1
|
Shah R, Aslam MA, Spanjaard A, de Groot D, Zürcher LM, Altelaar M, Hoekman L, Pritchard CEJ, Pilzecker B, van den Berk PCM, Jacobs H. Dual role of proliferating cell nuclear antigen monoubiquitination in facilitating Fanconi anemia-mediated interstrand crosslink repair. PNAS NEXUS 2024; 3:pgae242. [PMID: 38957451 PMCID: PMC11217772 DOI: 10.1093/pnasnexus/pgae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
The Fanconi anemia (FA) repair pathway governs repair of highly genotoxic DNA interstrand crosslinks (ICLs) and relies on translesion synthesis (TLS). TLS is facilitated by REV1 or site-specific monoubiquitination of proliferating cell nuclear antigen (PCNA) (PCNA-Ub) at lysine 164 (K164). A PcnaK164R/K164R but not Rev1-/- mutation renders mammals hypersensitive to ICLs. Besides the FA pathway, alternative pathways have been associated with ICL repair (1, 2), though the decision making between those remains elusive. To study the dependence and relevance of PCNA-Ub in FA repair, we intercrossed PcnaK164R/+; Fancg-/+ mice. A combined mutation (PcnaK164R/K164R; Fancg-/- ) was found embryonically lethal. RNA-seq of primary double-mutant (DM) mouse embryonic fibroblasts (MEFs) revealed elevated levels of replication stress-induced checkpoints. To exclude stress-induced confounders, we utilized a Trp53 knock-down to obtain a model to study ICL repair in depth. Regarding ICL-induced cell toxicity, cell cycle arrest, and replication fork progression, single-mutant and DM MEFs were found equally sensitive, establishing PCNA-Ub to be critical for FA-ICL repair. Immunoprecipitation and spectrometry-based analysis revealed an unknown role of PCNA-Ub in excluding mismatch recognition complex MSH2/MSH6 from being recruited to ICLs. In conclusion, our results uncovered a dual function of PCNA-Ub in ICL repair, i.e. exclude MSH2/MSH6 recruitment to channel the ICL toward canonical FA repair, in addition to its established role in coordinating TLS opposite the unhooked ICL.
Collapse
Affiliation(s)
- Ronak Shah
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Muhammad Assad Aslam
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department/Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Bosan Road, 60800 Multan, Pakistan
| | - Aldo Spanjaard
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Daniel de Groot
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lisa M Zürcher
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Colin E J Pritchard
- Mouse Clinic for Cancer and Aging Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bas Pilzecker
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
2
|
Zhou Y, Yu H, Zhao X, Ni J, Gan S, Dong W, Du J, Zhou X, Wang X, Song H. Detection and differentiation of seven porcine respiratory pathogens using a multiplex ligation-dependent probe amplification assay. Vet J 2024; 305:106124. [PMID: 38653339 DOI: 10.1016/j.tvjl.2024.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Respiratory diseases due to viral or bacterial agents, either alone or in combination, cause substantial economic burdens to the swine industry worldwide. Rapid and reliable detection of causal pathogens is crucial for effective epidemiological surveillance and disease management. This research aimed to employ the multiplex ligation-dependent probe amplification (MLPA) assay for simultaneous detection of seven distinct pathogens causing respiratory problems in swine, porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine respiratory coronavirus (PRCV), porcine circovirus type 2 (PCV2), Pasteurella multocida, Actinobacillus pleuropneumoniae, and Glässerella parasuis. The results indicated no probe cross-reactivity among the seven target agents with other swine pathogens. The detection limits ranged from 5 to 34 copies per assay for the target organisms. The MLPA assay was evaluated with 88 samples and compared to real-time or multiplex PCR for the target pathogens. The MLPA assay demonstrated high relative test sensitivities (100 %) and reasonable to good relative specificities at 62.5 %, 95.1 %, 86.8 %, and 97.6 % for PRRSV, P. multocida, G. parasuis, and PCV2, respectively, relative to comparator PCR assays. In 71 samples where MLPA and comparator PCR assays matched exactly, infections were detected in 64 samples (90.1 %), with PRRSV being the most commonly found virus and 50.7 % of the samples showing co-infection with two to five of the pathogens. This approach serves as a valuable tool for conducting differential diagnoses and epidemiological investigations of pathogen prevalence within swine populations.
Collapse
Affiliation(s)
- Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Haoran Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiuling Zhao
- Ningbo Key Laboratory of Port Biological and Food Safety Testing, Technical Center of Ningbo Customs, Ningbo, Zhejiang Province 315000, China
| | - Jianbo Ni
- Ningbo Key Laboratory of Port Biological and Food Safety Testing, Technical Center of Ningbo Customs, Ningbo, Zhejiang Province 315000, China
| | - Shiqi Gan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| |
Collapse
|
3
|
Shah P, Hill R, Dion C, Clark SJ, Abakir A, Willems J, Arends MJ, Garaycoechea JI, Leitch HG, Reik W, Crossan GP. Primordial germ cell DNA demethylation and development require DNA translesion synthesis. Nat Commun 2024; 15:3734. [PMID: 38702312 PMCID: PMC11068800 DOI: 10.1038/s41467-024-47219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/25/2024] [Indexed: 05/06/2024] Open
Abstract
Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.
