1
|
Knickmann J, Staliunaite L, Puhach O, Ostermann E, Günther T, Nichols J, Jarvis MA, Voigt S, Grundhoff A, Davison AJ, Brune W. A simple method for rapid cloning of complete herpesvirus genomes. CELL REPORTS METHODS 2024; 4:100696. [PMID: 38266652 PMCID: PMC10921015 DOI: 10.1016/j.crmeth.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Herpesviruses are large DNA viruses and include important human and veterinary pathogens. Their genomes can be cloned as bacterial artificial chromosomes (BACs) and genetically engineered in Escherichia coli using BAC recombineering methods. While the recombineering methods are efficient, the initial BAC-cloning step remains laborious. To overcome this limitation, we have developed a simple, rapid, and efficient BAC-cloning method based on single-step transformation-associated recombination (STAR) in Saccharomyces cerevisiae. The linear viral genome is directly integrated into a vector comprising a yeast centromeric plasmid and a BAC replicon. Following transfer into E. coli, the viral genome can be modified using standard BAC recombineering techniques. We demonstrate the speed, fidelity, and broad applicability of STAR by cloning two strains of both rat cytomegalovirus (a betaherpesvirus) and Kaposi's sarcoma-associated herpesvirus (a gammaherpesvirus). STAR cloning facilitates the functional genetic analysis of herpesviruses and other large DNA viruses and their use as vaccines and therapeutic vectors.
Collapse
Affiliation(s)
- Jan Knickmann
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Olha Puhach
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Michael A Jarvis
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK; The Vaccine Group Ltd., Plymouth, UK
| | - Sebastian Voigt
- Institute for Virology, University Hospital Essen, Essen, Germany
| | | | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany.
| |
Collapse
|
2
|
Guesdon G, Gourgues G, Rideau F, Ipoutcha T, Manso-Silván L, Jules M, Sirand-Pugnet P, Blanchard A, Lartigue C. Combining Fusion of Cells with CRISPR-Cas9 Editing for the Cloning of Large DNA Fragments or Complete Bacterial Genomes in Yeast. ACS Synth Biol 2023; 12:3252-3266. [PMID: 37843014 PMCID: PMC10662353 DOI: 10.1021/acssynbio.3c00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 10/17/2023]
Abstract
The genetic engineering of genome fragments larger than 100 kbp is challenging and requires both specific methods and cloning hosts. The yeast Saccharomyces cerevisiae is considered as a host of choice for cloning and engineering whole or partial genomes from viruses, bacteria, and algae. Several methods are now available to perform these manipulations, each with its own limitations. In order to extend the range of yeast cloning strategies, a new approach combining two already described methods, Fusion cloning and CReasPy-Cloning, was developed. The CReasPy-Fusion method allows the simultaneous cloning and engineering of megabase-sized genomes in yeast by the fusion of bacterial cells with yeast spheroplasts carrying the CRISPR-Cas9 system. With this new approach, we demonstrate the feasibility of cloning and editing whole genomes from several Mycoplasma species belonging to different phylogenetic groups. We also show that CReasPy-Fusion allows the capture of large genome fragments with high efficacy, resulting in the successful cloning of selected loci in yeast. We finally identify bacterial nuclease encoding genes as barriers for CReasPy-Fusion by showing that their removal from the donor genome improves the cloning efficacy.
Collapse
Affiliation(s)
- Gabrielle Guesdon
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Géraldine Gourgues
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Fabien Rideau
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Thomas Ipoutcha
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Lucía Manso-Silván
- CIRAD,
UMR ASTRE, F-34398 Montpellier, France
- ASTRE,
Univ. Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Matthieu Jules
- Université
Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350 Jouy-en-Josas, France
| | - Pascal Sirand-Pugnet
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Alain Blanchard
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Carole Lartigue
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| |
Collapse
|
3
|
Kouprina N, Kim J, Larionov V. Highly Selective, CRISPR/Cas9-Mediated Isolation of Genes and Genomic Loci from Complex Genomes by TAR Cloning in Yeast. Curr Protoc 2021; 1:e207. [PMID: 34370406 PMCID: PMC8363120 DOI: 10.1002/cpz1.207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here we describe an updated TAR cloning protocol for the selective and efficient isolation of any genomic fragment or gene of interest up to 280 kb in size from genomic DNA. The method exploits the special recombination machinery of the yeast Saccharomyces cerevisiae. TAR cloning is based on the high level of in vivo recombination that occurs between a specific genomic DNA fragment of interest and targeting sequences (hooks) in a TAR vector that are homologous to the 5' and 3' ends of the targeted region. Upon co-transformation into yeast, this results in the isolation of the chromosomal region of interest as a circular YAC molecule, which then propagates and segregates in yeast cells and can be selected for. In the updated TAR cloning protocol described here, the fraction of region-positive clones typically obtained is increased from 1% up to 35% by pre-treatment of the genomic DNA with specifically designed CRISPR/Cas9 endonucleases that create double-strand breaks (DSBs) bracketing the target genomic DNA sequence, thereby making the ends of the chromosomal region of interest highly recombinogenic. In addition, a new TAR vector was constructed that contains YAC and BAC cassettes, permitting direct transfer of a TAR-cloned DNA from yeast to bacterial cells. Once the TAR vector with the hooks is constructed and genomic DNA is prepared, the entire procedure takes 3 weeks to complete. The updated TAR protocol does not require significant yeast experience or extensively time-consuming yeast work because screening only about a dozen yeast transformants is typically enough to find a clone with the region of interest. TAR cloning of chromosomal fragments, individual genes, or gene families can be used for functional, structural, and population studies, for comparative genomics, and for long-range haplotyping, and has potential for gene therapy. