1
|
Chatterjee B, Sarkar M, Ghosh D, Mishra S, Bose S, Khan MMA, Ganesan SK, Chatterjee N, Srivastava AK. Tumor-associated macrophages contribute to cisplatin resistance via regulating Pol η-mediated translesion DNA synthesis in ovarian cancer. Cell Mol Life Sci 2025; 82:220. [PMID: 40437303 PMCID: PMC12119415 DOI: 10.1007/s00018-025-05731-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 06/01/2025]
Abstract
Tumor-associated macrophages (TAMs) are known to be involved in the manifestation of aggressive and therapy-resistant phenotypes in solid tumors. Nevertheless, the effects of dynamic intervention by TAMs on the DNA damage response of cancer cells are largely unexplored. Herein, we report that TAMs modulate the DNA damage repair pathways of ovarian cancer cells in response to platinum-(Pt) based therapeutic regimen. We demonstrate that coculture of TAMs with cancer cells directly upregulate Pol η, along with RAD18 and REV1 of the Translesion DNA synthesis (TLS) pathway, while concurrently downregulating components of the high-fidelity nucleotide excision repair (NER) mechanism. Consequently, we observed a better survival probability, DNA repair capacity, and enrichment of stemness properties in ovarian cancer cells. DNA bulky adducts produced by cisplatin are resolved through differential activation NER and TLS pathways. However, we elucidated that TAMs provide favorable conditions for activating the error-prone TLS pathway for lesion bypass over damage resolution. Furthermore, cellular crosstalk in cocultured cancer cells stimulates the nuclear translocation and expression of RelA, which recruits Pol η by acting as a potent transcription factor. In fact, with pristimerin-mediated disruption of p65 (RelA) translocation, the cancer cells become more prone to DNA damage-induced cell death and compromised regenerative potential. In both in vitro cell cultures and in vivo mouse xenograft models, cocultured macrophages exhibited predominantly M2-like phenotype with prevalence in the invasive zone of xenograft tumor margins. Taken together, our investigation revealed multifaceted crosstalk-mediated regulation of DNA damage repair between TAMs and ovarian cancer cells.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mrinmoy Sarkar
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Debanjana Ghosh
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sangita Mishra
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Subhankar Bose
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Md Maqsood Ahamad Khan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Senthil Kumar Ganesan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | | - Amit Kumar Srivastava
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Halim CE, Deng S, Crasta KC, Yap CT. Interplay Between the Cytoskeleton and DNA Damage Response in Cancer Progression. Cancers (Basel) 2025; 17:1378. [PMID: 40282554 PMCID: PMC12025774 DOI: 10.3390/cancers17081378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
DNA damage has emerged as a critical factor in fuelling the development and progression of cancer. DNA damage response (DDR) pathways lie at the crux of cell fate decisions following DNA damage induction, which can either trigger the repair of detrimental DNA lesions to protect cancer cells or induce the cell death machinery to eliminate damaged cells. Cytoskeletal dynamics have a critical role to play and influence the proper function of DDR pathways. Microfilaments, intermediate filaments, microtubules, and their associated proteins are well involved in the DDR. For instance, they are not only implicated in the recruitment of specific DDR molecules to the sites of DNA damage but also in the regulation of the mobility of the damaged DNA to repair sites in the periphery of the nucleus. The exquisite roles that these cytoskeletal proteins play in different DDR pathways, such as non-homologous end joining (NHEJ), homologous recombination (HR), base excision repair (BER), and nucleotide excision repair (NER), in cancer cells are extensively discussed in this review. Many cancer treatments are reliant upon inducing DNA damage in cancer cells to eliminate them; thus, it is important to shed light on factors that could affect their efficacy. Although the cytoskeleton is intricately involved in the DDR process, this has often been overlooked in cancer research and has not been exploited in developing DDR-targeting cancer therapy. Understanding the interplay between the cytoskeleton and the DDR in cancer will then provide insights into improving the development of cancer therapies that can leverage the synergistic action of DDR inhibitors and cytoskeleton-targeting agents.
Collapse
Affiliation(s)
- Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Karen Carmelina Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (C.E.H.); (S.D.); (K.C.C.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
3
|
Dhoonmoon A, Ambrose JR, Garg S, Lascarez-Espana C, Rebok A, Spratt TE, Moldovan GL, Nicolae CM. Translesion-synthesis-mediated bypass of DNA lesions occurs predominantly behind replication forks restarted by PrimPol. Cell Rep 2025; 44:115360. [PMID: 40014449 PMCID: PMC12051500 DOI: 10.1016/j.celrep.2025.115360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/10/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
The bypass of DNA lesions by translesion synthesis (TLS) polymerases is a critical step for DNA damage tolerance, allowing the completion of DNA synthesis. It has been under debate whether TLS-mediated bypass restarts stalled forks or occurs post-replicationally. We developed cell imaging techniques based on proximity ligation to monitor the recruitment of TLS polymerases Polκ and Polη to DNA adducts. We show that this recruitment is adduct specific, with Polκ being preferentially recruited to benzo[a]pyrene diol epoxide (BPDE) lesions and Polη to cisplatin lesions. The recruitment depends on the primase-polymerase PrimPol, which reprimes downstream of stalled forks to restart DNA synthesis. TLS polymerase deficiency results in the accumulation of single-stranded DNA (ssDNA) gaps in an adduct-specific manner, which are processed into double-strand breaks (DSBs). Our findings argue that TLS occurs mainly behind the restarted replication fork in order to fill PrimPol-derived gaps and is essential to suppress the nucleolytic conversion of ssDNA gaps into cytotoxic DSBs in a lesion-specific manner.