Collapse
Affiliation(s)
- Pranay Shah
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Ross Hill
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Camille Dion
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Stephen J Clark
- Altos Labs, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Abdulkadir Abakir
- Altos Labs, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Jeroen Willems
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | | | - Juan I Garaycoechea
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Harry G Leitch
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Wolf Reik
- Altos Labs, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
4
|
Shah P, Hill R, Clark S, Dion C, Abakir A, Arends M, Leitch H, Reik W, Crossan G. Primordial germ cell DNA demethylation and development require DNA translesion synthesis.. [DOI: 10.1101/2023.07.05.547775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
AbstractMutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. It remains unclear if the role of DDR is solely in meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/-orPcnaK164R/K164R) or extension (Rev7-/-) result in a >150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.
Collapse
|
5
|
Buoninfante OA, Pilzecker B, Spanjaard A, de Groot D, Prekovic S, Song JY, Lieftink C, Ayidah M, Pritchard CEJ, Vivié J, Mcgrath KE, Huijbers IJ, Philipsen S, von Lindern M, Zwart W, Beijersbergen R, Palis J, van den Berk PCM, Jacobs H. Mammalian life depends on two distinct pathways of DNA damage tolerance. Proc Natl Acad Sci U S A 2023; 120:e2216055120. [PMID: 36669105 PMCID: PMC9942833 DOI: 10.1073/pnas.2216055120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/22/2023] Open
Abstract
DNA damage threatens genomic integrity and instigates stem cell failure. To bypass genotoxic lesions during replication, cells employ DNA damage tolerance (DDT), which is regulated via PCNA ubiquitination and REV1. DDT is conserved in all domains of life, yet its relevance in mammals remains unclear. Here, we show that inactivation of both PCNA-ubiquitination and REV1 results in embryonic and adult lethality, and the accumulation of DNA damage in hematopoietic stem and progenitor cells (HSPCs) that ultimately resulted in their depletion. Our results reveal the crucial relevance of DDT in the maintenance of stem cell compartments and mammalian life in unperturbed conditions.
Collapse
Affiliation(s)
| | - Bas Pilzecker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| | - Aldo Spanjaard
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| | - Daniël de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| | - Stefan Prekovic
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, 3584 CXUtrecht, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| | - Matilda Ayidah
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| | - Colin E. J. Pritchard
- Mouse Clinic for Cancer and Aging Research, Transgenic Facility, The Netherlands Cancer Institute, 1066 CXAmsterdam, The Netherlands
| | - Judith Vivié
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, 3584 CTUtrecht, The Netherlands
| | - Kathleen E. Mcgrath
- Department of Pediatrics, University of Rochester Medical Center School of Medicine and Dentistry, Rochester, NY14642
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer and Aging Research, Transgenic Facility, The Netherlands Cancer Institute, 1066 CXAmsterdam, The Netherlands
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus Medical Center, 3015CNRotterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratories, 1066CXAmsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center School of Medicine and Dentistry, Rochester, NY14642
| | - Paul C. M. van den Berk
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066CXAmsterdam, The Netherlands
| |
Collapse
|
6
|
Liu C, Ren L, Li X, Fan N, Chen J, Zhang D, Yang W, Ding S, Xu W, Min X. Self-electrochemiluminescence biosensor based on CRISPR/Cas12a and PdCuBP@luminol nanoemitter for highly sensitive detection of cytochrome c oxidase subunit III gene of acute kidney injury. Biosens Bioelectron 2022; 207:114207. [PMID: 35339823 DOI: 10.1016/j.bios.2022.114207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/06/2022] [Accepted: 03/19/2022] [Indexed: 12/23/2022]
Abstract
The cytochrome c oxidase subunit III (COX III) gene is a powerful biomarker for the early diagnosis of acute kidney injury. However, current methods for COX III gene detection are usually laborious and time-consuming, with limited sensitivity. Herein, we report a novel self-electrochemiluminescence (ECL) biosensor for highly sensitive detection of the COX III gene based on CRISPR/Cas12a and nanoemitters of luminol-loaded multicomponent metal-metalloid PdCuBP alloy mesoporous nanoclusters. The nanoemitter with excellent self-ECL in neutral media exhibited a high specific surface area for binding luminol and outstanding oxidase-like catalytic activity toward dissolved O2. Meanwhile, the CRISPR/Cas12a system, as a target-trigger, was employed to specifically recognize the COX III gene and efficiently cleave the interfacial quencher of dopamine-labeled hairpin DNA. As a result, the ECL biosensor showed superior analytical performance for COX III gene detection without exogenous coreactant. Benefiting from the high-efficiency ECL emission of the nanoemitter and Cas12a-mediated interfacial cleavage of the quencher, the developed ECL biosensor exhibited high sensitivity to COX III with a low detection limit of 0.18 pM. The established ECL biosensing method possessed excellent practical performance in urine samples. Meaningfully, the proposed strategy presents promising prospects for nucleic acid detection in the field of clinical diagnostics.