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of CRISPR/Cas9-treated genomic DNA for TAR cloning Basic Protocol 2: Isolation of a gene or genomic locus by TAR cloning Basic Protocol 3: Transfer of TAR/YAC/BAC isolates from yeast to E. coli.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| | - Jung‐Hyun Kim
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| |
Collapse
|
4
|
Stevenson LJ, Bracegirdle J, Liu L, Sharrock AV, Ackerley DF, Keyzers RA, Owen JG. Metathramycin, a new bioactive aureolic acid discovered by heterologous expression of a metagenome derived biosynthetic pathway. RSC Chem Biol 2021; 2:556-567. [PMID: 34458799 PMCID: PMC8341913 DOI: 10.1039/d0cb00228c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial natural products have been a rich source of bioactive compounds for drug development, and advances in DNA sequencing, informatics and molecular biology have opened new avenues for their discovery. Here, we describe the isolation of an aureolic acid biosynthetic gene cluster from a metagenome library derived from a New Zealand soil sample. Heterologous expression of this pathway in Streptomyces albus resulted in the production and isolation of two new aureolic acid compounds, one of which (metathramycin, 6) possesses potent bioactivity against a human colon carcinoma cell line (HCT-116, IC50 = 14.6 nM). As metathramycin was a minor constituent of the fermentation extract, its discovery relied on a combination of approaches including bioactivity guided fractionation, MS/MS characterisation and pathway engineering. This study not only demonstrates the presence of previously uncharacterised aureolic acids in the environment, but also the value of an integrated natural product discovery approach which may be generally applicable to low abundance bioactive metabolites.
Collapse
Affiliation(s)
- Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington Wellington New Zealand .,Maurice Wilkins Centre for Molecular Biodiscovery New Zealand.,Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington Wellington New Zealand
| | - Joe Bracegirdle
- Maurice Wilkins Centre for Molecular Biodiscovery New Zealand.,Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington Wellington New Zealand.,School of Chemical and Physical Sciences, Victoria University of Wellington Wellington New Zealand
| | - Liwei Liu
- School of Biological Sciences, Victoria University of Wellington Wellington New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Victoria University of Wellington Wellington New Zealand .,Maurice Wilkins Centre for Molecular Biodiscovery New Zealand.,Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington Wellington New Zealand
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington Wellington New Zealand .,Maurice Wilkins Centre for Molecular Biodiscovery New Zealand.,Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington Wellington New Zealand
| | - Robert A Keyzers
- Maurice Wilkins Centre for Molecular Biodiscovery New Zealand.,Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington Wellington New Zealand.,School of Chemical and Physical Sciences, Victoria University of Wellington Wellington New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington Wellington New Zealand .,Maurice Wilkins Centre for Molecular Biodiscovery New Zealand.,Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington Wellington New Zealand
| |
Collapse
|
5
|
The genomic structure of a human chromosome 22 nucleolar organizer region determined by TAR cloning. Sci Rep 2021; 11:2997. [PMID: 33542373 PMCID: PMC7862453 DOI: 10.1038/s41598-021-82565-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
The rDNA clusters and flanking sequences on human chromosomes 13, 14, 15, 21 and 22 represent large gaps in the current genomic assembly. The organization and the degree of divergence of the human rDNA units within an individual nucleolar organizer region (NOR) are only partially known. To address this lacuna, we previously applied transformation-associated recombination (TAR) cloning to isolate individual rDNA units from chromosome 21. That approach revealed an unexpectedly high level of heterogeneity in human rDNA, raising the possibility of corresponding variations in ribosome dynamics. We have now applied the same strategy to analyze an entire rDNA array end-to-end from a copy of chromosome 22. Sequencing of TAR isolates provided the entire NOR sequence, including proximal and distal junctions that may be involved in nucleolar function. Comparison of the newly sequenced rDNAs to reference sequence for chromosomes 22 and 21 revealed variants that are shared in human rDNA in individuals from different ethnic groups, many of them at high frequency. Analysis infers comparable intra- and inter-individual divergence of rDNA units on the same and different chromosomes, supporting the concerted evolution of rDNA units. The results provide a route to investigate further the role of rDNA variation in nucleolar formation and in the empirical associations of nucleoli with pathology.
