1
|
Castilha EP, Biondo R, Trugilo KP, Fortunato GM, Fenton TR, de Oliveira KB. APOBEC3 Proteins: From Antiviral Immunity to Oncogenic Drivers in HPV-Positive Cancers. Viruses 2025; 17:436. [PMID: 40143363 PMCID: PMC11946020 DOI: 10.3390/v17030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The human APOBEC superfamily consists of eleven cytidine deaminase enzymes. Among them, APOBEC3 enzymes play a dual role in antiviral immunity and cancer development. APOBEC3 enzymes, including APOBEC3A (A3A) and APOBEC3B (A3B), induce mutations in viral DNA, effectively inhibiting viral replication but also promoting somatic mutations in the host genome, contributing to cancer development. A3A and A3B are linked to mutational signatures in over 50% of human cancers, with A3A being a potent mutagen. A3B, one of the first APOBEC3 enzymes linked to carcinogenesis, plays a significant role in HPV-associated cancers by driving somatic mutagenesis and tumor progression. The A3A_B deletion polymorphism results in a hybrid A3A_B gene, leading to increased A3A expression and enhanced mutagenic potential. Such polymorphism has been linked to an elevated risk of certain cancers, particularly in populations where it is more prevalent. This review explores the molecular mechanisms of APOBEC3 proteins, highlighting their dual roles in antiviral defense and tumorigenesis. We also discuss the clinical implications of genetic variants, such as the A3A_B polymorphism, mainly in HPV infection and associated cancers, providing a comprehensive understanding of their contributions to both viral restriction and cancer development.
Collapse
Affiliation(s)
- Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Rosalba Biondo
- Leiden Academic Centre for Drug Research, Analytical Biosciences, Leiden University, P.O. Box 9502, 2311 EZ Leiden, The Netherlands;
| | - Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Giulia Mariane Fortunato
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Timothy Robert Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK;
- Institute for Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
- Polymorphism Research Laboratory, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
2
|
Brown GW. The cytidine deaminase APOBEC3C has unique sequence and genome feature preferences. Genetics 2024; 227:iyae092. [PMID: 38946641 DOI: 10.1093/genetics/iyae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.
Collapse
Affiliation(s)
- Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
3
|
Mas-Ponte D, Supek F. Mutation rate heterogeneity at the sub-gene scale due to local DNA hypomethylation. Nucleic Acids Res 2024; 52:4393-4408. [PMID: 38587182 PMCID: PMC11077091 DOI: 10.1093/nar/gkae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Local mutation rates in human are highly heterogeneous, with known variability at the scale of megabase-sized chromosomal domains, and, on the other extreme, at the scale of oligonucleotides. The intermediate, kilobase-scale heterogeneity in mutation risk is less well characterized. Here, by analyzing thousands of somatic genomes, we studied mutation risk gradients along gene bodies, representing a genomic scale spanning roughly 1-10 kb, hypothesizing that different mutational mechanisms are differently distributed across gene segments. The main heterogeneity concerns several kilobases at the transcription start site and further downstream into 5' ends of gene bodies; these are commonly hypomutated with several mutational signatures, most prominently the ubiquitous C > T changes at CpG dinucleotides. The width and shape of this mutational coldspot at 5' gene ends is variable across genes, and corresponds to variable interval of lowered DNA methylation depending on gene activity level and regulation. Such hypomutated loci, at 5' gene ends or elsewhere, correspond to DNA hypomethylation that can associate with various landmarks, including intragenic enhancers, Polycomb-marked regions, or chromatin loop anchor points. Tissue-specific DNA hypomethylation begets tissue-specific local hypomutation. Of note, direction of mutation risk is inverted for AID/APOBEC3 cytosine deaminase activity, whose signatures are enriched in hypomethylated regions.