Collapse
Affiliation(s)
- Changjin Liu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lei Ren
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Decai Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenchun Xu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
7
|
Zhou D, Tan L, Li J, Liu T, Hu Y, Li Y, Kawamoto S, Liu C, Guo S, Wang A. Identification of Homologous Recombination Events in Mouse Embryonic Stem Cells Using Southern Blotting and Polymerase Chain Reaction. J Vis Exp 2018. [PMID: 30531726 DOI: 10.3791/58467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Relative to the issues of off-target effects and the difficulty of inserting a long DNA fragment in the application of designer nucleases for genome editing, embryonic stem (ES) cell-based gene-targeting technology does not have these shortcomings and is widely used to modify animal/mouse genome ranging from large deletions/insertions to single nucleotide substitutions. Notably, identifying the relatively few homologous recombination (HR) events necessary to obtain desired ES clones is a key step, which demands accurate and reliable methods. Southern blotting and/or conventional PCR are often utilized for this purpose. Here, we describe the detailed procedures of using those two methods to identify HR events that occurred in mouse ES cells in which the endogenous Myh9 gene is intended to be disrupted and replaced by cDNAs encoding other nonmuscle myosin heavy chain IIs (NMHC IIs). The whole procedure of Southern blotting includes the construction of targeting vector(s), electroporation, drug selection, the expansion and storage of ES cells/clones, the preparation, digestion, and blotting of genomic DNA (gDNA), the hybridization and washing of probe(s), and a final step of autoradiography on the X-ray films. PCR can be performed directly with prepared and diluted gDNA. To obtain ideal results, the probes and restriction enzyme (RE) cutting sites for Southern blotting and the primers for PCR should be carefully planned. Though the execution of Southern blotting is time-consuming and labor-intensive and PCR results have false positives, the correct identification by Southern blotting and the rapid screening by PCR allow the sole or combined application of these methods described in this paper to be widely used and consulted by most labs in the identification of genotypes of ES cells and genetically modified animals.
Collapse
Affiliation(s)
- Dan Zhou
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU); Department of Pathology, Georgetown University Medical School
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU)
| | - Jian Li
- College of Food Science and Technology, Hunan Agricultural University (HUNAU)
| | - Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU)
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU)
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU)
| | - Sachiyo Kawamoto
- Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH)
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH)
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University (HUNAU);
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU);
| |
Collapse
|
8
|
Dong D, Zhou H, Na SY, Niedra R, Peng Y, Wang H, Seed B, Zhou GL. GPR108, an NF-κB activator suppressed by TIRAP, negatively regulates TLR-triggered immune responses. PLoS One 2018; 13:e0205303. [PMID: 30332431 PMCID: PMC6192633 DOI: 10.1371/journal.pone.0205303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/21/2018] [Indexed: 01/12/2023] Open
Abstract
Higher vertebrates have evolved innate and adaptive immune systems to defend against foreign substances and pathogens. Sophisticated regulatory circuits are needed to avoid inappropriate immune responses and inflammation. GPR108 is a seven-transmembrane family protein that activates NF-κB strongly when overexpressed. Surprisingly, its action in a physiological context is that of an antagonist of Toll-like receptor (TLR)-mediated signaling. Cells from Gpr108-null mice exhibit enhanced cytokine secretion and NF-κB and IRF3 signaling, whereas Gpr108-null macrophages reconstituted with GPR108 exhibit blunted signaling. Co-expression of TLRs and GPR108 reduces NF-κB and IFNβ promoter activation compared to expression of either TLRs or GPR108 alone. Upon TLR stimulation GPR108 abundance increases and the protein engages TLRs and their partners to reduce MyD88 expression and interfere with its binding to TLR4 through blocking MyD88 ubiquitination. In turn GPR108 is antagonized by TIRAP, an adaptor protein for TLR and MyD88. The interrelationships between GPR108 and innate immune signaling components are multifactorial and point to a membrane-associated signaling structure of significant complexity.
Collapse
Affiliation(s)
- Danfeng Dong
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haisheng Zhou
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soon-Young Na
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rasma Niedra
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huajun Wang
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Brian Seed
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Guo Ling Zhou
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Dabrowska M, Czubak K, Juzwa W, Krzyzosiak WJ, Olejniczak M, Kozlowski P. qEva-CRISPR: a method for quantitative evaluation of CRISPR/Cas-mediated genome editing in target and off-target sites. Nucleic Acids Res 2018; 46:e101. [PMID: 29878242 PMCID: PMC6158505 DOI: 10.1093/nar/gky505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Genome editing technology based on engineered nucleases has been increasingly applied for targeted modification of genes in a variety of cell types and organisms. However, the methods currently used for evaluating the editing efficiency still suffer from many limitations, including preferential detection of some mutation types, sensitivity to polymorphisms that hamper mismatch detection, lack of multiplex capability, or sensitivity to assay conditions. Here, we describe qEva-CRISPR, a new quantitative method that overcomes these limitations and allows simultaneous (multiplex) analysis of CRISPR/Cas9-induced modifications in a target and the corresponding off-targets or in several different targets. We demonstrate all of the advantages of the qEva-CRISPR method using a number of sgRNAs targeting the TP53, VEGFA, CCR5, EMX1 and HTT genes in different cell lines and under different experimental conditions. Unlike other methods, qEva-CRISPR detects all types of mutations, including point mutations and large deletions, and its sensitivity does not depend on the mutation type. Moreover, this approach allows for successful analysis of targets located in 'difficult' genomic regions. In conclusion, qEva-CRISPR may become a method of choice for unbiased sgRNA screening to evaluate experimental conditions that affect genome editing or to distinguish homology-directed repair from non-homologous end joining.
