMID: 38391280 DOI: 10.1021/jacs.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Repetitive sequences, which make up over 50% of human DNA, have diverse applications in disease diagnosis, forensic identification, paternity testing, and population genetic analysis due to their crucial functions for gene regulation. However, representative detection technologies such as sequencing and fluorescence imaging suffer from time-consuming protocols, high cost, and inaccuracy of the position and order of repetitive sequences. Here, we develop a precise and cost-effective strategy that combines the high resolution of atomic force microscopy with the shape customizability of DNA origami for repetitive sequence-specific gene localization. "Tri-block" DNA structures were specifically designed to connect repetitive sequences to DNA origami tags, thereby revealing precise genetic information in terms of position and sequence for high-resolution and high-precision visualization of repetitive sequences. More importantly, we achieved the results of simultaneous detection of different DNA repetitive sequences on the gene template with a resolution of ∼6.5 nm (19 nt). This strategy is characterized by high efficiency, high precision, low operational complexity, and low labor/time costs, providing a powerful complement to sequencing technologies for gene localization of repetitive sequences.
Collapse
Affiliation(s)
- Jinxin Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhimei He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
2
|
Kenderdine T, Fabris D. The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development. MASS SPECTROMETRY REVIEWS 2023; 42:1332-1357. [PMID: 34939674 PMCID: PMC9218015 DOI: 10.1002/mas.21766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 06/07/2023]
Abstract
The deceptively simple concepts of mass determination and fragment analysis are the basis for the application of mass spectrometry (MS) to a boundless range of analytes, including fundamental components and polymeric forms of nucleic acids (NAs). This platform affords the intrinsic ability to observe first-hand the effects of NA-active drugs on the chemical structure, composition, and conformation of their targets, which might affect their ability to interact with cognate NAs, proteins, and other biomolecules present in a natural environment. The possibility of interfacing with high-performance separation techniques represents a multiplying factor that extends these capabilities to cover complex sample mixtures obtained from organisms that were exposed to NA-active drugs. This report provides a brief overview of these capabilities in the context of the analysis of the products of NA-drug activity and NA therapeutics. The selected examples offer proof-of-principle of the applicability of this platform to all phases of the journey undertaken by any successful NA drug from laboratory to bedside, and provide the rationale for its rapid expansion outside traditional laboratory settings in support to ever growing manufacturing operations.
Collapse
Affiliation(s)
| | - Dan Fabris
- Department of Chemistry, University of Connecticut
| |
Collapse
|
3
|
Fang T, Zhu Y, Xu A, Zhang Y, Wu Q, Huang G, Sheng W, Chen M. Functional analysis of the congenital heart disease‑associated GATA4 H436Y mutation in vitro. Mol Med Rep 2019; 20:2325-2331. [PMID: 31322241 PMCID: PMC6691264 DOI: 10.3892/mmr.2019.10481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Abstract
Congenital heart disease (CHD) is the most common type of developmental defect, with high rates of morbidity in infants. The transcription factor GATA‑binding factor 4 (GATA4) has been reported to serve a critical role in embryogenesis and cardiac development. Our previous study reported a heterozygous GATA4 c.1306C>T (p.H436Y) mutation in four Chinese infants with congenital heart defects. In the present study, functional analysis of the GATA4 H436Y mutation was performed in vitro. The functional effect of GATA4 mutation was compared with GATA4 wild‑type using a dual‑luciferase reporter assay system and immunofluorescence. Electrophoretic mobility‑shift assays were performed to explore the binding affinity of the mutated GATA4 to the heart and neural crest derivatives expressed 2 (HAND2) gene. The results revealed that the mutation had no effect on normal nuclear localization, but resulted in diminished GATA‑binding affinity to HAND2 and significantly decreased gene transcriptional activation. These results indicated that this GATA4 mutation may not influence cellular localization in transfected cells, but may affect the affinity of the GATA‑binding site on HAND2 and decrease transcriptional activity, thus suggesting that the GATA4 mutation may be associated with the pathogenesis of CHD.