Collapse
Affiliation(s)
- David Mas-Ponte
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
4
|
Coxon M, Dennis MA, Dananberg A, Collins C, Wilson H, Meekma J, Savenkova M, Ng D, Osbron C, Mertz T, Goodman A, Duttke S, Maciejowski J, Roberts S. An impaired ubiquitin-proteasome system increases APOBEC3A abundance. NAR Cancer 2023; 5:zcad058. [PMID: 38155930 PMCID: PMC10753533 DOI: 10.1093/narcan/zcad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Apolipoprotein B messenger RNA (mRNA) editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases cause genetic instability during cancer development. Elevated APOBEC3A (A3A) levels result in APOBEC signature mutations; however, mechanisms regulating A3A abundance in breast cancer are unknown. Here, we show that dysregulating the ubiquitin-proteasome system with proteasome inhibitors, including Food and Drug Administration-approved anticancer drugs, increased A3A abundance in breast cancer and multiple myeloma cell lines. Unexpectedly, elevated A3A occurs via an ∼100-fold increase in A3A mRNA levels, indicating that proteasome inhibition triggers a transcriptional response as opposed to or in addition to blocking A3A degradation. This transcriptional regulation is mediated in part through FBXO22, a protein that functions in SKP1-cullin-F-box ubiquitin ligase complexes and becomes dysregulated during carcinogenesis. Proteasome inhibitors increased cellular cytidine deaminase activity, decreased cellular proliferation and increased genomic DNA damage in an A3A-dependent manner. Our findings suggest that proteasome dysfunction, either acquired during cancer development or induced therapeutically, could increase A3A-induced genetic heterogeneity and thereby influence therapeutic responses in patients.
Collapse
Affiliation(s)
- Margo Coxon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Madeline A Dennis
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher D Collins
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Hannah E Wilson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Jordyn Meekma
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Marina I Savenkova
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Daniel Ng
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Chelsea A Osbron
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Tony M Mertz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Alan G Goodman
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
5
|
McCann JL, Cristini A, Law EK, Lee SY, Tellier M, Carpenter MA, Beghè C, Kim JJ, Sanchez A, Jarvis MC, Stefanovska B, Temiz NA, Bergstrom EN, Salamango DJ, Brown MR, Murphy S, Alexandrov LB, Miller KM, Gromak N, Harris RS. APOBEC3B regulates R-loops and promotes transcription-associated mutagenesis in cancer. Nat Genet 2023; 55:1721-1734. [PMID: 37735199 PMCID: PMC10562255 DOI: 10.1038/s41588-023-01504-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer.
Collapse
Affiliation(s)
- Jennifer L McCann
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jae Jin Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Anthony Sanchez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Bojana Stefanovska
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Daniel J Salamango
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Margaret R Brown
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA.
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Hudson KM, Klimczak LJ, Sterling JF, Burkholder AB, Kazanov M, Saini N, Mieczkowski PA, Gordenin DA. Glycidamide-induced hypermutation in yeast single-stranded DNA reveals a ubiquitous clock-like mutational motif in humans. Nucleic Acids Res 2023; 51:9075-9100. [PMID: 37471042 PMCID: PMC10516655 DOI: 10.1093/nar/gkad611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Mutagens often prefer specific nucleotides or oligonucleotide motifs that can be revealed by studying the hypermutation spectra in single-stranded (ss) DNA. We utilized a yeast model to explore mutagenesis by glycidamide, a simple epoxide formed endogenously in humans from the environmental toxicant acrylamide. Glycidamide caused ssDNA hypermutation in yeast predominantly in cytosines and adenines. The most frequent mutations in adenines occurred in the nAt→nGt trinucleotide motif. Base substitutions A→G in this motif relied on Rev1 translesion polymerase activity. Inactivating Rev1 did not alter the nAt trinucleotide preference, suggesting it may be an intrinsic specificity of the chemical reaction between glycidamide and adenine in the ssDNA. We found this mutational motif enriched in published sequencing data from glycidamide-treated mouse cells and ubiquitous in human cancers. In cancers, this motif was positively correlated with the single base substitution (SBS) smoking-associated SBS4 signature, with the clock-like signatures SBS1, SBS5, and was strongly correlated with smoking history and with age of tumor donors. Clock-like feature of the motif was also revealed in cells of human skin and brain. Given its pervasiveness, we propose that this mutational motif reflects mutagenic lesions to adenines in ssDNA from a potentially broad range of endogenous and exogenous agents.