Collapse
Affiliation(s)
- Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karol Czubak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
10
|
Precision cancer therapy: profiting from tumor specific defects in the DNA damage tolerance system. Oncotarget 2018; 9:18832-18843. [PMID: 29721165 PMCID: PMC5922359 DOI: 10.18632/oncotarget.24777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
DNA damage tolerance (DDT) enables replication to continue in the presence of a damaged template and constitutes a key step in DNA interstrand crosslink repair. In this way DDT minimizes replication stress inflicted by a wide range of endogenous and exogenous agents, and provides a critical first line defense against alkylating and platinating chemotherapeutics. Effective DDT strongly depends on damage-induced, site-specific PCNA-ubiquitination at Lysine (K) 164 by the E2/E3 complex (RAD6/18). A survey of The Cancer Genome Atlas (TCGA) revealed a high frequency of tumors presents RAD6/RAD18 bi-allelic inactivating deletions. For instance, 11% of renal cell carcinoma and 5% of pancreatic tumors have inactivating RAD18-deletions and 7% of malignant peripheral nerve sheath tumors lack RAD6B. To determine the potential benefit for tumor-specific DDT defects, we followed a genetic approach by establishing unique sets of DDT-proficient PcnaK164 and -defective PcnaK164R lymphoma and breast cancer cell lines. In the absence of exogenous DNA damage, PcnaK164R tumors grew comparably to their PcnaK164 controls in vitro and in vivo. However, DDT-defective lymphomas and breast cancers were compared to their DDT-proficient controls hypersensitive to the chemotherapeutic drug cisplatin (CsPt), both in vitro and in vivo. CsPt strongly inhibited tumor growth and the overall survival of tumor bearing mice greatly improved in the DDT-defective condition. These insights open new therapeutic possibilities for precision cancer medicine with DNA damaging chemotherapeutics and optimize Next-Generation-Sequencing (NGS)-based cancer-diagnostics, -therapeutics, and -prognosis.
Collapse
|
11
|
Uno N, Yanagihara K. Ligation-independent mechanism of multiplex ligation-dependent probe amplification. ANAL SCI 2015; 30:805-10. [PMID: 25109642 DOI: 10.2116/analsci.30.805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multiplex ligation-dependent probe amplification (MLPA) is a widely used technique for detecting genomic structural variants. The technique is based on hybridization and ligation, followed by amplification of the ligation products. Therefore, ligation is considered a fundamental process that determines the feasibility and fidelity of MLPA. However, despite the widespread use of this technique, its reaction mechanism has not been fully analyzed. Herein, we describe a ligation-independent pathway for MLPA and introduce a ligation-independent probe amplification system that can be used to obtain amplified products without the hybridization and ligation processes. Fragment analysis revealed that the ligation-independent pathway is functional and that the capacity to discriminate single nucleotides with MLPA does not depend on ligation. These findings indicate that the feasibility and fidelity of MLPA do not rely on ligation.
Collapse
Affiliation(s)
- Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | | |
Collapse
|
12
|
Elert-Dobkowska E, Hennings JC, Hübner CA, Beetz C. Multiplex ligation-dependent probe amplification for identification of correctly targeted murine embryonic stem cell clones. Anal Biochem 2015; 474:35-7. [PMID: 25615417 DOI: 10.1016/j.ab.2015.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
Abstract
Following locus-specific genome editing of mouse embryonic stem cells (ESCs), the identification of correctly targeted clones remains a challenge. We applied multiplex ligation-dependent probe amplification (MLPA) to screen for homologous recombination-based genomic integration of a knockout construct in which part of a gene is deleted. All candidate ESCs thereby identified were subsequently validated by conventional methods. Thus, MLPA represents a highly reliable as well as cost- and time-efficient alternative to currently applied methods such as Southern blotting and polymerase chain reaction (PCR)-based approaches. It is also applicable to knockin recombination strategies and compatible with the CRISPR/Cas9 system and other genome editing strategies.
Collapse
Affiliation(s)
- Ewelina Elert-Dobkowska
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747 Jena, Germany; Department of Genetics, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
13
|
Zhou GL, Na SY, Niedra R, Seed B. Deficits in receptor-mediated endocytosis and recycling in cells from mice with Gpr107 locus disruption. J Cell Sci 2014; 127:3916-27. [PMID: 24849652 DOI: 10.1242/jcs.135269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
GPR107 is a type III integral membrane protein that was initially predicted to be a member of the family of G-protein-coupled receptors. This report shows that deletion of Gpr107 leads to an embryonic lethal phenotype that is characterized by a reduction in cubilin transcript abundance and a decrease in the representation of multiple genes implicated in the cubilin-megalin endocytic receptor complex (megalin is also known as LRP2). Gpr107-null fibroblast cells exhibit reduced transferrin internalization, decreased uptake of low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) cargo and resistance to toxins. Colocalization studies and proteomic analyses suggest that GPR107 associates with clathrin and the retromer protein VPS35 and that GPR107 might be responsible for the return of receptors to the plasma membrane from endocytic compartments. The highly selective deficits observed in Gpr107-null cells indicate that GPR107 interacts directly or indirectly with a limited subset of surface receptors.
