1
|
Fong-Zazueta R, Krueger J, Alba DM, Aymerich X, Beck RMD, Cappellini E, Carrillo-Martin G, Cirilli O, Clark N, Cornejo OE, Farh KKH, Ferrández-Peral L, Juan D, Kelley JL, Kuderna LFK, Little J, Orkin JD, Paterson RS, Pawar H, Marques-Bonet T, Lizano E. Phylogenetic Signal in Primate Tooth Enamel Proteins and its Relevance for Paleoproteomics. Genome Biol Evol 2025; 17:evaf007. [PMID: 39834226 PMCID: PMC11878541 DOI: 10.1093/gbe/evaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Ancient tooth enamel, and to some extent dentin and bone, contain characteristic peptides that persist for long periods of time. In particular, peptides from the enamel proteome (enamelome) have been used to reconstruct the phylogenetic relationships of fossil taxa. However, the enamelome is based on only about 10 genes, whose protein products undergo fragmentation in vivo and post mortem. This raises the question as to whether the enamelome alone provides enough information for reliable phylogenetic inference. We address these considerations on a selection of enamel-associated proteins that has been computationally predicted from genomic data from 232 primate species. We created multiple sequence alignments for each protein and estimated the evolutionary rate for each site. We examined which sites overlap with the parts of the protein sequences that are typically isolated from fossils. Based on this, we simulated ancient data with different degrees of sequence fragmentation, followed by phylogenetic analysis. We compared these trees to a reference species tree. Up to a degree of fragmentation that is similar to that of fossil samples from 1 to 2 million years ago, the phylogenetic placements of most nodes at family level are consistent with the reference species tree. We tested phylogenetic analysis on combinations of different enamel proteins and found that the composition of the proteome can influence deep splits in the phylogeny. With our methods, we provide guidance for researchers on how to evaluate the potential of paleoproteomics for phylogenetic studies before sampling valuable ancient specimens.
Collapse
Affiliation(s)
- Ricardo Fong-Zazueta
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Johanna Krueger
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Barcelona, Spain
| | - Xènia Aymerich
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
| | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Enrico Cappellini
- Geogenetics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Guillermo Carrillo-Martin
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Omar Cirilli
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
| | - Nathan Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Omar E Cornejo
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Luis Ferrández-Peral
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - David Juan
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Jordan Little
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Joseph D Orkin
- Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
- Département d’anthropologie, Université de Montréal, Montréal, QC, Canada
| | - Ryan S Paterson
- Geogenetics Section, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Harvinder Pawar
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
| | - Tomas Marques-Bonet
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Esther Lizano
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (CSIC-UPF), Pompeu Fabra University, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Unidad de Paleobiología, ICP-CERCA, Unidad Asociada al CSIC por el IBE UPF-CSIC, Barcelona, Spain
| |
Collapse
|
2
|
Sun S, Bakkeren G. A bird's-eye view: exploration of the flavin-containing monooxygenase superfamily in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1369299. [PMID: 38681221 PMCID: PMC11046709 DOI: 10.3389/fpls.2024.1369299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
The Flavin Monooxygenase (FMO) gene superfamily in plants is involved in various processes most widely documented for its involvement in auxin biosynthesis, specialized metabolite biosynthesis, and plant microbial defense signaling. The roles of FMOs in defense signaling and disease resistance have recently come into focus as they may present opportunities to increase immune responses in plants including leading to systemic acquired resistance, but are not well characterized. We present a comprehensive catalogue of FMOs found in genomes across vascular plants and explore, in depth, 170 wheat TaFMO genes for sequence architecture, cis-acting regulatory elements, and changes due to Transposable Element insertions. A molecular phylogeny separates TaFMOs into three clades (A, B, and C) for which we further report gene duplication patterns, and differential rates of homoeologue expansion and retention among TaFMO subclades. We discuss Clade B TaFMOs where gene expansion is similarly seen in other cereal genomes. Transcriptome data from various studies point towards involvement of subclade B2 TaFMOs in disease responses against both biotrophic and necrotrophic pathogens, substantiated by promoter element analysis. We hypothesize that certain TaFMOs are responsive to both abiotic and biotic stresses, providing potential targets for enhancing disease resistance, plant yield and other important agronomic traits. Altogether, FMOs in wheat and other crop plants present an untapped resource to be exploited for improving the quality of crops.