Collapse
Affiliation(s)
- Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Julia R Ambrose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sonal Garg
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Cynthia Lascarez-Espana
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Abbey Rebok
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Thomas E Spratt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
4
|
Faucher-Giguère L, de Préval BS, Rivera A, Scott MS, Elela SA. Small nucleolar RNAs: the hidden precursors of cancer ribosomes. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230376. [PMID: 40045787 PMCID: PMC11883439 DOI: 10.1098/rstb.2023.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 03/09/2025] Open
Abstract
Ribosomes are heterogeneous in terms of their constituent proteins, structural RNAs and ribosomal RNA (rRNA) modifications, resulting in diverse potential translatomes. rRNA modifications, guided by small nucleolar RNAs (snoRNAs), enable fine-tuning of ribosome function and translation profiles. Recent studies have begun linking dysregulation of snoRNAs, via rRNA modifications, to tumourigenesis. Deciphering the specific contributions of individual rRNA modifications to cancer hallmarks and identifying snoRNAs with oncogenic potential could lead to novel therapeutic strategies. These strategies might target snoRNAs or exploit the dependence of cancer cells on specific rRNA modification sites, potentially disrupting aberrant ribosomal translation programs and hindering tumour growth. This review discusses current evidence and challenges in linking changes in snoRNA expression to rRNA modification and cancer biology.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Laurence Faucher-Giguère
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Baudouin S. de Préval
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Andrea Rivera
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Michelle S. Scott
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Sherif Abou Elela
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| |
Collapse
|
5
|
Smahel M, Johari SD, Smahelova J, Pfeiferova L, Nunvar J. Spatial immune heterogeneity in a mouse tumor model after immunotherapy. Cancer Sci 2025; 116:622-632. [PMID: 39624899 PMCID: PMC11875765 DOI: 10.1111/cas.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025] Open
Abstract
Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
Collapse
Affiliation(s)
- Michal Smahel
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Shweta Dilip Johari
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Jana Smahelova
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Lucie Pfeiferova
- Laboratory of Genomics and BioinformaticsInstitute of Molecular Genetics, Czech Academy of SciencesPragueCzech Republic
| | - Jaroslav Nunvar
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| |
Collapse
|
6
|
Provencher L, Nartey W, Brownlee PM, Atkins AW, Gagné JP, Baudrier L, Ting NSY, Piett CG, Fang S, Pearson DD, Moore S, Billon P, Nagel ZD, Poirier GG, Williams GJ, Goodarzi AA. CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair. Nat Commun 2025; 16:1026. [PMID: 39863586 PMCID: PMC11762318 DOI: 10.1038/s41467-025-56085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage. While CHD6 loss does not impair RAD51 foci formation or DNA double-strand break repair, it causes sensitivity to replication stress, and PARP1/2-trapping or Pol ζ inhibitor-induced γH2AX foci accumulation in S-phase. DNA repair pathway screening reveals that CHD6 loss elicits insufficiency in apurinic-apyrimidinic endonuclease (APEX1) activity and genomic abasic site accumulation. We reveal APEX1-linked roles for CHD6 important for understanding PARP1/2-trapping inhibitor sensitivity.
Collapse
Affiliation(s)
- Luc Provencher
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wilson Nartey
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter M Brownlee
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Austin W Atkins
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
- Oncology Division, CHU de Québec Research Center, Quebec City, QC, Canada
| | - Lou Baudrier
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas S Y Ting
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cortt G Piett
- Harvard University, School of Public Health, Boston, MA, USA
| | - Shujuan Fang
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dustin D Pearson
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shaun Moore
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre Billon
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, USA
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
- Oncology Division, CHU de Québec Research Center, Quebec City, QC, Canada
| | - Gareth J Williams
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
7
|
Boysen G, Alexandrov L, Rahbari R, Nookaew I, Ussery D, Chao MR, Hu CW, Cooke M. Investigating the origins of the mutational signatures in cancer. Nucleic Acids Res 2025; 53:gkae1303. [PMID: 39778866 PMCID: PMC11707540 DOI: 10.1093/nar/gkae1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.e. the DNA adductome) and their diverse positions within the genome. Thus far, this limitation has prevented researchers from precisely linking exposures to DNA adducts and DNA adducts to subsequent mutational outcomes. Indeed, many common mutations observed in human cancers appear to originate from error-prone endogenous processes. Consequently, it remains unclear whether these mutations result from exposure-induced DNA adducts, or arise indirectly from endogenous processes or are a combination of both. In this review, we summarize approaches that aim to bridge our understanding of the mechanism by which exposure leads to DNA damage and then to mutation and highlight some of the remaining challenges and shortcomings to fully supporting this paradigm. We emphasize the need to integrate cellular DNA adductomics, long read-based mapping, single-molecule duplex sequencing of native DNA molecules and advanced computational analysis. This proposed holistic approach aims to unveil the causal connections between key DNA modifications and the mutational landscape, whether they originate from external exposures, internal processes or a combination of both, thereby addressing key questions in cancer biology.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Health Science, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Intawat Nookaew
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Dave Ussery
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 4202 E. Fowler Avenue, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, Salama SA, Youssef ME. Advances in understanding cisplatin-induced toxicity: Molecular mechanisms and protective strategies. Eur J Pharm Sci 2024; 203:106939. [PMID: 39423903 DOI: 10.1016/j.ejps.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cisplatin, a widely used chemotherapeutic agent, has proven efficacy against various malignancies. However, its clinical utility is hampered by its dose-limiting toxicities, including nephrotoxicity, ototoxicity, neurotoxicity, and myelosuppression. This review aims to provide a comprehensive overview of cisplatin toxicity, encompassing its underlying mechanisms, risk factors, and emerging therapeutic strategies. The mechanisms of cisplatin toxicity are multifactorial and involve oxidative stress, inflammation, DNA damage, and cellular apoptosis. Various risk factors contribute to the interindividual variability in susceptibility to cisplatin toxicity. The risk of developing cisplatin-induced toxicity could be related to pre-existing conditions, including kidney disease, hearing impairment, neuropathy, impaired liver function, and other comorbidities. Additionally, this review highlights the emerging therapeutic strategies that could be applied to minimize cisplatin-induced toxicities and aid in optimizing cisplatin treatment regimens, improving patient outcomes, and enhancing the overall quality of cancer care.
Collapse
Affiliation(s)
- Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Salama A Salama
- Department of Zoology, Faculty of Science, Damanhour University, Egypt; Department of Biology, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
9
|
Ljubic M, D'Ercole C, Waheed Y, de Marco A, Borišek J, De March M. Computational study of the HLTF ATPase remodeling domain suggests its activity on dsDNA and implications in damage tolerance. J Struct Biol 2024; 216:108149. [PMID: 39491691 DOI: 10.1016/j.jsb.2024.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
The Helicase-Like Transcription Factor (HLTF) is member of the SWI/SNF-family of ATP dependent chromatin remodellers known primarily for maintaining genome stability. Biochemical and cellular assays support its multiple roles in DNA Damage Tolerance. However, the lack of sufficient structural data limits the comprehension of the molecular basis of its modes of action. In this work we have modelled and characterized the HLTF ATPase remodeling domain by using bioinformatic tools and all-atoms molecular dynamics simulations. In-silico results suggested that its binding to dsDNA is mainly mediated by the positively charged residues Arg563 and Lys913, found conserved in HLTF homologs, and Arg620 and Lys999, found only in HLTF. Interestingly, these residues are mutated in cancer cells. During translocation on dsDNA, HLTF remains persistently bound through the N-terminal ATPase subunit. However, DNA advancement occurs only in the presence of the synergic-anticorrelated action of both motor lobes. In contrast, the C-terminal facilitates substrate remodeling through DNA deformation and generation of bulges according to a wave-model. Finally, the large conformational change suggested between the two motor-remodeling subunits might be activated upon the release of PARP1 on stalled fork and be responsible for the intervention of HLTF-HIRAN in the formation of D-loop and 4-way junction DNA structures.