Collapse
Affiliation(s)
- Guo Ling Zhou
- Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Soon-Young Na
- Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Rasma Niedra
- Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Brian Seed
- Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
14
|
Deletion of the murine cytochrome P450 Cyp2j locus by fused BAC-mediated recombination identifies a role for Cyp2j in the pulmonary vascular response to hypoxia. PLoS Genet 2013; 9:e1003950. [PMID: 24278032 PMCID: PMC3836722 DOI: 10.1371/journal.pgen.1003950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/27/2013] [Indexed: 01/10/2023] Open
Abstract
Epoxyeicosatrienoic acids (EETs) confer vasoactive and cardioprotective functions. Genetic analysis of the contributions of these short-lived mediators to pathophysiology has been confounded to date by the allelic expansion in rodents of the portion of the genome syntenic to human CYP2J2, a gene encoding one of the principle cytochrome P450 epoxygenases responsible for the formation of EETs in humans. Mice have eight potentially functional genes that could direct the synthesis of epoxygenases with properties similar to those of CYP2J2. As an initial step towards understanding the role of the murine Cyp2j locus, we have created mice bearing a 626-kb deletion spanning the entire region syntenic to CYP2J2, using a combination of homologous and site-directed recombination strategies. A mouse strain in which the locus deletion was complemented by transgenic delivery of BAC sequences encoding human CYP2J2 was also created. Systemic and pulmonary hemodynamic measurements did not differ in wild-type, null, and complemented mice at baseline. However, hypoxic pulmonary vasoconstriction (HPV) during left mainstem bronchus occlusion was impaired and associated with reduced systemic oxygenation in null mice, but not in null mice bearing the human transgene. Administration of an epoxygenase inhibitor to wild-type mice also impaired HPV. These findings demonstrate that Cyp2j gene products regulate the pulmonary vascular response to hypoxia. In mice and humans, the CYP2J class of cytochrome P450 epoxygenases metabolizes arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs), short-lived mediators with effects on both the pulmonary and systemic vasculature. Genetic dissection of CYP2J function to date has been complicated by allelic expansion in the rodent genome. In this study, the mouse chromosomal locus syntenic to human CYP2J2, containing eight presumed genes and two pseudogenes, was deleted via generation of a recombinant template created by homologous and site-specific recombination steps that joined two precursor bacterial artificial chromosomes (BACs). The Cyp2j null mice were subsequently complemented by transgenic delivery of BAC sequences encoding human CYP2J2. Hypoxic pulmonary vasoconstriction (HPV) and systemic oxygenation during regional alveolar hypoxia were unexpectedly found to be impaired in null mice, but not in null mice bearing the transgenic human allele, suggesting that Cyp2j products contribute to the pulmonary vascular response to hypoxia.
Collapse
|
15
|
Muvunyi CM, Dhont N, Verhelst R, Crucitti T, Reijans M, Mulders B, Simons G, Temmerman M, Claeys G, Padalko E. Evaluation of a new multiplex polymerase chain reaction assay STDFinder for the simultaneous detection of 7 sexually transmitted disease pathogens. Diagn Microbiol Infect Dis 2011; 71:29-37. [DOI: 10.1016/j.diagmicrobio.2011.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/28/2011] [Accepted: 06/08/2011] [Indexed: 10/17/2022]
|
16
|
Sun J, Xu J, Liang P, Mao Q, Huang Y, Lv X, Deng C, Liang C, de Hoog GS, Yu X. Molecular identification of Clonorchis sinensis and discrimination with other opisthorchid liver fluke species using multiple Ligation-depended Probe Amplification (MLPA). Parasit Vectors 2011; 4:98. [PMID: 21649899 PMCID: PMC3123291 DOI: 10.1186/1756-3305-4-98] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/07/2011] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Infections with the opisthorchid liver flukes Clonorchis sinensis, Opisthorchis viverrini, and O. felineus cause severe health problems globally, particularly in Southeast Asia. Early identification of the infection is essential to provide timely and appropriate chemotherapy to patients. RESULTS In this study we evaluate a PCR-based molecular identification method, Multiplex Ligation-dependent Probe Amplification (MLPA), which allows rapid and specific detection of single nucleotide acid differences between Clonorchis sinensis, Opisthorchis viverrini and O. felineus. Three probe pairs were derived from the Internally Transcribed Spacer 1 (ITS1) of three opisthorchid liver flukes using a systematic phylogenetic analysis. Specific loci were detected in all three species, yielding three amplicons with 198,172 and 152 bp, respectively, while no cross reactions were observed. A panel of 66 C. sinensis isolates was screened using MLPA. All species were positively identified, and no inhibition was observed. The detection limit was 10(3) copies of the ITS gene for the three liver flukes, or about 60 pg genomic DNA for Clonorchis sinensis. Amplification products can be detected by electrophoresis on agarose gel or in a capillary sequencer. In addition, genomic DNA of Clonorchis sinensis in fecal samples of infected rats was positively amplified by MLPA. CONCLUSION The flexibility and specificity make MLPA a potential tool for specific identification of infections by opisthorchid liver flukes in endemic areas.