Collapse
|
6
|
Garcia-Morales L, Ruiz E, Gourgues G, Rideau F, Piñero-Lambea C, Lluch-Senar M, Blanchard A, Lartigue C. A RAGE Based Strategy for the Genome Engineering of the Human Respiratory Pathogen Mycoplasma pneumoniae. ACS Synth Biol 2020; 9:2737-2748. [PMID: 33017534 DOI: 10.1021/acssynbio.0c00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genome engineering of microorganisms has become a standard in microbial biotechnologies. Several efficient tools are available for the genetic manipulation of model bacteria such as Escherichia coli and Bacillus subtilis, or the yeast Saccharomyces cerevisiae. Difficulties arise when transferring these tools to nonmodel organisms. Synthetic biology strategies relying on genome transplantation (GT) aim at using yeast cells for engineering bacterial genomes cloned as artificial chromosomes. However, these strategies remain unsuccessful for many bacteria, including Mycoplasma pneumoniae (MPN), a human pathogen infecting the respiratory tract that has been extensively studied as a model for systems biology of simple unicellular organisms. Here, we have designed a novel strategy for genome engineering based on the recombinase-assisted genomic engineering (RAGE) technology for editing the MPN genome. Using this strategy, we have introduced a 15 kbp fragment at a specific locus of the MPN genome and replaced 38 kbp from its genome by engineered versions modified either in yeast or in E. coli. A strain harboring a synthetic version of this fragment cleared of 13 nonessential genes could also be built and propagated in vitro. These strains were depleted of known virulence factors aiming at creating an avirulent chassis for SynBio applications. Such a chassis and technology are a step forward to build vaccines or deliver therapeutic compounds in the lungs to prevent or cure respiratory diseases in humans.
Collapse
Affiliation(s)
- Luis Garcia-Morales
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Estelle Ruiz
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Géraldine Gourgues
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Fabien Rideau
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Carlos Piñero-Lambea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Alain Blanchard
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France
| |
Collapse
|
7
|
Selective isolation of large segments from individual microbial genomes and environmental DNA samples using transformation-associated recombination cloning in yeast. Nat Protoc 2020; 15:734-749. [PMID: 32005981 DOI: 10.1038/s41596-019-0280-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/05/2019] [Indexed: 11/08/2022]
Abstract
Here, we describe an extension of our original transformation-associated recombination (TAR) cloning protocol, enabling selective isolation of DNA segments from microbial genomes. The technique is based on the previously described TAR cloning procedure developed for isolation of a desirable region from mammalian genomes that are enriched in autonomously replicating sequence (ARS)-like sequences, elements that function as the origin of replication in yeast. Such sequences are not common in microbial genomes. In this Protocol Extension, an ARS is inserted into the TAR vector along with a counter-selectable marker, allowing for selection of cloning events against vector circularization. Pre-treatment of microbial DNA with CRISPR-Cas9 to generate double-stranded breaks near the targeted sequences greatly increases the yield of region-positive colonies. In comparison to other available methods, this Protocol Extension allows selective isolation of any region from microbial genomes as well as from environmental DNA samples. The entire procedure can be completed in 10 d.
Collapse
|
8
|
Eyles TH, Vior NM, Truman AW. Rapid and Robust Yeast-Mediated Pathway Refactoring Generates Multiple New Bottromycin-Related Metabolites. ACS Synth Biol 2018; 7:1211-1218. [PMID: 29694038 DOI: 10.1021/acssynbio.8b00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterologous expression of biosynthetic gene clusters (BGCs) represents an attractive route to the production of new natural products, but is often hampered by poor yields. It is therefore important to develop tools that enable rapid refactoring, gene insertion/deletion, and targeted mutations in BGCs. Ideally, these tools should be highly efficient, affordable, accessible, marker free, and flexible for use with a wide range of BGCs. Here, we present a one-step yeast-based method that enables efficient, cheap, and flexible modifications to BGCs. Using the BGC for the antibiotic bottromycin, we showcase multiple modifications including refactoring, gene deletions and targeted mutations. This facilitated the construction of an inducible, riboswitch-controlled pathway that achieved a 120-fold increase in pathway productivity in a heterologous streptomycete host. Additionally, an unexpected biosynthetic bottleneck resulted in the production of a suite of new bottromycin-related metabolites.
Collapse
Affiliation(s)
- Tom H. Eyles
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, U.K
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, U.K
| | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, U.K
| |
Collapse
|
9
|
Wu N, Huang H, Min T, Hu H. TAR cloning and integrated overexpression of 6-demethylchlortetracycline biosynthetic gene cluster in Streptomyces aureofaciens. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1129-1134. [PMID: 29087452 DOI: 10.1093/abbs/gmx110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 12/28/2022] Open
Abstract
6-Demethylchlortetracycline (6-DCT), a tetracycline antibiotic produced by Streptomyces aureofaciens, is a crucial precursor employed for the semi-synthesis of tigecycline, minocycline, and amadacyclin (PTK 0796). In this study, the 6-DCT biosynthetic gene cluster (BGC) was cloned from genomic DNA of a high 6-DCT-producing strain, S. aureofaciens DM-1, using the transformation-associated recombination method. An extra copy of the 6-DCT BGC was introduced and integrated into the chromosome of S. aureofaciens DM-1. Duplication of the 6-DCT BGC resulted in a maximum increase of the 6-DCT titer by 34%.