Collapse
Affiliation(s)
- Kathleen M Hudson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Joan F Sterling
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Adam B Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Marat D Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Natalie Saini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Piotr A Mieczkowski
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| |
Collapse
|
7
|
Granadillo Rodríguez M, Wong L, Chelico L. Similar deamination activities but different phenotypic outcomes induced by APOBEC3 enzymes in breast epithelial cells. Front Genome Ed 2023; 5:1196697. [PMID: 37324648 PMCID: PMC10267419 DOI: 10.3389/fgeed.2023.1196697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
APOBEC3 (A3) enzymes deaminate cytosine to uracil in viral single-stranded DNA as a mutagenic barrier for some viruses. A3-induced deaminations can also occur in human genomes resulting in an endogenous source of somatic mutations in multiple cancers. However, the roles of each A3 are unclear since few studies have assessed these enzymes in parallel. Thus, we developed stable cell lines expressing A3A, A3B, or A3H Hap I using non-tumorigenic MCF10A and tumorigenic MCF7 breast epithelial cells to assess their mutagenic potential and cancer phenotypes in breast cells. The activity of these enzymes was characterized by γH2AX foci formation and in vitro deamination. Cell migration and soft agar colony formation assays assessed cellular transformation potential. We found that all three A3 enzymes had similar γH2AX foci formation, despite different deamination activities in vitro. Notably, in nuclear lysates, the in vitro deaminase activity of A3A, A3B, and A3H did not require digestion of cellular RNA, in contrast to that of A3B and A3H in whole-cell lysates. Their similar activities in cells, nonetheless, resulted in distinct phenotypes where A3A decreased colony formation in soft agar, A3B decreased colony formation in soft agar after hydroxyurea treatment, and A3H Hap I promoted cell migration. Overall, we show that in vitro deamination data do not always reflect cell DNA damage, all three A3s induce DNA damage, and the impact of each is different.
Collapse
|
8
|
Castilha EP, Curti RRDJ, de Oliveira JN, Vitiello GAF, Guembarovski RL, Couto-Filho JD, Oliveira KBD. APOBEC3A/B Polymorphism Is Not Associated with Human Papillomavirus Infection and Cervical Carcinogenesis. Pathogens 2023; 12:pathogens12050636. [PMID: 37242306 DOI: 10.3390/pathogens12050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The persistence of a high-risk Human papillomavirus (HPV-HR) infection of the cervix results in different manifestations of lesions depending on the immunologic capacity of the host. Variations in apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC)-like genes, such as the APOBEC3A/B deletion hybrid polymorphism (A3A/B), may contribute to cervical malignancy in the presence of HPV. The aim of this study was to investigate the association between the A3A/B polymorphism and HPV infection and the development of cervical intraepithelial lesions and cervical cancer in Brazilian women. The study enrolled 369 women, who were categorized according to the presence of infection and subdivided according to the degree of intraepithelial lesion and cervical cancer. APOBEC3A/B was genotyped by allele-specific polymerase chain reaction (PCR). As for the A3A/B polymorphism, the distribution of genotypes was similar between groups and among the analyzed subgroups. There were no significant differences in the presence of infection or development of lesions, even after exclusion of confounding factors. This is the first study to show that the A3A/B polymorphism is not associated with HPV infection and the development of intraepithelial lesions and cervical cancer in Brazilian women.