Collapse
Affiliation(s)
- Jiufeng Sun
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Pei Liang
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Qiang Mao
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Xiaoli Lv
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Chuanhuan Deng
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - G S de Hoog
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
17
|
Krijger PH, Lee KY, Wit N, van den Berka PC, Wu X, Roest HP, Maas A, Ding H, Hoeijmakers JH, Myung K, Jacobs H. HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: existence of an alternative E3 ligase. DNA Repair (Amst) 2011; 10:438-44. [PMID: 21269891 PMCID: PMC3381732 DOI: 10.1016/j.dnarep.2010.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/24/2010] [Accepted: 12/21/2010] [Indexed: 12/11/2022]
Abstract
DNA damage tolerance is regulated at least in part at the level of proliferating cell nuclear antigen (PCNA) ubiquitination. Monoubiquitination (PCNA-Ub) at lysine residue 164 (K164) stimulates error-prone translesion synthesis (TLS), Rad5-dependent polyubiquitination (PCNA-Ub(n)) stimulates error-free template switching (TS). To generate high affinity antibodies by somatic hypermutation (SHM), B cells profit from error-prone TLS polymerases. Consistent with the role of PCNA-Ub in stimulating TLS, hypermutated B cells of PCNA(K164R) mutant mice display a defect in generating selective point mutations. Two Rad5 orthologs, HLTF and SHPRH have been identified as alternative E3 ligases generating PCNA-Ub(n) in mammals. As PCNA-Ub and PCNA-Ub(n) both make use of K164, error-free PCNA-Ub(n)-dependent TS may suppress error-prone PCNA-Ub-dependent TLS. To determine a regulatory role of Shprh and Hltf in SHM, we generated Shprh/Hltf double mutant mice. Interestingly, while the formation of PCNA-Ub and PCNA-Ub(n) is prohibited in PCNA(K164R) MEFs, the formation of PCNA-Ub(n) is not abolished in Shprh/Hltf mutant MEFs. In line with these observations Shprh/Hltf double mutant B cells were not hypersensitive to DNA damage. Furthermore, SHM was normal in Shprh/Hltf mutant B cells. These data suggest the existence of an alternative E3 ligase in the generation of PCNA-Ub(n).
Collapse
Affiliation(s)
- Peter H.L. Krijger
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Kyoo-Young Lee
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Niek Wit
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Xiaoli Wu
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3E OW3
| | - Henk P. Roest
- CBG, Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus Medical Center, 3015 GE, Rotterdam, The Netherlands
| | - Alex Maas
- CBG, Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus Medical Center, 3015 GE, Rotterdam, The Netherlands
| | - Hao Ding
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3E OW3
| | - Jan H.J. Hoeijmakers
- CBG, Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus Medical Center, 3015 GE, Rotterdam, The Netherlands
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Heinz Jacobs
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
18
|
Zhang JM, Sun JF, Feng PY, Li XQ, Lu CM, Lu S, Cai WY, Xi LY, de Hoog GS. Rapid identification and characterization of Penicillium marneffei using multiplex ligation-dependent probe amplification (MLPA) in paraffin-embedded tissue samples. J Microbiol Methods 2011; 85:33-9. [PMID: 21277339 DOI: 10.1016/j.mimet.2011.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
Penicillium marneffei infection is a deadly disease and early diagnosis leads to prompt and appropriate antifungal therapy. To develop a sensitive method to diagnose P. marneffei infection, a multiplex ligation-dependent probe amplification (MLPA) assay was adapted. This method can rapidly and specifically detect P. marneffei DNA in cultured cells and paraffin-embedded tissue samples. Three pairs of probes were designed for amplifying the internally (intergenic) transcribed spacer (ITS) region of P. marneffei rRNA using a systematic phylogenetic analysis. These three probe sets produced three amplicons of 198, 166, and 152 bp, respectively, specific for P. marneffei. In contrast, there was only one 198 bp amplicon produced for Talaromyces stipitatus, and one 152 bp amplicon for P. funiculosum, T. intermedius and T. derxii. The probes did not amplify any other reference strains. An array of 40 P. marneffei strains isolated from human patients, bamboo rat, and the local environment was tested by using MLPA, and all were positively identified. Most importantly, P. marneffei in paraffin-embedded tissue specimens from infected human patients was positively amplified by MLPA. The sensitivity and specificity of the MLPA assay could be a useful tool for prompt diagnosis, pathogen characterization, and epidemiological studies of fungal infections.
Collapse
Affiliation(s)
- Jun-Min Zhang
- Department of Dermatology, Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Krijger PHL, Langerak P, van den Berk PCM, Jacobs H. Dependence of nucleotide substitutions on Ung2, Msh2, and PCNA-Ub during somatic hypermutation. ACTA ACUST UNITED AC 2009; 206:2603-11. [PMID: 19901081 PMCID: PMC2806606 DOI: 10.1084/jem.20091707] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During somatic hypermutation (SHM), B cells introduce mutations into their immunoglobulin genes to generate high affinity antibodies. Current models suggest a separation in the generation of G/C transversions by the Ung2-dependent pathway and the generation of A/T mutations by the Msh2/ubiquitinated proliferating cell nuclear antigen (PCNA-Ub)–dependent pathway. It is currently unknown whether these pathways compete to initiate mutagenesis and whether PCNA-Ub functions downstream of Ung2. Furthermore, these models do not explain why mice lacking Msh2 have a more than twofold reduction in the total mutation frequency. Our data indicate that PCNA-Ub is required for A/T mutagenesis downstream of both Msh2 and Ung2. Furthermore, we provide evidence that both pathways are noncompetitive to initiate mutagenesis and even collaborate to generate half of all G/C transversions. These findings significantly add to our understanding of SHM and necessitate an update of present SHM models.