Collapse
Affiliation(s)
- Tao Fang
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yanjie Zhu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Anlan Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| | - Yanli Zhang
- Department of Neonatology, Anhui Women and Child Health Care Hospital, Hefei, Anhui 230027, P.R. China
| | - Qingfa Wu
- Department of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Guoying Huang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Wei Sheng
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Mingwu Chen
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
4
|
Abstract
Prenatal screening for cystic fibrosis is reviewed. The disease, gene involved, molecular basis of disease, genotype/phenotype correlations and pilot trials are discussed, as well as historical perspectives, background and American College of Medical Genetics/American College of Obstetricians and Gynecologists recommendations. A number of complex challenges to the implementation of cystic fibrosis screening exist, including mutation testing of the cystic fibrosis transmembrane conductance regulator gene (CFTR), as well as laboratory and clinical issues. Current technologies for CFTR testing include reverse dot blots, amplification refractory mutation detection systems, oligonucleotide ligation assays, the Invader assay and NanoChip system. Emerging technologies are also considered, as well as quality assurance measures including analytical and clinical validation, reporting, residual risk calculations and prenatal diagnosis. An even greater challenge is clinical implementation, which focuses upon education and communication, choosing models, reporting, counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Carolyn S Richards
- Department of Molecular and Medical Genetics, DNA Diagnostic Laboratory, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. ,
| | | |
Collapse
|
5
|
Sioud S, Genestie B, Jahouh F, Martin P, Banoub J. Gas-phase fragmentation study of biotin reagents using electrospray ionization tandem mass spectrometry on a quadrupole orthogonal time-of-flight hybrid instrument. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1941-1956. [PMID: 19496066 DOI: 10.1002/rcm.4091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we evaluated, by electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (CID-MS/MS) using a quadrupole orthogonal time-of-flight (QqToF)-MS/MS hybrid instrument, the gas-phase fragmentations of some commercially available biotinyl reagents. The biotin reagents used were: psoralen-BPE 1, p-diazobenzoyl biocytin (DBB) 2, photoreactive biotin 3, biotinyl-hexaethyleneglycol dimer 4, and the sulfo-SBED 5. The results showed that, during ESI-MS and CID-MS/MS analyses, the biotin reagents followed a similar gas-phase fragmentation pattern and the cleavages usually occurred at either end of the spacer arm of the biotin reagents. In general we have observed that the CID-MS/MS fragmentation routes of the five precursor protonated molecules obtained from the biotin linkers 1-5 afforded a series of product ions formed essentially by similar routes. The genesis and the structural identities of all the product ions obtained from the biotin linkers 1-5 have been assigned. All the exact mass assignments of the protonated molecules and the product ions were verified by conducting separate CID-MS/MS analysis of the deuterium-labelled precursor ions.
Collapse
Affiliation(s)
- Salim Sioud
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3V6, Canada
| | | | | | | | | |
Collapse
|
6
|
Diagnosis and strain differentiation of avian influenza viruses by restriction fragment mass analysis. J Virol Methods 2009; 158:63-9. [DOI: 10.1016/j.jviromet.2009.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 01/13/2009] [Accepted: 01/21/2009] [Indexed: 12/24/2022]
|
7
|
Detection of Fluoroquinolone Resistance Single-Nucleotide Polymorphisms in Neisseria gonorrhoeae gyrA and parC Using MALDI-TOF Mass Spectrometry. Mol Biol 2005. [DOI: 10.1007/s11008-005-0099-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Schweickert B, Moter A, Lefmann M, Göbel UB. Let them fly or light them up: matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and fluorescence in situ hybridization (FISH). APMIS 2005; 112:856-85. [PMID: 15638841 DOI: 10.1111/j.1600-0463.2004.apm11211-1210.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review focuses on clinical bacteriology and by and large does not cover the detection of fungi, viruses or parasites. It discusses two completely different but complementary approaches that may either supplement or replace classic culture-based bacteriology. The latter view may appear provocative in the light of the actual market penetration of molecular genetic testing in clinical bacteriology. Despite its elegance, high specificity and sensitivity, molecular genetic diagnostics has not yet reached the majority of clinical laboratories. The reasons for this are manifold: Many microbiologists and medical technologists are more familiar with classical microbiological methods than with molecular biology techniques. Culture-based methods still represent the work horse of everyday routine. The number of available FDA-approved molecular genetic tests is limited and external quality control is still under development. Finally, it appears difficult to incorporate genetic testing in the routine laboratory setting due to the limited number of samples received or the lack of appropriate resources. However, financial and time constraints, particularly in hospitals as a consequence of budget cuts and reduced length of stay, lead to a demand for significantly shorter turnaround times that cannot be met by culture-dependent diagnosis. As a consequence, smaller laboratories that do not have the technical and personal equipment required for molecular genetic amplification techniques may adopt alternative methods such as fluorescence in situ hybridization (FISH) that combines easy-to-perform molecular hybridization with microscopy, a technique familiar to every microbiologist. FISH is hence one of the technologies presented here. For large hospital or reference laboratories with a high sample volume requiring massive parallel high-throughput testing we discuss matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of nucleic acids, a technology that has evolved from the post-genome sequencing era, for high-throughput sequence variation analysis (1, 2).