Collapse
Affiliation(s)
- Eliza Pizarro Castilha
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Rafaela Roberta de Jaime Curti
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Janaina Nicolau de Oliveira
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | | | - Roberta Losi Guembarovski
- Department of Biological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| | | | - Karen Brajão de Oliveira
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
9
|
Forni D, Cagliani R, Pozzoli U, Sironi M. An APOBEC3 Mutational Signature in the Genomes of Human-Infecting Orthopoxviruses. mSphere 2023; 8:e0006223. [PMID: 36920219 PMCID: PMC10117092 DOI: 10.1128/msphere.00062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
The ongoing worldwide monkeypox outbreak is caused by viral lineages (globally referred to as hMPXV1) that are related to but distinct from clade IIb MPXV viruses transmitted within Nigeria. Analysis of the genetic differences has indicated that APOBEC-mediated editing might be responsible for the unexpectedly high number of mutations observed in hMPXV1 genomes. Here, using 1,624 publicly available hMPXV1 sequences, we analyzed the mutations that accrued between 2017 and the emergence of the current predominant variant (B.1), as well as those that that have been accumulating during the 2022 outbreak. We confirmed an overwhelming prevalence of C-to-T and G-to-A mutations, with a sequence context (5'-TC-3') consistent with the preferences of several human APOBEC3 enzymes. We also found that mutations preferentially occur in highly expressed viral genes, although no transcriptional asymmetry was observed. A comparison of the mutation spectrum and context was also performed against the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV), as well as fowlpox virus (FWPV). The results indicated that in VARV genomes, C-to-T and G-to-A changes were more common than the opposite substitutions, although the effect was less marked than for hMPXV1. Conversely, no preference toward C-to-T and G-to-A changes was observed in CPXV and FWPV. Consistently, the sequence context of C-to-T changes confirmed a preference for a T in the -1 position for VARV, but not for CPXV or FWPV. Overall, our results strongly support the view that, irrespective of the transmission route, orthopoxviruses infecting humans are edited by the host APOBEC3 enzymes. IMPORTANCE Analysis of the viral lineages responsible for the 2022 monkeypox outbreak suggested that APOBEC enzymes are driving hMPXV1 evolution. Using 1,624 public sequences, we analyzed the mutations that accumulated between 2017 and the emergence of the predominant variant and those that characterize the last outbreak. We found that the mutation spectrum of hMPXV1 has been dominated by TC-to-TT and GA-to-AA changes, consistent with the editing activity of human APOBEC3 proteins. We also found that mutations preferentially affect highly expressed viral genes, possibly because transcription exposes single-stranded DNA (ssDNA), a target of APOBEC3 editing. Notably, analysis of the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV) indicated that in VARV genomes, TC-to-TT and GA-to-AA changes are likewise extremely frequent. Conversely, no preference toward TC-to-TT and GA-to-AA changes is observed in CPXV. These results suggest that APOBEC3 proteins have an impact on the evolution of different human-infecting orthopoxviruses.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Rachele Cagliani
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Uberto Pozzoli
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| |
Collapse
|
10
|
APOBEC mutagenesis is low in most types of non-B DNA structures. iScience 2022; 25:104535. [PMID: 35754742 PMCID: PMC9213766 DOI: 10.1016/j.isci.2022.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
While somatic mutations are known to be enriched in genome regions with non-canonical DNA secondary structure, the impact of particular mutagens still needs to be elucidated. Here, we demonstrate that in human cancers, the APOBEC mutagenesis is not enriched in direct repeats, mirror repeats, short tandem repeats, and G-quadruplexes, and even decreased below its level in B-DNA for cancer samples with very high APOBEC activity. In contrast, we observe that the APOBEC-induced mutational density is positively associated with APOBEC activity in inverted repeats (cruciform structures), where the impact of cytosine at the 3’-end of the hairpin loop is substantial. Surprisingly, the APOBEC-signature mutation density per TC motif in the single-stranded DNA of a G-quadruplex (G4) is lower than in the four-stranded part of G4 and in B-DNA. The APOBEC mutagenesis, as well as the UV-mutagenesis in melanoma samples, are absent in Z-DNA regions, owing to the depletion of their mutational signature motifs. APOBEC mutagenesis is not enriched in most non-canonical DNA structures Inverted repeats (cruciform structures) show increased APOBEC mutagenesis G-quadruplex’s unstructured strand has low APOBEC-induced mutation density Decrease of APOBEC mutagenesis in non-B DNA possibly associated with PrimPol
Collapse
|