Collapse
Affiliation(s)
- Peter H L Krijger
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | | | | |
Collapse
|
20
|
Liu Z, Obenauf AC, Speicher MR, Kopan R. Rapid identification of homologous recombinants and determination of gene copy number with reference/query pyrosequencing (RQPS). Genome Res 2009; 19:2081-9. [PMID: 19797679 DOI: 10.1101/gr.093856.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Manipulating the mouse genome is a widespread technology with important applications in many biological fields ranging from cancer research to developmental biology. Likewise, correlations between copy number variations (CNVs) and human diseases are emerging. We have developed the reference-query pyrosequencing (RQPS) method, which is based on quantitative pyrosequencing and uniquely designed probes containing single nucleotide variations (SNVs), to offer a simple and affordable genotyping solution capable of identifying homologous recombinants independent of the homology arm size, determining the micro-amplification status of endogenous human loci, and quantifying virus/transgene copy number in experimental or commercial species. In addition, we also present a simple pyrosequencing-based protocol that could be used for the enrichment of homologous recombinant embryonic stem (ES) cells.
Collapse
Affiliation(s)
- Zhenyi Liu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
21
|
Langerak P, Krijger PHL, Heideman MR, van den Berk PCM, Jacobs H. Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigenK164R mutant mice. Philos Trans R Soc Lond B Biol Sci 2009; 364:621-9. [PMID: 19008189 PMCID: PMC2660925 DOI: 10.1098/rstb.2008.0223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA-Ub). TLS polymerases can tolerate DNA damage, i.e. they can replicate across DNA lesions. The lack of proofreading activity, however, renders TLS highly mutagenic. The advantage is that B cells use mutagenic TLS to introduce somatic mutations in immunoglobulin (Ig) genes to generate high-affinity antibodies. Given the critical role of PCNA-Ub in activating TLS and the role of TLS in establishing somatic mutations in immunoglobulin genes, we analysed the mutation spectrum of somatically mutated immunoglobulin genes in B cells from PCNAK164R knock-in mice. A 10-fold reduction in A/T mutations is associated with a compensatory increase in G/C mutations—a phenotype similar to Polη and mismatch repair-deficient B cells. Mismatch recognition, PCNA-Ub and Polη probably act within one pathway to establish the majority of mutations at template A/T. Equally relevant, the G/C mutator(s) seems largely independent of PCNAK164 modification.
Collapse
Affiliation(s)
- Petra Langerak
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
RespiFinder: a new multiparameter test to differentially identify fifteen respiratory viruses. J Clin Microbiol 2008; 46:1232-40. [PMID: 18256230 DOI: 10.1128/jcm.02294-07] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broad-spectrum analysis for pathogens in patients with respiratory tract infections is becoming more relevant as the number of potential infectious agents is still increasing. Here we describe the new multiparameter RespiFinder assay, which is based on the multiplex ligation-dependent probe amplification (MLPA) technology. This assay detects 15 respiratory viruses in one reaction. The MLPA reaction is preceded by a preamplification step which ensures the detection of both RNA and DNA viruses with the same specificity and sensitivity as individual monoplex real-time reverse transcription-PCRs. The RespiFinder assay was validated with 144 clinical samples, and the results of the assay were compared to those of cell culture and a respiratory syncytial virus (RSV)-specific immunochromatography assay (ICA). Compared to the cell culture results, the RespiFinder assay showed specificities and sensitivities of 98.2% and 100%, respectively, for adenovirus; 96.4% and 100%, respectively, for human metapneumovirus; 98.2% and 100%, respectively, for influenza A virus (InfA); 99.1% and 100%, respectively, for parainfluenza virus type 1 (PIV-1); 99.1% and 80%, respectively, for PIV-3; 90.1% and 100%, respectively, for rhinovirus; and 94.6% and 100%, respectively, for RSV. Compared to the results of the RSV-specific ICA, the RespiFinder assay gave a specificity and a sensitivity of 82.4% and 80%, respectively. PIV-2, PIV-4, influenza B virus, InfA H5N1, and coronavirus 229E were not detected in the clinical specimens tested. The use of the RespiFinder assay resulted in an increase in the diagnostic yield compared to that obtained by cell culture (diagnostic yields, 60% and 35.5%, respectively). In conclusion, the RespiFinder assay provides a user-friendly and high-throughput tool for the simultaneous detection of 15 respiratory viruses with excellent overall performance statistics.