Collapse
Affiliation(s)
- Martin Ljubic
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Claudia D'Ercole
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia
| | - Yossma Waheed
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia; National Institute of Science and Technology, Sector H-12, Islamabad Capital Territory, Pakistan
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia
| | - Jure Borišek
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Matteo De March
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia.
| |
Collapse
|
10
|
Xu S, Egli D. Genome organization and stability in mammalian pre-implantation development. DNA Repair (Amst) 2024; 144:103780. [PMID: 39504608 DOI: 10.1016/j.dnarep.2024.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
A largely stable genome is required for normal development, even as genetic change is an integral aspect of reproduction, genetic adaptation and evolution. Recent studies highlight a critical window of mammalian development with intrinsic DNA replication stress and genome instability in the first cell divisions after fertilization. Patterns of DNA replication and genome stability are established very early in mammals, alongside patterns of nuclear organization, and before the emergence of gene expression patterns, and prior to cell specification and germline formation. The study of DNA replication and genome stability in the mammalian embryo provides a unique cellular system due to the resetting of the epigenome to a totipotent state, and the de novo establishment of the patterns of nuclear organization, gene expression, DNA methylation, histone modifications and DNA replication. Studies on DNA replication and genome stability in the early mammalian embryo is relevant for understanding both normal and disease-causing genetic variation, and to uncover basic principles of genome regulation.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
11
|
Moreno NC, Korchak EJ, Latancia MT, D’Orlando DA, Adegbenro T, Bezsonova I, Woodgate R, Ashton NW. DNA polymerase η is regulated by mutually exclusive mono-ubiquitination and mono-NEDDylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618026. [PMID: 39416117 PMCID: PMC11482926 DOI: 10.1101/2024.10.12.618026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
DNA polymerase eta (Pol η) is a Y-family translesion polymerase responsible for synthesizing new DNA across UV-damaged templates. It is recruited to replication forks following mono-ubiquitination of the PCNA DNA clamp. This interaction is mediated by PCNA-interacting protein (PIP) motifs within Pol η, as well as by its C-terminal ubiquitin-binding zinc finger (UBZ) domain. Previous work has suggested that Pol η itself is mono-ubiquitinated at four C-terminal lysine residues, which is dependent on prior ubiquitin-binding by its UBZ domain. Here, we show that Pol η can be modified at the same lysine residues by the ubiquitin-like protein, NEDD8. Like ubiquitination, this modification is driven by non-covalent interactions between NEDD8 and the UBZ domain. While only a small proportion of Pol η is mono-NEDDylated under normal conditions, these levels rapidly increase by inhibiting the COP9 signalosome, suggesting that mono-NEDDylation is maintained under strong negative regulation. Finally, we provide data to support that mono-ubiquitination is important for Pol η foci formation and suggest that NEDDylation disrupts this process. These results reveal a new mechanism of Pol η regulation by ubiquitin-like proteins.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Emilie J. Korchak
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Marcela Teatin Latancia
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Dana A. D’Orlando
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Temidayo Adegbenro
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| | - Nicholas W. Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3371, USA
| |
Collapse
|
12
|
Williams CS, Li X, Jang H, Anand JR, Lim WY, Lee H, Parks J, Zhang X, Xie J, Zhao J, Wu D, Armstrong AJ, Bowser JL, Zou L, Hong J, Somarelli JA, Vaziri C, Zhou P. Inhibition of Androgen Receptor Exposes Replication Stress Vulnerability in Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617102. [PMID: 39416190 PMCID: PMC11482832 DOI: 10.1101/2024.10.08.617102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Standard initial systemic treatment for patients with metastatic prostate cancer includes agents that target androgen receptor (AR) signaling. Despite an initial positive response to these AR pathway inhibitors (ARPIs), acquired resistance remains a significant challenge. We show that treatment of AR-positive prostate cancer cells with the frontline ARPI enzalutamide induces DNA replication stress. Such stress is exacerbated by suppression of translesion DNA synthesis (TLS), leading to aberrant accumulation of single-stranded DNA (ssDNA) gaps and persistent DNA damage biomarkers. We further demonstrate that the TLS inhibitor, JH-RE-06, markedly sensitizes AR-positive prostate cancer cells, but not AR-negative benign cells, to enzalutamide in vitro. Combination therapy with enzalutamide and JH-RE-06 significantly suppresses cancer growth in a syngeneic murine tumor model over vehicle control or individual treatment groups. These findings suggest that AR inhibition broadly triggers DNA replication stress in hormone-sensitive prostate cancer, thereby exposing a unique vulnerability that can be exploited by a TLS-disrupting adjuvant for targeted therapy.