Collapse
Affiliation(s)
- Sherry Sun
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Center, Summerland, BC, Canada
| |
Collapse
|
3
|
Casanellas M, Fernández-Sánchez J, Garrote-López M, Sabaté-Vidales M. Designing Weights for Quartet-Based Methods When Data are Heterogeneous Across Lineages. Bull Math Biol 2023; 85:68. [PMID: 37310552 DOI: 10.1007/s11538-023-01167-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/15/2023] [Indexed: 06/14/2023]
Abstract
Homogeneity across lineages is a general assumption in phylogenetics according to which nucleotide substitution rates are common to all lineages. Many phylogenetic methods relax this hypothesis but keep a simple enough model to make the process of sequence evolution more tractable. On the other hand, dealing successfully with the general case (heterogeneity of rates across lineages) is one of the key features of phylogenetic reconstruction methods based on algebraic tools. The goal of this paper is twofold. First, we present a new weighting system for quartets (ASAQ) based on algebraic and semi-algebraic tools, thus especially indicated to deal with data evolving under heterogeneous rates. This method combines the weights of two previous methods by means of a test based on the positivity of the branch lengths estimated with the paralinear distance. ASAQ is statistically consistent when applied to data generated under the general Markov model, considers rate and base composition heterogeneity among lineages and does not assume stationarity nor time-reversibility. Second, we test and compare the performance of several quartet-based methods for phylogenetic tree reconstruction (namely QFM, wQFM, quartet puzzling, weight optimization and Willson's method) in combination with several systems of weights, including ASAQ weights and other weights based on algebraic and semi-algebraic methods or on the paralinear distance. These tests are applied to both simulated and real data and support weight optimization with ASAQ weights as a reliable and successful reconstruction method that improves upon the accuracy of global methods (such as neighbor-joining or maximum likelihood) in the presence of long branches or on mixtures of distributions on trees.
Collapse
Affiliation(s)
- Marta Casanellas
- Institut de Matematiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya and Centre de Recerca Matemàtica, Av. Diagonal 647, 08028, Barcelona, Spain.
| | - Jesús Fernández-Sánchez
- Institut de Matematiques de la UPC-BarcelonaTech (IMTech), Universitat Politècnica de Catalunya and Centre de Recerca Matemàtica, Av. Diagonal 647, 08028, Barcelona, Spain
| | | | | |
Collapse
|
4
|
Jacques F, Bolivar P, Pietras K, Hammarlund EU. Roadmap to the study of gene and protein phylogeny and evolution-A practical guide. PLoS One 2023; 18:e0279597. [PMID: 36827278 PMCID: PMC9955684 DOI: 10.1371/journal.pone.0279597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
Developments in sequencing technologies and the sequencing of an ever-increasing number of genomes have revolutionised studies of biodiversity and organismal evolution. This accumulation of data has been paralleled by the creation of numerous public biological databases through which the scientific community can mine the sequences and annotations of genomes, transcriptomes, and proteomes of multiple species. However, to find the appropriate databases and bioinformatic tools for respective inquiries and aims can be challenging. Here, we present a compilation of DNA and protein databases, as well as bioinformatic tools for phylogenetic reconstruction and a wide range of studies on molecular evolution. We provide a protocol for information extraction from biological databases and simple phylogenetic reconstruction using probabilistic and distance methods, facilitating the study of biodiversity and evolution at the molecular level for the broad scientific community.
Collapse
Affiliation(s)
- Florian Jacques
- Lund University Cancer Centre, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Paulina Bolivar
- Lund University Cancer Centre, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristian Pietras
- Lund University Cancer Centre, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Emma U. Hammarlund
- Lund University Cancer Centre, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Giacomelli M, Rossi ME, Lozano-Fernandez J, Feuda R, Pisani D. Resolving tricky nodes in the tree of life through amino acid recoding. iScience 2022; 25:105594. [PMID: 36458253 PMCID: PMC9706708 DOI: 10.1016/j.isci.2022.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic data allowed a detailed resolution of the Tree of Life, but "tricky nodes" such as the root of the animals remain unresolved. Genome-scale datasets are heterogeneous as genes and species are exposed to different pressures, and this can negatively impacts phylogenetic accuracy. We use simulated genomic-scale datasets and show that recoding amino acid data improves accuracy when the model does not account for the compositional heterogeneity of the amino acid alignment. We apply our findings to three datasets addressing the root of the animal tree, where the debate centers on whether sponges (Porifera) or comb jellies (Ctenophora) represent the sister of all other animals. We show that results from empirical data follow predictions from simulations and suggest that, at the least in phylogenies inferred from amino acid sequences, a placement of the ctenophores as sister to all the other animals is best explained as a tree reconstruction artifact.