Collapse
Affiliation(s)
- Birgitta Schweickert
- Institut für Mikrobiologie und Hygiene, Charité, Universitätsmedizin Berlin, Germany
| | | | | | | |
Collapse
|
9
|
Ruparel H, Ulz ME, Kim S, Ju J. Digital detection of genetic mutations using SPC-sequencing. Genome Res 2004; 14:296-300. [PMID: 14762066 PMCID: PMC327105 DOI: 10.1101/gr.1344104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deletion or insertion mutations lead to a frameshift that causes misalignment between wild-type and mutated allele sequences, making it difficult to identify such mutations unambiguously by using electrophoresis-based DNA sequencing. We have previously established the feasibility of an accurate DNA sequencing method using solid-phase capturable (SPC) dideoxynucleotides and MALDI-TOF mass spectrometry on synthetic templates, an approach we refer to as SPC-sequencing. Here, we report the application of SPC-sequencing in characterizing frameshift mutations by using the detection of the BRCA1 gene mutations 185delAG and 5382insC as examples. In this method, Sanger DNA sequencing fragments are generated in one tube by using biotinylated dideoxynucleotides. The sequencing fragments carrying a biotin moiety at the 3' end are captured on a streptavidin-coated solid phase to eliminate excess primer, primer dimers, and false stops. Only correctly terminated DNA fragments are captured, subsequently released, and analyzed by mass spectrometry to obtain digital DNA sequencing data. This method produces distinct doublet mass peaks at each point in the mass spectrum beyond the mutation site, facilitating the accurate characterization of the mutation. We have compared SPC-sequencing with electrophoresis-based sequencing in characterizing the above BRCA1 mutations, demonstrating the significant advantage offered by SPC-sequencing for the accurate identification of frameshift mutations.
Collapse
Affiliation(s)
- Hameer Ruparel
- Laboratory of DNA Sequencing and Chemical Biology, Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
10
|
Kaetzke A, Körner H, Kneist S, Eschrich K. Oral Actinomyces isolates forming red colonies on brain heart blood agar can bee unambiguously classified as A odontolyticus by macroscopic examination. J Clin Microbiol 2003; 41:3729-31. [PMID: 12904382 PMCID: PMC179866 DOI: 10.1128/jcm.41.8.3729-3731.2003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accurate classification of oral Actinomyces isolates as one species is difficult. Out of 18 Actinomyces isolates forming red colonies on brain heart blood agar, 12 could be straightforwardly assigned as Actinomyces odontolyticus by biochemical, morphological, and chemotaxonomic characteristics. For the remaining six isolates, the results of the different identification methods were inconsistent. By sequencing a 16S ribosomal DNA fragment by a rapid mass spectrometric method, all isolates could be identified unambiguously as A. odontolyticus. This result proves the importance of red colony pigmentation on brain heart blood agar together with the characteristic cell morphology for unequivocal assignment of oral Actinomyces isolates to the species A. odontolyticus.
Collapse
Affiliation(s)
- Annette Kaetzke
- Institute of Biochemistry, Medical Faculty, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | |
Collapse
|