Collapse
|
13
|
Jia X, Inman JT, Singh A, Patel SS, Wang MD. DNA Polymerase Locks Replication Fork Under Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617451. [PMID: 39416053 PMCID: PMC11482901 DOI: 10.1101/2024.10.09.617451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Replication of DNA requires the parental DNA to be unwound to allow the genetic information to be faithfully duplicated by the replisome. While this function is usually shared by a host of proteins in the replisome, notably DNA polymerase (DNAP) and helicase, the consequence of DNAP synthesizing DNA while decoupled from helicase remains not well understood. The unwinding of downstream DNA poses significant stress to DNAP, and the interaction between DNAP and the replication fork may affect replication restart. In this work, we examined the consequences of DNAP working against the stress of the DNA replication fork. We found that prolonged exposure of DNAP to the stress of the replication fork inactivates replication. Surprisingly, replication inactivation was often accompanied by a strong DNAP interaction with the leading and lagging strands at the fork, locking the fork in place. We demonstrated that fork locking is a consequence of DNAP forward translocation, and the exonuclease activity of DNAP, which allows DNAP to move in reverse, is essential in protecting the fork from inactivation. Furthermore, we found the locking configuration is not reversible by the subsequent addition of helicase. Collectively, this study provides a deeper understanding of the DNAP-fork interaction and mechanism in keeping the replication fork active during replication stress.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Michelle D. Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Palacka P, Holíčková A, Roška J, Makovický P, Vallová M, Biró C, Órásová E, Obertová J, Mardiak J, Ward TA, Kajo K, Chovanec M. Prognostic value of nucleotide excision repair and translesion DNA synthesis proteins in muscle-infiltrating bladder carcinoma. BMC Cancer 2024; 24:1103. [PMID: 39237917 PMCID: PMC11376035 DOI: 10.1186/s12885-024-12865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Cisplatin (CDDP) remains a key agent in the treatment of muscle-infiltrating bladder carcinoma (MIBC). However, a proportion of MIBC patients do not respond to chemotherapy, which may be caused by the increased repair of CDDP-induced DNA damage. The purpose of this study was to explore the prognostic value of proteins involved in nucleotide excision repair (NER) and translesion DNA synthesis (TLS) in MIBC patients. METHODS This is a retrospective analysis of 86 MIBC patients. The XPA, XPF, XPG, ERCC1, POLI, POLH and REV3L proteins were stained in primary bladder tumors and their levels were analyzed both in the total cohort and in a subgroup with metastatic urothelial carcinoma (mUC) that received gemcitabine and CDDP as a first-line therapy. Both cohorts were divided by percentage of cancer cells stained positive for each protein into subgroups with high and low expression. In the same manner, the combined expression of NER (XPA + ERCC1 + XPF + XPG) and TLS (POLI + POLH + REV3L), as the whole pathways, was analyzed. RESULTS Mortality was 89.5% at the median follow-up of 120.2 months. In the total cohort, patients with tumors stained positive for XPA, XPG and POLI had significantly worse overall survival (OS) compared to those with negative staining [hazard ratio (HR) = 0.60, 0.62 and 0.53, respectively]. Both XPG and POLI were independent prognostic factors in multivariate analyses (MVA). In addition, an increase in NER and TLS pathway expression was significantly associated with worse OS in the total cohort (HR = 0.54 and 0.60, respectively). In the mUC subgroup, high POLI expression was associated with significant deterioration of OS (HR = 0.56) in univariate analyses, and its independent prognostic value was shown in MVA. CONCLUSIONS Our study showed significant correlations between the tumor expression of XPG and POLI, as well as NER and TLS as the whole pathways, and inferior OS. Hence, they could constitute prognostic biomarkers and potentially promising therapeutic targets in MIBC. However, a prospective trial is required for further validation, thereby overcoming the limitations of this study.
Collapse
Affiliation(s)
- Patrik Palacka
- 2nd Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia.
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Andrea Holíčková
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Roška
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Makovický
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Vallová
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Csaba Biró
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Eveline Órásová
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Obertová
- 2nd Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Jozef Mardiak
- 2nd Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Thomas A Ward
- XCellR8 Ltd, Sci-Tech Daresbury, Cheshire, WA4 4AB, UK
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Miroslav Chovanec
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
15
|
Latancia MT, Leandro GDS, Bastos AU, Moreno NC, Ariwoola ABA, Martins DJ, Ashton NW, Ribeiro VC, Hoch NC, Rocha CRR, Woodgate R, Menck CFM. Human translesion DNA polymerases ι and κ mediate tolerance to temozolomide in MGMT-deficient glioblastoma cells. DNA Repair (Amst) 2024; 141:103715. [PMID: 39029375 PMCID: PMC11330349 DOI: 10.1016/j.dnarep.2024.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor associated with poor patient survival. The current standard treatment involves invasive surgery, radiotherapy, and chemotherapy employing temozolomide (TMZ). Resistance to TMZ is, however, a major challenge. Previous work from our group has identified candidate genes linked to TMZ resistance, including genes encoding translesion synthesis (TLS) DNA polymerases iota (Polɩ) and kappa (Polκ). These specialized enzymes are known for bypassing lesions and tolerating DNA damage. Here, we investigated the roles of Polɩ and Polκ in TMZ resistance, employing MGMT-deficient U251-MG glioblastoma cells, with knockout of either POLI or POLK genes encoding Polɩ and Polκ, respectively, and assess their viability and genotoxic stress responses upon subsequent TMZ treatment. Cells lacking either of these polymerases exhibited a significant decrease in viability following TMZ treatment compared to parental counterparts. The restoration of the missing polymerase led to a recovery of cell viability. Furthermore, knockout cells displayed increased cell cycle arrest, mainly in late S-phase, and lower levels of genotoxic stress after TMZ treatment, as assessed by a reduction of γH2AX foci and flow cytometry data. This implies that TMZ treatment does not trigger a significant H2AX phosphorylation response in the absence of these proteins. Interestingly, combining TMZ with Mirin (double-strand break repair pathway inhibitor) further reduced the cell viability and increased DNA damage and γH2AX positive cells in TLS KO cells, but not in parental cells. These findings underscore the crucial roles of Polɩ and Polκ in conferring TMZ resistance and the potential backup role of homologous recombination in the absence of these TLS polymerases. Targeting these TLS enzymes, along with double-strand break DNA repair inhibition, could, therefore, provide a promising strategy to enhance TMZ's effectiveness in treating GBM.
Collapse
Affiliation(s)
- Marcela Teatin Latancia
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Giovana da Silva Leandro
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - André Uchimura Bastos
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Natália Cestari Moreno
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Abu-Bakr Adetayo Ariwoola
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Davi Jardim Martins
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicholas William Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Victória Chaves Ribeiro
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicolas Carlos Hoch
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Clarissa Ribeiro Reily Rocha
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | | |
Collapse
|
16
|
Khatib JB, Dhoonmoon A, Moldovan GL, Nicolae CM. PARP10 promotes the repair of nascent strand DNA gaps through RAD18 mediated translesion synthesis. Nat Commun 2024; 15:6197. [PMID: 39043663 PMCID: PMC11266678 DOI: 10.1038/s41467-024-50429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Replication stress compromises genomic integrity. Fork blocking lesions such as those induced by cisplatin and other chemotherapeutic agents arrest replication forks. Repriming downstream of these lesions represents an important mechanism of replication restart, however the single stranded DNA (ssDNA) gaps left behind, unless efficiently filled, can serve as entry point for nucleases. Nascent strand gaps can be repaired by BRCA-mediated homology repair. Alternatively, gaps can also be filled by translesion synthesis (TLS) polymerases. How these events are regulated is still not clear. Here, we show that PARP10, a poorly-characterized mono-ADP-ribosyltransferase, is recruited to nascent strand gaps to promote their repair. PARP10 interacts with the ubiquitin ligase RAD18 and recruits it to these structures, resulting in the ubiquitination of the replication factor PCNA. PCNA ubiquitination, in turn, recruits the TLS polymerase REV1 for gap filling. We show that PARP10 recruitment to gaps and the subsequent REV1-mediated gap filling requires both the catalytic activity of PARP10, and its ability to interact with PCNA. We moreover show that PARP10 is hyperactive in BRCA-deficient cells, and its inactivation potentiates gap accumulations and cytotoxicity in these cells. Our work uncovers PARP10 as a regulator of ssDNA gap filling, which promotes genomic stability in BRCA-deficient cells.