Collapse
Affiliation(s)
- Naxin Wu
- School of Pharmacy, Department of Pharmacology, Fudan University, Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, Department of Biopharmceutical, Shanghai, China
| | - He Huang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Taoling Min
- Shanghai Institute of Pharmaceutical Industry, Department of Biopharmceutical, Shanghai, China
| | - Haifeng Hu
- Shanghai Institute of Pharmaceutical Industry, Department of Biopharmceutical, Shanghai, China
| |
Collapse
|
10
|
Döhlemann J, Wagner M, Happel C, Carrillo M, Sobetzko P, Erb TJ, Thanbichler M, Becker A. A Family of Single Copy repABC-Type Shuttle Vectors Stably Maintained in the Alpha-Proteobacterium Sinorhizobium meliloti. ACS Synth Biol 2017; 6:968-984. [PMID: 28264559 PMCID: PMC7610768 DOI: 10.1021/acssynbio.6b00320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
A considerable
share of bacterial species maintains segmented genomes.
Plant symbiotic α-proteobacterial rhizobia contain up to six repABC-type replicons in addition to the primary chromosome.
These low or unit-copy replicons, classified as secondary chromosomes,
chromids, or megaplasmids, are exclusively found in α-proteobacteria.
Replication and faithful partitioning of these replicons to the daughter
cells is mediated by the repABC region. The importance
of α-rhizobial symbiotic nitrogen fixation for sustainable agriculture
and Agrobacterium-mediated plant transformation as
a tool in plant sciences has increasingly moved biological engineering
of these organisms into focus. Plasmids are ideal DNA-carrying vectors
for these engineering efforts. On the basis of repABC regions collected from α-rhizobial secondary replicons, and
origins of replication derived from traditional cloning vectors, we
devised the versatile family of pABC shuttle vectors propagating in Sinorhizobium meliloti, related members of the Rhizobiales, and Escherichia coli. A modular plasmid library
providing the elemental parts for pABC vector assembly was founded.
The standardized design of these vectors involves five basic modules:
(1) repABC cassette, (2) plasmid-derived origin of
replication, (3) RK2/RP4 mobilization site (optional), (4) antibiotic
resistance gene, and (5) multiple cloning site flanked by transcription
terminators. In S. meliloti, pABC vectors showed
high propagation stability and unit-copy number. We demonstrated stable
coexistence of three pABC vectors in addition to the two indigenous
megaplasmids in S. meliloti, suggesting combinability
of multiple compatible pABC plasmids. We further devised an in vivo cloning strategy involving Cre/lox-mediated translocation of large DNA fragments to an autonomously
replicating repABC-based vector, followed by conjugation-mediated
transfer either to compatible rhizobia or E. coli.
Collapse
Affiliation(s)
- Johannes Döhlemann
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Marcel Wagner
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Carina Happel
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Martina Carrillo
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
| | - Tobias J. Erb
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Martin Thanbichler
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology, Marburg, 35043, Germany
- Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| |
Collapse
|
11
|
From selective full-length genes isolation by TAR cloning in yeast to their expression from HAC vectors in human cells. Methods Mol Biol 2015; 1227:3-26. [PMID: 25239739 DOI: 10.1007/978-1-4939-1652-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transformation-associated recombination (TAR) cloning allows selective isolation of full-length genes and genomic loci as large circular Yeast Artificial Chromosomes (YACs) in yeast. The method has a broad application for structural and functional genomics, long-range haplotyping, characterization of chromosomal rearrangements, and evolutionary studies. In this paper, we describe a basic protocol for gene isolation by TAR as well as a method to convert TAR isolates into Bacterial Artificial Chromosomes (BACs) using a retrofitting vector. The retrofitting vector contains a 3' HPRT-loxP cassette to allow subsequent gene loading into a unique loxP site of the HAC-based (Human Artificial Chromosome) gene delivery vector. The benefit of combining the TAR gene cloning technology with the HAC gene delivery system for gene expression studies is discussed.
Collapse
|
12
|
Kouprina N, Tomilin AN, Masumoto H, Earnshaw WC, Larionov V. Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert Opin Drug Deliv 2014; 11:517-35. [DOI: 10.1517/17425247.2014.882314] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Kuijpers NGA, Chroumpi S, Vos T, Solis-Escalante D, Bosman L, Pronk JT, Daran JM, Daran-Lapujade P. One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:769-81. [PMID: 24028550 PMCID: PMC4068284 DOI: 10.1111/1567-1364.12087] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/23/2013] [Accepted: 09/01/2013] [Indexed: 11/26/2022] Open
Abstract
In vivo assembly of overlapping fragments by homologous recombination in Saccharomyces cerevisiae is a powerful method to engineer large DNA constructs. Whereas most in vivo assembly methods reported to date result in circular vectors, stable integrated constructs are often preferred for metabolic engineering as they are required for large-scale industrial application. The present study explores the potential of combining in vivo assembly of large, multigene expression constructs with their targeted chromosomal integration in S. cerevisiae. Combined assembly and targeted integration of a ten-fragment 22-kb construct to a single chromosomal locus was successfully achieved in a single transformation process, but with low efficiency (5% of the analyzed transformants contained the correctly assembled construct). The meganuclease I-SceI was therefore used to introduce a double-strand break at the targeted chromosomal locus, thus to facilitate integration of the assembled construct. I-SceI-assisted integration dramatically increased the efficiency of assembly and integration of the same construct to 95%. This study paves the way for the fast, efficient, and stable integration of large DNA constructs in S. cerevisiae chromosomes.