Collapse
Affiliation(s)
- Mattia Giacomelli
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Maria Eleonora Rossi
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jesus Lozano-Fernandez
- Department of Genetics, Microbiology and Statistics, & Biodiversity Research Institute (IRBio), Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
6
|
Sigorskikh AI, Latortseva DD, Karyagina AS, Spirin SA. How Often Does Filtering of Alignment Columns Improve the Phylogenetic Inference of Two-Domain Proteins? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1689-1698. [PMID: 36717457 DOI: 10.1134/s0006297922120239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ae-mail: sas@belozersky.msu.ru Protein phylogeny is usually reconstructed basing on a multiple alignment of amino acid sequences. One of the problems of such alignments is the presence of regions with different degree of conservation, including those with a questionable quality of the alignment. This problem is often solved by filtering the alignment columns with a special software developed for this purpose. In this work, we investigated various approaches to the phylogeny reconstruction using proteins with two evolutionary domains as examples. The sequences of such proteins are inherently heterogeneous in the degree of conservation due to the presence of both evolutionary domains and linkers between them, as well as the N- and C-termini. It is shown that filtering the alignment columns on average improves the quality of reconstruction only when using the full-length sequences and only for eukaryotic proteins. Limiting the alignment to the evolutionary domains with rejection of less conserved linkers and terminal sequences on average worsened the quality of phylogenetic reconstruction.
Collapse
Affiliation(s)
- Andrey I Sigorskikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Daria D Latortseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anna S Karyagina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550, Russia
| | - Sergey A Spirin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,National Research University Higher School of Economics, Moscow, 109028, Russia
| |
Collapse
|
7
|
Goremykin V. Assessment of Absolute Substitution Model Fit Accommodating Time-Reversible and Non-Time-Reversible Evolutionary Processes. Syst Biol 2022:6632685. [PMID: 35792853 DOI: 10.1093/sysbio/syac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
The loss of information accompanying assessment of absolute fit of substitution models to phylogenetic data negatively affects the discriminatory power of previous methods and can make them insensitive to lineage-specific changes in the substitution process. As an alternative, I propose evaluating absolute fit of substitution models based on a novel statistic which describes the observed data without information loss and which is unlikely to become zero-inflated with increasing numbers of taxa. This method can accommodate gaps and is sensitive to lineage-specific shifts in the substitution process. In simulation experiments, it exhibits greater discriminatory power than previous methods. The method can be implemented in both Bayesian and Maximum Likelihood phylogenetic analyses, and used to screen any set of models. Recently, it has been suggested that model selection may be an unnecessary step in phylogenetic inference. However, results presented here emphasize the importance of model fit assessment for reliable phylogenetic inference.
Collapse
Affiliation(s)
- Vadim Goremykin
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige (TN), Italy
| |
Collapse
|
8
|
Williams CT, Chmura HE, Deal CK, Wilsterman K. Sex-differences in Phenology: A Tinbergian Perspective. Integr Comp Biol 2022; 62:980-997. [PMID: 35587379 DOI: 10.1093/icb/icac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Shifts in the timing of cyclic seasonal life-history events are among the most commonly reported responses to climate change, with differences in response rates among interacting species leading to phenological mismatches. Within a species, however, males and females can also exhibit differential sensitivity to environmental cues and may therefore differ in their responsiveness to climate change, potentially leading to phenological mismatches between the sexes. This occurs because males differ from females in when and how energy is allocated to reproduction, resulting in marked sex-differences in life-history timing across the annual cycle. In this review, we take a Tinbergian perspective and examine sex differences in timing of vertebrates from adaptive, ontogenetic, mechanistic, and phylogenetic viewpoints with the goal of informing and motivating more integrative research on sexually dimorphic phenologies. We argue that sexual and natural selection lead to sex-differences in life-history-timing and that understanding the ecological and evolutionary drivers of these differences is critical for connecting climate-driven phenological shifts to population resilience. Ontogeny may influence how and when sex differences in life-history timing arise because the early-life environment can profoundly affect developmental trajectory, rates of reproductive maturation, and seasonal timing. The molecular mechanisms underlying these organismal traits are relevant to identifying the diversity and genetic basis of population- and species-level responses to climate change, and promisingly, the molecular basis of phenology is becoming increasingly well-understood. However, because most studies focus on a single sex, the causes of sex-differences in phenology critical to population resilience often remain unclear. New sequencing tools and analyses informed by phylogeny may help generate hypotheses about mechanism as well as insight into the general "evolvability" of sex differences across phylogenetic scales, especially as trait and genome resources grow. We recommend that greater attention be placed on determining sex-differences in timing mechanisms and monitoring climate change responses in both sexes, and we discuss how new tools may provide key insights into sex-differences in phenology from all four Tinbergian domains.