Collapse
Affiliation(s)
- Jude B Khatib
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
17
|
Palek M, Palkova N, Kleiblova P, Kleibl Z, Macurek L. RAD18 directs DNA double-strand break repair by homologous recombination to post-replicative chromatin. Nucleic Acids Res 2024; 52:7687-7703. [PMID: 38884202 PMCID: PMC11260465 DOI: 10.1093/nar/gkae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
RAD18 is an E3 ubiquitin ligase that prevents replication fork collapse by promoting DNA translesion synthesis and template switching. Besides this classical role, RAD18 has been implicated in homologous recombination; however, this function is incompletely understood. Here, we show that RAD18 is recruited to DNA lesions by monoubiquitination of histone H2A at K15 and counteracts accumulation of 53BP1. Super-resolution microscopy revealed that RAD18 localizes to the proximity of DNA double strand breaks and limits the distribution of 53BP1 to the peripheral chromatin nanodomains. Whereas auto-ubiquitination of RAD18 mediated by RAD6 inhibits its recruitment to DNA breaks, interaction with SLF1 promotes RAD18 accumulation at DNA breaks in the post-replicative chromatin by recognition of histone H4K20me0. Surprisingly, suppression of 53BP1 function by RAD18 is not involved in homologous recombination and rather leads to reduction of non-homologous end joining. Instead, we provide evidence that RAD18 promotes HR repair by recruiting the SMC5/6 complex to DNA breaks. Finally, we identified several new loss-of-function mutations in RAD18 in cancer patients suggesting that RAD18 could be involved in cancer development.
Collapse
Affiliation(s)
- Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Natalie Palkova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| |
Collapse
|
18
|
Bainbridge LJ, Daigaku Y. Adaptive use of error-prone DNA polymerases provides flexibility in genome replication during tumorigenesis. Cancer Sci 2024; 115:2125-2137. [PMID: 38651239 PMCID: PMC11247608 DOI: 10.1111/cas.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Human cells possess many different polymerase enzymes, which collaborate in conducting DNA replication and genome maintenance to ensure faithful duplication of genetic material. Each polymerase performs a specialized role, together providing a balance of accuracy and flexibility to the replication process. Perturbed replication increases the requirement for flexibility to ensure duplication of the entire genome. Flexibility is provided via the use of error-prone polymerases, which maintain the progression of challenged DNA replication at the expense of mutagenesis, an enabling characteristic of cancer. This review describes our recent understanding of mechanisms that alter the usage of polymerases during tumorigenesis and examines the implications of this for cell survival and tumor progression. Although expression levels of polymerases are often misregulated in cancers, this does not necessarily alter polymerase usage since an additional regulatory step may govern the use of these enzymes. We therefore also examine how the regulatory mechanisms of DNA polymerases, such as Rad18-mediated PCNA ubiquitylation, may impact the functionalization of error-prone polymerases to tolerate oncogene-induced replication stress. Crucially, it is becoming increasingly evident that cancer cells utilize error-prone polymerases to sustain ongoing replication in response to oncogenic mutations which inactivate key DNA replication and repair pathways, such as BRCA deficiency. This accelerates mutagenesis and confers chemoresistance, but also presents a dependency that can potentially be exploited by therapeutics.
Collapse
Affiliation(s)
- Lewis J. Bainbridge
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yasukazu Daigaku
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
19
|
Németh E, Szüts D. The mutagenic consequences of defective DNA repair. DNA Repair (Amst) 2024; 139:103694. [PMID: 38788323 DOI: 10.1016/j.dnarep.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
20
|
Zhang X, Joseph S, Wu D, Bowser JL, Vaziri C. The DNA Damage Response (DDR) landscape of endometrial cancer defines discrete disease subtypes and reveals therapeutic opportunities. NAR Cancer 2024; 6:zcae015. [PMID: 38596432 PMCID: PMC11000323 DOI: 10.1093/narcan/zcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/12/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Genome maintenance is an enabling characteristic that allows neoplastic cells to tolerate the inherent stresses of tumorigenesis and evade therapy-induced genotoxicity. Neoplastic cells also deploy many mis-expressed germ cell proteins termed Cancer Testes Antigens (CTAs) to promote genome maintenance and survival. Here, we present the first comprehensive characterization of the DNA Damage Response (DDR) and CTA transcriptional landscapes of endometrial cancer in relation to conventional histological and molecular subtypes. We show endometrial serous carcinoma (ESC), an aggressive endometrial cancer subtype, is defined by gene expression signatures comprising members of the Replication Fork Protection Complex (RFPC) and Fanconi Anemia (FA) pathway and CTAs with mitotic functions. DDR and CTA-based profiling also defines a subset of highly aggressive endometrioid endometrial carcinomas (EEC) with poor clinical outcomes that share similar profiles to ESC yet have distinct characteristics based on conventional histological and genomic features. Using an unbiased CRISPR-based genetic screen and a candidate gene approach, we confirm that DDR and CTA genes that constitute the ESC and related EEC gene signatures are required for proliferation and therapy-resistance of cultured endometrial cancer cells. Our study validates the use of DDR and CTA-based tumor classifiers and reveals new vulnerabilities of aggressive endometrial cancer where none currently exist.
Collapse
Affiliation(s)
- Xingyuan Zhang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
| | - Sayali Joseph
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, School of Dentistry, Chapel Hill, NC - 27599, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC - 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC - 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC - 27599, USA
| |
Collapse
|
21
|
Anderson CJ, Talmane L, Luft J, Connelly J, Nicholson MD, Verburg JC, Pich O, Campbell S, Giaisi M, Wei PC, Sundaram V, Connor F, Ginno PA, Sasaki T, Gilbert DM, López-Bigas N, Semple CA, Odom DT, Aitken SJ, Taylor MS. Strand-resolved mutagenicity of DNA damage and repair. Nature 2024; 630:744-751. [PMID: 38867042 PMCID: PMC11186772 DOI: 10.1038/s41586-024-07490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.