Collapse
Affiliation(s)
- Niels GA Kuijpers
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Soultana Chroumpi
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Tim Vos
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Daniel Solis-Escalante
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Lizanne Bosman
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Platform Green Synthetic BiologyDelft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Platform Green Synthetic BiologyDelft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
| |
Collapse
|
14
|
Shi Z, Wedd AG, Gras SL. Parallel in vivo DNA assembly by recombination: experimental demonstration and theoretical approaches. PLoS One 2013; 8:e56854. [PMID: 23468883 PMCID: PMC3585241 DOI: 10.1371/journal.pone.0056854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/17/2013] [Indexed: 01/10/2023] Open
Abstract
The development of synthetic biology requires rapid batch construction of large gene networks from combinations of smaller units. Despite the availability of computational predictions for well-characterized enzymes, the optimization of most synthetic biology projects requires combinational constructions and tests. A new building-brick-style parallel DNA assembly framework for simple and flexible batch construction is presented here. It is based on robust recombination steps and allows a variety of DNA assembly techniques to be organized for complex constructions (with or without scars). The assembly of five DNA fragments into a host genome was performed as an experimental demonstration.
Collapse
Affiliation(s)
- Zhenyu Shi
- School of Chemistry, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
15
|
Characterization of the hamster genomic fragment cloned by TAR cloning technology with interspecific sequence information. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Karas BJ, Tagwerker C, Yonemoto IT, Hutchison CA, Smith HO. Cloning the Acholeplasma laidlawii PG-8A genome in Saccharomyces cerevisiae as a yeast centromeric plasmid. ACS Synth Biol 2012; 1:22-8. [PMID: 23651007 DOI: 10.1021/sb200013j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cloning of whole genomes of the genus Mycoplasma in yeast has been an essential step for the creation of the first synthetic cell. The genome of the synthetic cell is based on Mycoplasma mycoides, which deviates from the universal genetic code by encoding tryptophan rather than the UGA stop codon. The feature was thought to be important because bacterial genes might be toxic to the host yeast cell if driven by a cryptic promoter active in yeast. As we move to expand the range of bacterial genomes cloned in yeast, we extended this technology to bacteria that use the universal genetic code. Here we report cloning of the Acholeplasma laidlawii PG-8A genome, which uses the universal genetic code. We discovered that only one A. laidlawii gene, a surface anchored extracellular endonuclease, was toxic when cloned in yeast. This gene was inactivated in order to clone and stably maintain the A. laidlawii genome as a centromeric plasmid in the yeast cell.
Collapse
Affiliation(s)
- Bogumil J. Karas
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Christian Tagwerker
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Isaac T. Yonemoto
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Clyde A. Hutchison
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Hamilton O. Smith
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| |
Collapse
|
17
|
Abstract
Many bacterial and archaeal genomes are of a similar size to molecules that have been cloned in the yeast Saccharomyces cerevisiae and thus might be clonable as single, circular episomes in this host. Yeast offers a variety of efficient tools for the manipulation and study of cloned DNA. One strategy to clone a genome in yeast is to cotransform yeast spheroplasts with the genome of interest and a linear yeast vector whose termini are homologous to a spot in the genome. Clones are selected on auxotrophic medium and then screened for completeness and size; they may also be sequenced.
Collapse
|
18
|
Gibson DG. Gene and genome construction in yeast. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2011; Chapter 3:Unit3.22. [PMID: 21472698 DOI: 10.1002/0471142727.mb0322s94] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The yeast Saccharomyces cerevisiae has the capacity to take up and assemble dozens of different overlapping DNA molecules in one transformation event. These DNA molecules can be single-stranded oligonucleotides, to produce gene-sized fragments, or double-stranded DNA fragments, to produce molecules up to hundreds of kilobases in length, including complete bacterial genomes. This unit presents protocols for designing the DNA molecules to be assembled, transforming them into yeast, and confirming their assembly.
Collapse
|
19
|
Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC. Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science 2010; 329:52-6. [PMID: 20488990 DOI: 10.1126/science.1190719] [Citation(s) in RCA: 1380] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Daniel G Gibson
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Benders GA, Noskov VN, Denisova EA, Lartigue C, Gibson DG, Assad-Garcia N, Chuang RY, Carrera W, Moodie M, Algire MA, Phan Q, Alperovich N, Vashee S, Merryman C, Venter JC, Smith HO, Glass JI, Hutchison CA. Cloning whole bacterial genomes in yeast. Nucleic Acids Res 2010; 38:2558-69. [PMID: 20211840 PMCID: PMC2860123 DOI: 10.1093/nar/gkq119] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 01/21/2023] Open
Abstract
Most microbes have not been cultured, and many of those that are cultivatable are difficult, dangerous or expensive to propagate or are genetically intractable. Routine cloning of large genome fractions or whole genomes from these organisms would significantly enhance their discovery and genetic and functional characterization. Here we report the cloning of whole bacterial genomes in the yeast Saccharomyces cerevisiae as single-DNA molecules. We cloned the genomes of Mycoplasma genitalium (0.6 Mb), M. pneumoniae (0.8 Mb) and M. mycoides subspecies capri (1.1 Mb) as yeast circular centromeric plasmids. These genomes appear to be stably maintained in a host that has efficient, well-established methods for DNA manipulation.