Collapse
|
23
|
Langerak P, Nygren AOH, Krijger PHL, van den Berk PCM, Jacobs H. A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification. ACTA ACUST UNITED AC 2007; 204:1989-98. [PMID: 17664295 PMCID: PMC2118671 DOI: 10.1084/jem.20070902] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
B cells use translesion DNA synthesis (TLS) to introduce somatic mutations around genetic lesions caused by activation-induced cytidine deaminase. Monoubiquitination at lysine164 of proliferating cell nuclear antigen (PCNAK164) stimulates TLS. To determine the role of PCNAK164 modifications in somatic hypermutation, PCNAK164R knock-in mice were generated. PCNAK164R/K164R mutants are born at a sub-Mendelian frequency. Although PCNAK164R/K164R B cells proliferate and class switch normally, the mutation spectrum of hypermutated immunoglobulin (Ig) genes alters dramatically. A strong reduction of mutations at template A/T is associated with a compensatory increase at G/C, which is a phenotype similar to polymerase η (Polη) and mismatch repair–deficient B cells. Mismatch recognition, monoubiquitinated PCNA, and Polη likely cooperate in establishing mutations at template A/T during replication of Ig genes.
Collapse
Affiliation(s)
- Petra Langerak
- The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Rottenberg S, Nygren AOH, Pajic M, van Leeuwen FWB, van der Heijden I, van de Wetering K, Liu X, de Visser KE, Gilhuijs KG, van Tellingen O, Schouten JP, Jonkers J, Borst P. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Natl Acad Sci U S A 2007; 104:12117-22. [PMID: 17626183 PMCID: PMC1914039 DOI: 10.1073/pnas.0702955104] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Indexed: 12/22/2022] Open
Abstract
We have studied in vivo responses of "spontaneous" Brca1- and p53-deficient mammary tumors arising in conditional mouse mutants to treatment with doxorubicin, docetaxel, or cisplatin. Like human tumors, the response of individual mouse tumors varies, but eventually they all become resistant to the maximum tolerable dose of doxorubicin or docetaxel. The tumors also respond well to cisplatin but do not become resistant, even after multiple treatments in which tumors appear to regrow from a small fraction of surviving cells. Classical biochemical resistance mechanisms, such as up-regulated drug transporters, appear to be responsible for doxorubicin resistance, rather than alterations in drug-damage effector pathways. Our results underline the promise of these mouse tumors for the study of tumor-initiating cells and of drug therapy of human cancer.
Collapse
Affiliation(s)
- Sven Rottenberg
- Division of Molecular Biology and Center of Biomedical Genetics and
| | | | - Marina Pajic
- Division of Molecular Biology and Center of Biomedical Genetics and
| | - Fijs W. B. van Leeuwen
- Division of Diagnostic Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and
| | | | | | - Xiaoling Liu
- Division of Molecular Biology and Center of Biomedical Genetics and
| | | | - Kenneth G. Gilhuijs
- Division of Diagnostic Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and
| | - Olaf van Tellingen
- Division of Diagnostic Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and
| | | | - Jos Jonkers
- Division of Molecular Biology and Center of Biomedical Genetics and
| | - Piet Borst
- Division of Molecular Biology and Center of Biomedical Genetics and
| |
Collapse
|
25
|
Girirajan S, Mendoza-Londono R, Vlangos CN, Dupuis L, Nowak NJ, Bunyan DJ, Hatchwell E, Elsea SH. Smith–Magenis syndrome and moyamoya disease in a patient with del(17)(p11.2p13.1). Am J Med Genet A 2007; 143A:999-1008. [PMID: 17431895 DOI: 10.1002/ajmg.a.31689] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chromosomal rearrangements causing microdeletions and microduplications are a major cause of congenital malformation and mental retardation. Because they are not visible by routine chromosome analysis, high resolution whole-genome technologies are required for the detection and diagnosis of small chromosomal abnormalities. Recently, array-comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MLPA) have been useful tools for the identification and mapping of deletions and duplications at higher resolution and throughput. Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation syndrome caused by deletion or mutation of the retinoic acid induced 1 (RAI1) gene and is often associated with a chromosome 17p11.2 deletion. We report here on the clinical and molecular analysis of a 10-year-old girl with SMS and moyamoya disease (occlusion of the circle of Willis). We have employed a combination of aCGH, FISH, and MLPA to characterize an approximately 6.3 Mb deletion spanning chromosome region 17p11.2-p13.1 in this patient, with the proximal breakpoint within the RAI1 gene. Further, investigation of the genomic architecture at the breakpoint intervals of this large deletion documented the presence of palindromic repeat elements that could potentially form recombination substrates leading to unequal crossover.
Collapse
Affiliation(s)
- Santhosh Girirajan
- Department of Human Genetics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Carson AR, Feuk L, Mohammed M, Scherer SW. Strategies for the detection of copy number and other structural variants in the human genome. Hum Genomics 2006; 2:403-14. [PMID: 16848978 PMCID: PMC3525157 DOI: 10.1186/1479-7364-2-6-403] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
Advances in genome scanning technologies are revealing that copy number variants (CNVs) and polymorphisms, ranging from a few kilobases to several megabases in size, are present in genomes at frequencies much greater than previously known. Discoveries of additional forms of genomic variation, including inversions, insertions, deletions and complex rearrangements, are also occurring at an increased rate. Along with CNVs, these sequence alterations are collectively known as structural variants, and their discovery has had an immediate impact on the interpretation of basic research and clinical diagnostic data. This paper discusses different methods, experimental strategies and technologies that are currently available to study copy number variation and other structural variants in the human genome.
Collapse
Affiliation(s)
- Andrew R Carson
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lars Feuk
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Hospital for Sick Children and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|