Collapse
Affiliation(s)
- Craig J Anderson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lana Talmane
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Juliet Luft
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - John Connelly
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory Medicine, NHS Lothian, Edinburgh, UK
| | - Michael D Nicholson
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jan C Verburg
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susan Campbell
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marco Giaisi
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pei-Chi Wei
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vasavi Sundaram
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Paul A Ginno
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Colin A Semple
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sarah J Aitken
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Martin S Taylor
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Duan M, Leng S, Mao P. Cisplatin in the era of PARP inhibitors and immunotherapy. Pharmacol Ther 2024; 258:108642. [PMID: 38614254 DOI: 10.1016/j.pharmthera.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Platinum compounds such as cisplatin, carboplatin and oxaliplatin are widely used in chemotherapy. Cisplatin induces cytotoxic DNA damage that blocks DNA replication and gene transcription, leading to arrest of cell proliferation. Although platinum therapy alone is effective against many tumors, cancer cells can adapt to the treatment and gain resistance. The mechanisms for cisplatin resistance are complex, including low DNA damage formation, high DNA repair capacity, changes in apoptosis signaling pathways, rewired cell metabolisms, and others. Drug resistance compromises the clinical efficacy and calls for new strategies by combining cisplatin with other therapies. Exciting progress in cancer treatment, particularly development of poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, opened a new chapter to combine cisplatin with these new cancer therapies. In this Review, we discuss how platinum synergizes with PARP inhibitors and immunotherapy to bring new hope to cancer patients.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
23
|
Nusawardhana A, Pale LM, Nicolae CM, Moldovan GL. USP1-dependent nucleolytic expansion of PRIMPOL-generated nascent DNA strand discontinuities during replication stress. Nucleic Acids Res 2024; 52:2340-2354. [PMID: 38180818 PMCID: PMC10954467 DOI: 10.1093/nar/gkad1237] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
DNA replication stress-induced fork arrest represents a significant threat to genomic integrity. One major mechanism of replication restart involves repriming downstream of the arrested fork by PRIMPOL, leaving behind a single-stranded DNA (ssDNA) gap. Accumulation of nascent strand ssDNA gaps has emerged as a possible determinant of the cellular hypersensitivity to genotoxic agents in certain genetic backgrounds such as BRCA deficiency, but how gaps are converted into cytotoxic structures is still unclear. Here, we investigate the processing of PRIMPOL-dependent ssDNA gaps upon replication stress induced by hydroxyurea and cisplatin. We show that gaps generated in PRIMPOL-overexpressing cells are expanded in the 3'-5' direction by the MRE11 exonuclease, and in the 5'-3' direction by the EXO1 exonuclease. This bidirectional exonucleolytic gap expansion ultimately promotes their conversion into DSBs. We moreover identify the de-ubiquitinating enzyme USP1 as a critical regulator of PRIMPOL-generated ssDNA gaps. USP1 promotes gap accumulation during S-phase, and their expansion by the MRE11 and EXO1 nucleases. This activity of USP1 is linked to its role in de-ubiquitinating PCNA, suggesting that PCNA ubiquitination prevents gap accumulation during replication. Finally, we show that USP1 depletion suppresses DSB formation in PRIMPOL-overexpressing cells, highlighting an unexpected role for USP1 in promoting genomic instability under these conditions.
Collapse
Affiliation(s)
- Alexandra Nusawardhana
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Lindsey M Pale
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
24
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby GN, Wang Y, Wang C, Gao Y, Anand JR, Shelton A, Satterlee AB, Mann B, Hsiao YC, Liu CW, Lu K, Hingtgen S, Wang J, Liu Z, Miller CR, Wu D, Vaziri C, Yang Y. Trans-lesion synthesis and mismatch repair pathway crosstalk defines chemoresistance and hypermutation mechanisms in glioblastoma. Nat Commun 2024; 15:1957. [PMID: 38438348 PMCID: PMC10912752 DOI: 10.1038/s41467-024-45979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides an aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Qisheng Gu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Nabil Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jay Ramanlal Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - C Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Biller M, Kabir S, Boado C, Nipper S, Saffa A, Tal A, Allen S, Sasanuma H, Dréau D, Vaziri C, Tomida J. REV7-p53 interaction inhibits ATM-mediated DNA damage signaling. Cell Cycle 2024; 23:339-352. [PMID: 38557443 PMCID: PMC11174130 DOI: 10.1080/15384101.2024.2333227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
REV7 is an abundant, multifunctional protein that is a known factor in cell cycle regulation and in several key DNA repair pathways including Trans-Lesion Synthesis (TLS), the Fanconi Anemia (FA) pathway, and DNA Double-Strand Break (DSB) repair pathway choice. Thus far, no direct role has been studied for REV7 in the DNA damage response (DDR) signaling pathway. Here we describe a novel function for REV7 in DSB-induced p53 signaling. We show that REV7 binds directly to p53 to block ATM-dependent p53 Ser15 phosphorylation. We also report that REV7 is involved in the destabilization of p53. These findings affirm REV7's participation in fundamental cell cycle and DNA repair pathways. Furthermore, they highlight REV7 as a critical factor for the integration of multiple processes that determine viability and genome stability.
Collapse
Affiliation(s)
- Megan Biller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sara Kabir
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Chkylle Boado
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sarah Nipper
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alexandra Saffa
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ariella Tal
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sydney Allen
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Hiroyuki Sasanuma
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Junya Tomida
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
26
|
Kawale AS, Ran X, Patel PS, Saxena S, Lawrence MS, Zou L. APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability. SCIENCE ADVANCES 2024; 10:eadk2771. [PMID: 38241374 PMCID: PMC10798555 DOI: 10.1126/sciadv.adk2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Mutation signatures associated with apolipoprotein B mRNA editing catalytic polypeptide-like 3A/B (APOBEC3A/B) cytidine deaminases are prevalent across cancers, implying their roles as mutagenic drivers during tumorigenesis and tumor evolution. APOBEC3A (A3A) expression induces DNA replication stress and increases the cellular dependency on the ataxia telangiectasia and Rad3-related (ATR) kinase for survival. Nonetheless, how A3A induces DNA replication stress remains unclear. We show that A3A induces replication stress without slowing replication forks. We find that A3A induces single-stranded DNA (ssDNA) gaps through PrimPol-mediated repriming. A3A-induced ssDNA gaps are repaired by multiple pathways involving ATR, RAD51, and translesion synthesis. Both ATR inhibition and trapping of poly(ADP-ribose) polymerase (PARP) on DNA by PARP inhibitor impair the repair of A3A-induced gaps, preferentially killing A3A-expressing cells. When used in combination, PARP and ATR inhibitors selectively kill A3A-expressing cells synergistically in a manner dependent on PrimPol-generated gaps. Thus, A3A-induced replication stress arises from PrimPol-generated ssDNA gaps, which confer a therapeutic vulnerability to gap-targeted DNA repair inhibitors.