Collapse
Affiliation(s)
- Gwynedd A Benders
- Synthetic Biology and Bioenergy Group, The J. Craig Venter Institute, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gibson DG. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 2009; 37:6984-90. [PMID: 19745056 PMCID: PMC2777417 DOI: 10.1093/nar/gkp687] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here it is demonstrated that the yeast Saccharomyces cerevisiae can take up and assemble at least 38 overlapping single-stranded oligonucleotides and a linear double-stranded vector in one transformation event. These oligonucleotides can overlap by as few as 20 bp, and can be as long as 200 nucleotides in length. This straightforward scheme for assembling chemically-synthesized oligonucleotides could be a useful tool for building synthetic DNA molecules.
Collapse
Affiliation(s)
- Daniel G Gibson
- The J Craig Venter Institute, Synthetic Biology Group, 9704 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
22
|
Kouprina N, Larionov V. Selective isolation of mammalian genes by TAR cloning. CURRENT PROTOCOLS IN HUMAN GENETICS 2008; Chapter 5:Unit 5.17. [PMID: 18428393 DOI: 10.1002/0471142905.hg0517s49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transformation-associated recombination (TAR) cloning provides a unique tool for selective isolation of desired chromosome segments and full-size genes from complex genomes in the form of a circular yeast artificial chromosome (YAC) up to 250 kb in size. The method has a broad application for structural and functional genomics, long-range haplotyping, mutational analysis of gene families, characterization of chromosomal rearrangements, and evolutionary studies. This unit describes a procedure for gene isolation by TAR as well as a method for conversion of YAC-TAR isolates into a bacterial artificial chromosome (BAC) form.
Collapse
|
23
|
Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat Protoc 2008; 3:371-7. [DOI: 10.1038/nprot.2008.5] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Leem SH, Yoon YH, Kim SI, Larionov V. Purification of circular YACs from yeast cells for DNA sequencing. Genome 2008; 51:155-8. [DOI: 10.1139/g07-109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a method for the purification of circular yeast artificial chromosome (YAC) DNA 120–150 kilobases (kb) in size that is of sufficient quantity and quality for restriction enzyme analysis and DNA sequencing. This method preferentially enriches for circular YAC DNA and avoids the time-consuming step of centrifugation in CsCl – ethidium bromide (EtBr) gradients. We applied this method to the purification of circular YACs carrying DNA segments that are extremely unstable in E. coli, including those that correspond to GAP2 and GAP3 on human chromosome 19. We showed that YAC DNA (GAP2 and GAP3) purified using this new method is clearly resolved in EtBr-stained gels. The sequence of YAC-GAP3 was obtained, representing the first GAP clone sequenced in YAC form. At present, it is estimated that there are more than 1000 gaps in the human genome that cannot be cloned using bacterial vectors. Thus, our new method may be very useful for completing the last stage of the human genome project.
Collapse
Affiliation(s)
- S.-H. Leem
- Department of Biological Science, Dong-A University, Busan 604-714, Korea
- Proteomics Team, Korea Basic Science Institute, Daejeon, 305-806, Korea
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Y.-H. Yoon
- Department of Biological Science, Dong-A University, Busan 604-714, Korea
- Proteomics Team, Korea Basic Science Institute, Daejeon, 305-806, Korea
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - S. I. Kim
- Department of Biological Science, Dong-A University, Busan 604-714, Korea
- Proteomics Team, Korea Basic Science Institute, Daejeon, 305-806, Korea
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - V. Larionov
- Department of Biological Science, Dong-A University, Busan 604-714, Korea
- Proteomics Team, Korea Basic Science Institute, Daejeon, 305-806, Korea
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| |
Collapse
|
25
|
Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA, Smith HO. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 2008; 319:1215-20. [PMID: 18218864 DOI: 10.1126/science.1151721] [Citation(s) in RCA: 800] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.
Collapse
|
26
|
Kouprina N, Noskov VN, Solomon G, Otstot J, Isaacs W, Xu J, Schleutker J, Larionov V. Mutational analysis of SPANX genes in families with X-linked prostate cancer. Prostate 2007; 67:820-8. [PMID: 17373721 DOI: 10.1002/pros.20561] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Previous genetic linkage studies identified a locus for susceptibility to prostate cancer called HPCX at Xq27. The candidate region contains two clusters of SPANX genes. The first cluster called SPANX-A/D includes SPANX-A1, SPANX-A2, SPANX-B, SPANX-C, and SPANX-D; the second cluster called SPANX-N includes SPANX-N1, SPANX-N2, SPANX-N3, and SPANX-N4. The SPANX genes encode cancer-testis (CT) specific antigens. Previous studies identified SPANX-B and SPANX-D variants produced by gene conversion events, none of which are associated with X-linked prostate cancer. METHODS In this study we applied transformation-associated recombination cloning (TAR) in yeast to analyze sequence variations in SPANX-A1, SPANX-A2, and SPANX-C genes that are resided within large chromosomal duplications. A SPANX-N1/N4 cluster was analyzed by a routine PCR analysis. RESULTS None of the sequence variations in the coding regions of these genes is associated with susceptibility to prostate cancer. CONCLUSIONS Therefore, genetic variation in the SPANX genes is not the actual target variants explaining HPCX. However, it is possible that they play a modifying role in susceptibility to prostate cancer through complex recombinational interaction.
Collapse
Affiliation(s)
- Natalay Kouprina
- Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bernstein JR, Bulter T, Shen CR, Liao JC. Directed evolution of ribosomal protein S1 for enhanced translational efficiency of high GC Rhodopseudomonas palustris DNA in Escherichia coli. J Biol Chem 2007; 282:18929-36. [PMID: 17412688 DOI: 10.1074/jbc.m701395200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of foreign DNA in Escherichia coli is important in biotechnological applications. However, the translation of genes from GC-rich organisms is inefficient in E. coli. To overcome this problem, we applied directed evolution to E. coli ribosomal protein S1. Two selected mutants enabled 12- and 8-fold higher expression levels from GC-rich DNA targets. General improvements in translation efficiency over a range of genes from Rhodopseudomonas palustris and E. coli was achieved using an S1 mutant selected against multiple genes from R. palustris. This method opens new opportunities for the expression of GC-rich genes in E. coli.
Collapse
Affiliation(s)
- Jeffrey R Bernstein
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
28
|
Kouprina N, Larionov V. TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. Nat Rev Genet 2006; 7:805-12. [PMID: 16983376 DOI: 10.1038/nrg1943] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structural and functional analysis of mammalian genomes would benefit from the ability to isolate from multiple DNA samples any targeted chromosomal segment that is the size of an average human gene. A cloning technique that is based on transformation-associated recombination (TAR) in the yeast Saccharomyces cerevisiae satisfies this need. It is a unique tool to selectively recover chromosome segments that are up to 250 kb in length from complex genomes. In addition, TAR cloning can be used to characterize gene function and genome variation, including polymorphic structural rearrangements, mutations and the evolution of gene families, and for long-range haplotyping.
Collapse
Affiliation(s)
- Natalay Kouprina
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institute of Health, Building 37, Room 5032, 9000 Rockville Pike, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
29
|
Kouprina N, Pavlicek A, Noskov VN, Solomon G, Otstot J, Isaacs W, Carpten JD, Trent JM, Schleutker J, Barrett JC, Jurka J, Larionov V. Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome Res 2006; 15:1477-86. [PMID: 16251457 PMCID: PMC1310635 DOI: 10.1101/gr.4212705] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Genetic linkage studies indicate that germline variations in a gene or genes on chromosome Xq27-28 are implicated in prostate carcinogenesis. The linkage peak of prostate cancer overlies a region of approximately 750 kb containing five SPANX genes (SPANX-A1, -A2, -B, -C, and -D) encoding sperm proteins associated with the nucleus; their expression was also detected in a variety of cancers. SPANX genes are >95% identical and reside within large segmental duplications (SDs) with a high level of similarity, which confounds mutational analysis of this gene family by routine PCR methods. In this work, we applied transformation-associated recombination cloning (TAR) in yeast to characterize individual SPANX genes from prostate cancer patients showing linkage to Xq27-28 and unaffected controls. Analysis of genomic TAR clones revealed a dynamic nature of the replicated region of linkage. Both frequent gene deletion/duplication and homology-based sequence transfer events were identified within the region and were presumably caused by recombinational interactions between SDs harboring the SPANX genes. These interactions contribute to diversity of the SPANX coding regions in humans. We speculate that the predisposition to prostate cancer in X-linked families is an example of a genomic disease caused by a specific architecture of the SPANX gene cluster.
Collapse
Affiliation(s)
- Natalay Kouprina
- Laboratory of Biosystems and Cancer, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ebersole T, Okamoto Y, Noskov VN, Kouprina N, Kim JH, Leem SH, Barrett JC, Masumoto H, Larionov V. Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic Acids Res 2005; 33:e130. [PMID: 16141190 PMCID: PMC1197135 DOI: 10.1093/nar/gni129] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human artificial chromosomes (HACs) provide a unique opportunity to study kinetochore formation and to develop a new generation of vectors with potential in gene therapy. An investigation into the structural and the functional relationship in centromeric tandem repeats in HACs requires the ability to manipulate repeat substructure efficiently. We describe here a new method to rapidly amplify human alphoid tandem repeats of a few hundred base pairs into long DNA arrays up to 120 kb. The method includes rolling-circle amplification (RCA) of repeats in vitro and assembly of the RCA products by in vivo recombination in yeast. The synthetic arrays are competent in HAC formation when transformed into human cells. As short multimers can be easily modified before amplification, this new technique can identify repeat monomer regions critical for kinetochore seeding. The method may have more general application in elucidating the role of other tandem repeats in chromosome organization and dynamics.