Collapse
Affiliation(s)
- Ajinkya S. Kawale
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Xiaojuan Ran
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Parasvi S. Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Michael S. Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Das A, Gkoutos GV, Acharjee A. Analysis of translesion polymerases in colorectal cancer cells following cetuximab treatment: A network perspective. Cancer Med 2024; 13:e6945. [PMID: 39102671 PMCID: PMC10809876 DOI: 10.1002/cam4.6945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Adaptive mutagenesis observed in colorectal cancer (CRC) cells upon exposure to EGFR inhibitors contributes to the development of resistance and recurrence. Multiple investigations have indicated a parallel between cancer cells and bacteria in terms of exhibiting adaptive mutagenesis. This phenomenon entails a transient and coordinated escalation of error-prone translesion synthesis polymerases (TLS polymerases), resulting in mutagenesis of a magnitude sufficient to drive the selection of resistant phenotypes. METHODS In this study, we conducted a comprehensive pan-transcriptome analysis of the regulatory framework within CRC cells, with the objective of identifying potential transcriptome modules encompassing certain translesion polymerases and the associated transcription factors (TFs) that govern them. Our sampling strategy involved the collection of transcriptomic data from tumors treated with cetuximab, an EGFR inhibitor, untreated CRC tumors, and colorectal-derived cell lines, resulting in a diverse dataset. Subsequently, we identified co-regulated modules using weighted correlation network analysis with a minKMEtostay threshold set at 0.5 to minimize false-positive module identifications and mapped the modules to STRING annotations. Furthermore, we explored the putative TFs influencing these modules using KBoost, a kernel PCA regression model. RESULTS Our analysis did not reveal a distinct transcriptional profile specific to cetuximab treatment. Moreover, we elucidated co-expression modules housing genes, for example, POLK, POLI, POLQ, REV1, POLN, and POLM. Specifically, POLK, POLI, and POLQ were assigned to the "blue" module, which also encompassed critical DNA damage response enzymes, for example. BRCA1, BRCA2, MSH6, and MSH2. To delineate the transcriptional control of this module, we investigated associated TFs, highlighting the roles of prominent cancer-associated TFs, such as CENPA, HNF1A, and E2F7. CONCLUSION We found that translesion polymerases are co-regulated with DNA mismatch repair and cell cycle-associated factors. We did not, however, identified any networks specific to cetuximab treatment indicating that the response to EGFR inhibitors relates to a general stress response mechanism.
Collapse
Affiliation(s)
- Anubrata Das
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- MRC Health Data Research UK (HDR UK)LondonUK
- Centre for Health Data ResearchUniversity of BirminghamBirminghamUK
- NIHR Experimental Cancer Medicine CentreBirminghamUK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- MRC Health Data Research UK (HDR UK)LondonUK
- Centre for Health Data ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
28
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
29
|
Zhang X, Joseph S, Wu D, Bowser JL, Vaziri C. The DNA Damage Response (DDR) landscape of endometrial cancer defines discrete disease subtypes and reveals therapeutic opportunities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567919. [PMID: 38045328 PMCID: PMC10690150 DOI: 10.1101/2023.11.20.567919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genome maintenance is an enabling characteristic that allows neoplastic cells to tolerate the inherent stresses of tumorigenesis and evade therapy-induced genotoxicity. Neoplastic cells also deploy mis-expressed germ cell proteins termed Cancer Testes Antigens (CTAs) to promote genome maintenance and survival. Here, we present the first comprehensive characterization of the DNA Damage Response (DDR) and CTA transcriptional landscapes of endometrial cancer in relation to conventional histological and molecular subtypes. We show endometrial serous carcinoma (ESC), an aggressive endometrial cancer subtype, is defined by gene expression signatures comprising members of the Replication Fork Protection Complex (RFPC) and Fanconi Anemia (FA) pathway and CTAs with mitotic functions. DDR and CTA- based profiling also defines a subset of highly aggressive endometrioid endometrial carcinomas (EEC) with poor clinical outcomes that share similar profiles to ESC yet have distinct characteristics based on conventional histological and genomic features. Using an unbiased CRISPR-based genetic screen and a candidate gene approach, we confirm that DDR and CTA genes that constitute the ESC and related EEC gene signatures are required for proliferation and therapy-resistance of cultured endometrial cancer cells. Our study validates the use of DDR and CTA-based tumor classifiers and reveals new vulnerabilities of aggressive endometrial cancer where none currently exist.
Collapse
|
30
|
Vassel FM, Laverty DJ, Bian K, Piett CG, Hemann MT, Walker GC, Nagel ZD. REV7 Monomer Is Unable to Participate in Double Strand Break Repair and Translesion Synthesis but Suppresses Mitotic Errors. Int J Mol Sci 2023; 24:15799. [PMID: 37958783 PMCID: PMC10649693 DOI: 10.3390/ijms242115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Rev7 is a regulatory protein with roles in translesion synthesis (TLS), double strand break (DSB) repair, replication fork protection, and cell cycle regulation. Rev7 forms a homodimer in vitro using its HORMA (Hop, Rev7, Mad2) domain; however, the functional importance of Rev7 dimerization has been incompletely understood. We analyzed the functional properties of cells expressing either wild-type mouse Rev7 or Rev7K44A/R124A/A135D, a mutant that cannot dimerize. The expression of wild-type Rev7, but not the mutant, rescued the sensitivity of Rev7-/- cells to X-rays and several alkylating agents and reversed the olaparib resistance phenotype of Rev7-/- cells. Using a novel fluorescent host-cell reactivation assay, we found that Rev7K44A/R124A/A135D is unable to promote gap-filling TLS opposite an abasic site analog. The Rev7 dimerization interface is also required for shieldin function, as both Rev7-/- cells and Rev7-/- cells expressing Rev7K44A/R124A/A135D exhibit decreased proficiency in rejoining some types of double strand breaks, as well as increased homologous recombination. Interestingly, Rev7K44A/R124A/A135D retains some function in cell cycle regulation, as it maintains an interaction with Ras-related nuclear protein (Ran) and partially rescues the formation of micronuclei. The mutant Rev7 also rescues the G2/M accumulation observed in Rev7-/- cells but does not affect progression through mitosis following nocodazole release. We conclude that while Rev7 dimerization is required for its roles in TLS, DSB repair, and regulation of the anaphase promoting complex, dimerization is at least partially dispensable for promoting mitotic spindle assembly through its interaction with Ran.