Collapse
Affiliation(s)
| | - Yasuhide Okamoto
- Division of Biological Science, Graduate School of Science, Nagoya UniversityChikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | - Vladimir Larionov
- To whom correspondence should be addressed. Tel: +1 301 496 7941; Fax: +1 301 480 2772;
| |
Collapse
|
31
|
Leem SH, Kouprina N, Grimwood J, Kim JH, Mullokandov M, Yoon YH, Chae JY, Morgan J, Lucas S, Richardson P, Detter C, Glavina T, Rubin E, Barrett JC, Larionov V. Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements. Genome Res 2004; 14:239-46. [PMID: 14718380 PMCID: PMC327099 DOI: 10.1101/gr.1929904] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 11/24/2003] [Indexed: 12/18/2022]
Abstract
The reported human genome sequence includes about 400 gaps of unknown sequence that were not found in the bacterial artificial chromosome (BAC) and cosmid libraries used for sequencing of the genome. These missing sequences correspond to approximately 1% of euchromatic regions of the human genome. Gap filling is a laborious process because it relies on analysis of random clones of numerous genomic BAC or cosmid libraries. In this work we demonstrate that closing the gaps can be accelerated by a selective recombinational capture of missing chromosomal segments in yeast. The use of both methodologies allowed us to close the four remaining gaps on the human chromosome 19. Analysis of the gap sequences revealed that they contain several abnormalities that could result in instability of the sequences in microbe hosts, including large blocks of micro- and minisatellites and a high density of Alu repeats. Sequencing of the gap regions, in both BAC and YAC forms, allowed us to generate a complete sequence of four genes, including the neuronal cell signaling gene SCK1/SLI. The SCK1/SLI gene contains a record number of minisatellites, most of which are polymorphic and transmitted through meiosis following a Mendelian inheritance. In conclusion, the use of the alternative recombinational cloning system in yeast may greatly accelerate work on closing the remaining gaps in the human genome (as well as in other complex genomes) to achieve the goal of annotation of all human genes.
Collapse
Affiliation(s)
- Sun-Hee Leem
- Laboratory of Biosystems and Cancer, Center for Cancer Research, National Cancer Institute (NCI, NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kouprina N, Larionov V. Exploiting the yeast Saccharomyces cerevisiae for the study of the organization and evolution of complex genomes. FEMS Microbiol Rev 2004; 27:629-49. [PMID: 14638416 DOI: 10.1016/s0168-6445(03)00070-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Yeast artificial chromosome (YAC) cloning systems have advanced the analysis of complex genomes considerably. They permit the cloning of larger fragments than do bacterial artificial chromosome systems, and the cloned material is more easily modified. We recently developed a novel YAC cloning system called transformation-associated recombination (TAR) cloning. Using in vivo recombination in yeast, TAR cloning selectively isolates, as circular YACs, desired chromosome segments or entire genes from complex genomes. The ability to do that without constructing a representative genomic library of random clones greatly facilitates analysis of gene function and its role in disease. In this review, we summarize how recombinational cloning techniques have advanced the study of complex genome organization, gene expression, and comparative genomics.
Collapse
Affiliation(s)
- Natalay Kouprina
- National Cancer Institute, NIH, Bldg. 37, Room 5032, 90000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
33
|
Noskov VN, Kouprina N, Leem SH, Ouspenski I, Barrett JC, Larionov V. A general cloning system to selectively isolate any eukaryotic or prokaryotic genomic region in yeast. BMC Genomics 2003; 4:16. [PMID: 12720573 PMCID: PMC156606 DOI: 10.1186/1471-2164-4-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 04/29/2003] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Transformation-associated recombination (TAR) cloning in yeast is a unique method for selective isolation of large chromosomal fragments or entire genes from complex genomes. The technique involves homologous recombination, during yeast spheroplast transformation, between genomic DNA and a TAR vector that has short (approximately 60 bp) 5' and 3' gene targeting sequences (hooks). RESULT TAR cloning requires that the cloned DNA fragment carry at least one autonomously replicating sequence (ARS) that can function as the origin of replication in yeast, which prevents wide application of the method. In this paper, we describe a novel TAR cloning system that allows isolation of genomic regions lacking yeast ARS-like sequences. ARS is inserted into the TAR vector along with URA3 as a counter-selectable marker. The hooks are placed between the TATA box and the transcription initiation site of URA3. Insertion of any sequence between hooks results in inactivation of URA3 expression. That inactivation confers resistance to 5-fluoroorotic acid, allowing selection of TAR cloning events against background vector recircularization events. CONCLUSION The new system greatly expands the area of application of TAR cloning by allowing isolation of any chromosomal region from eukaryotic and prokaryotic genomes regardless of the presence of autonomously replicating sequences.
Collapse
Affiliation(s)
- Vladimir N Noskov
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalay Kouprina
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sun-Hee Leem
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilia Ouspenski
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Carl Barrett
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Kim JH, Leem SH, Sunwoo Y, Kouprina N. Separation of long-range human TERT gene haplotypes by transformation-associated recombination cloning in yeast. Oncogene 2003; 22:2452-6. [PMID: 12717422 DOI: 10.1038/sj.onc.1206316] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hTERT gene encoding a catalytic subunit of human telomerase contains four blocks of variable number of tandem repeats (VNTRs)--two in intron 2 and two in intron 6. The segregation of hTERT VNTRs was analysed in families, revealing that all of them were transmitted through meiosis following a Mendelian inheritance. The work reports a further characterization of the minisatellites in hTERT. We employed transformation-associated recombination (TAR) cloning to isolate parental hTERT alleles and determined the specific combination of minisatellites at each of the polymorphic sites. A long-range haplotyping of hTERT determined by TAR cloning was verified by classical Mendelian analysis. Since such a strategy can be applied for any chromosomal locus, we conclude that recombinational gene capture could greatly facilitate haplotypes analysis.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|