Collapse
Affiliation(s)
- Faye M. Vassel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Daniel J. Laverty
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Ke Bian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Cortt G. Piett
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Michael T. Hemann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (F.M.V.)
| | - Zachary D. Nagel
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
31
|
Paniagua I, Jacobs JJL. Freedom to err: The expanding cellular functions of translesion DNA polymerases. Mol Cell 2023; 83:3608-3621. [PMID: 37625405 DOI: 10.1016/j.molcel.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 08/27/2023]
Abstract
Translesion synthesis (TLS) DNA polymerases were originally described as error-prone enzymes involved in the bypass of DNA lesions. However, extensive research over the past few decades has revealed that these enzymes play pivotal roles not only in lesion bypass, but also in a myriad of other cellular processes. Such processes include DNA replication, DNA repair, epigenetics, immune signaling, and even viral infection. This review discusses the wide range of functions exhibited by TLS polymerases, including their underlying biochemical mechanisms and associated mutagenicity. Given their multitasking ability to alleviate replication stress, TLS polymerases represent a cellular dependency and a critical vulnerability of cancer cells. Hence, this review also highlights current and emerging strategies for targeting TLS polymerases in cancer therapy.
Collapse
Affiliation(s)
- Inés Paniagua
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby G, Wang Y, Wang C, Gao Y, Shelton A, Satterlee AB, Mann BE, Hsiao YC, Liu CW, Liu K, Hingtgen S, Wang J, Liu Z, Miller R, Wu D, Vaziri C, Yang Y. Trans-Lesion Synthesis and Mismatch Repair Pathway Crosstalk Defines Chemoresistance and Hypermutation Mechanisms in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562506. [PMID: 37905107 PMCID: PMC10614844 DOI: 10.1101/2023.10.16.562506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qisheng Gu
- Unit of Immunity and Pediatric Infectious Diseases, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Breanna Elizabeth Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby G, Wang Y, Wang C, Gao Y, Shelton A, Satterlee AB, Mann BE, Hsiao YC, Liu CW, Liu K, Hingtgen S, Wang J, Liu Z, Miller R, Wu D, Vaziri C, Yang Y. Trans-Lesion Synthesis and Mismatch Repair Pathway Crosstalk Defines Chemoresistance and Hypermutation Mechanisms in Glioblastoma. RESEARCH SQUARE 2023:rs.3.rs-2367368. [PMID: 37886584 PMCID: PMC10602147 DOI: 10.21203/rs.3.rs-2367368/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qisheng Gu
- Unit of Immunity and Pediatric Infectious Diseases, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Breanna Elizabeth Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Sobol RW. Editorial: DNA repair and nucleic acid therapeutics in cancer. NAR Cancer 2023; 5:zcad044. [PMID: 37645072 PMCID: PMC10461458 DOI: 10.1093/narcan/zcad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
35
|
Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat KM, Pandita TK, Bhat A. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Mol Cell Biol 2023; 43:401-425. [PMID: 37439479 PMCID: PMC10448981 DOI: 10.1080/10985549.2023.2224199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.
Collapse
Affiliation(s)
| | - Ganesh Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Audesh Bhat
- Center for Molecular Biology, Central University of Jammu, UT Jammu and Kashmir, India
| |
Collapse
|
36
|
Tufail M. DNA repair pathways in breast cancer: from mechanisms to clinical applications. Breast Cancer Res Treat 2023:10.1007/s10549-023-06995-z. [PMID: 37289340 DOI: 10.1007/s10549-023-06995-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Breast cancer (BC) is a complex disease with various subtypes and genetic alterations that impact DNA repair pathways. Understanding these pathways is essential for developing effective treatments and improving patient outcomes. AREA COVERED This study investigates the significance of DNA repair pathways in breast cancer, specifically focusing on various pathways such as nucleotide excision repair, base excision repair, mismatch repair, homologous recombination repair, non-homologous end joining, fanconi anemia pathway, translesion synthesis, direct repair, and DNA damage tolerance. The study also examines the role of these pathways in breast cancer resistance and explores their potential as targets for cancer treatment. CONCLUSION Recent advances in targeted therapies have shown promise in exploiting DNA repair pathways for BC treatment. However, much research is needed to improve the efficacy of these therapies and identify new targets. Additionally, personalized treatments that target specific DNA repair pathways based on tumor subtype or genetic profile are being developed. Advances in genomics and imaging technologies can potentially improve patient stratification and identify biomarkers of treatment response. However, many challenges remain, including toxicity, resistance, and the need for more personalized treatments. Continued research and development in this field could significantly improve BC treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
37
|
Thomas M, Dubacq C, Rabut E, Lopez BS, Guirouilh-Barbat J. Noncanonical Roles of RAD51. Cells 2023; 12:cells12081169. [PMID: 37190078 DOI: 10.3390/cells12081169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR), an evolutionary conserved pathway, plays a paramount role(s) in genome plasticity. The pivotal HR step is the strand invasion/exchange of double-stranded DNA by a homologous single-stranded DNA (ssDNA) covered by RAD51. Thus, RAD51 plays a prime role in HR through this canonical catalytic strand invasion/exchange activity. The mutations in many HR genes cause oncogenesis. Surprisingly, despite its central role in HR, the invalidation of RAD51 is not classified as being cancer prone, constituting the "RAD51 paradox". This suggests that RAD51 exercises other noncanonical roles that are independent of its catalytic strand invasion/exchange function. For example, the binding of RAD51 on ssDNA prevents nonconservative mutagenic DNA repair, which is independent of its strand exchange activity but relies on its ssDNA occupancy. At the arrested replication forks, RAD51 plays several noncanonical roles in the formation, protection, and management of fork reversal, allowing for the resumption of replication. RAD51 also exhibits noncanonical roles in RNA-mediated processes. Finally, RAD51 pathogenic variants have been described in the congenital mirror movement syndrome, revealing an unexpected role in brain development. In this review, we present and discuss the different noncanonical roles of RAD51, whose presence does not automatically result in an HR event, revealing the multiple faces of this prominent actor in genomic plasticity.
Collapse
Affiliation(s)
- Mélissa Thomas
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Caroline Dubacq
- Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, INSERM, CNRS, Sorbonne Université, F-75005 Paris, France
| | - Elise Rabut
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Bernard S Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Université de Paris Cité, 24 rue du Faubourg St. Jacques, F-75014 Paris, France
| |
Collapse
|