Collapse
Affiliation(s)
- Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave, Missoula, MT 59801, USA
| | - Cole K Deal
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Kathryn Wilsterman
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Jiang Y, Balaban M, Zhu Q, Mirarab S. DEPP: Deep Learning Enables Extending Species Trees using Single Genes. Syst Biol 2022; 72:17-34. [PMID: 35485976 DOI: 10.1093/sysbio/syac031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Placing new sequences onto reference phylogenies is increasingly used for analyzing environmental samples, especially microbiomes. Existing placement methods assume that query sequences have evolved under specific models directly on the reference phylogeny. For example, they assume single-gene data (e.g., 16S rRNA amplicons) have evolved under the GTR model on a gene tree. Placement, however, often has a more ambitious goal: extending a (genome-wide) species tree given data from individual genes without knowing the evolutionary model. Addressing this challenging problem requires new directions. Here, we introduce Deep-learning Enabled Phylogenetic Placement (DEPP), an algorithm that learns to extend species trees using single genes without pre-specified models. In simulations and on real data, we show that DEPP can match the accuracy of model-based methods without any prior knowledge of the model. We also show that DEPP can update the multi-locus microbial tree-of-life with single genes with high accuracy. We further demonstrate that DEPP can combine 16S and metagenomic data onto a single tree, enabling community structure analyses that take advantage of both sources of data.
Collapse
Affiliation(s)
- Yueyu Jiang
- Department of Electrical and Computer Engineering, UC San Diego, CA 92093, USA
| | - Metin Balaban
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, CA 92093, USA
| | - Qiyun Zhu
- Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, UC San Diego, CA 92093, USA
| |
Collapse
|
10
|
Kmentová N, Cruz-Laufer AJ, Pariselle A, Smeets K, Artois T, Vanhove MPM. Dactylogyridae 2022: a meta-analysis of phylogenetic studies and generic diagnoses of parasitic flatworms using published genetic and morphological data. Int J Parasitol 2022; 52:427-457. [PMID: 35245493 DOI: 10.1016/j.ijpara.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Dactylogyridae is one of the most studied families of parasitic flatworms with more than 1000 species and 166 genera described to date including ecto- and endoparasites. Dactylogyrid monogeneans were suggested as model organisms for host-parasite macroevolutionary and biogeographical studies due to the scientific and economic importance of some of their host lineages. Consequently, an array of phylogenetic research into different dactylogyrid lineages has been produced over the past years but the last family-wide study was published 16 years ago. Here, we provide a meta-analysis of the phylogenetic relationships of Dactylogyridae including representatives of all genera with available molecular data (n=67). First, we investigate the systematic informativeness of morphological characters widely used to diagnose dactylogyrid genera through a parsimony analysis of the characters, character mapping, and phylogenetic comparative methods. Second, we provide an overview of the current state of the systematics of the family and its subfamilies, and summarise potentially poly- and paraphyletic genera. Third, we elaborate on the implications of taxonomic, citation, and confirmation bias in past studies. Fourth, we discuss host range, biogeographical, and freshwater-marine patterns. We found two well-supported macroclades which we assigned to the subfamilies Dactylogyrinae and Ancyrocephalinae. These subfamilies further include 16 well-supported clades with only a few synapomorphies that could be deduced from generic diagnoses in the literature. Furthermore, few morphological characters considered systematically informative at the genus level display a strong phylogenetic signal. However, the parsimony analysis suggests that these characters provide little information on the relationships between genera. We conclude that a strong taxonomic bias and low coverage of DNA sequences and regions limit knowledge on morphological and biogeographical evolutionary patterns that can be inferred from these results. We propose addressing potential citation and confirmation biases through a 'level playing field' multiple sequence alignment as provided by this study.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Armando J Cruz-Laufer
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Antoine Pariselle
- ISEM, CNRS, Université de Montpellier, IRD, Montpellier, France; Laboratory "Biodiversity, Ecology and Genome", Mohammed V University in Rabat, Faculty of Sciences, 4 avenue Ibn Batouta, BP 1014, Rabat, Morocco
| | - Karen Smeets
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Tom Artois
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Faculty of Sciences, UHasselt - Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| |
Collapse
|
11
|
Dornburg A, Near TJ. The Emerging Phylogenetic Perspective on the Evolution of Actinopterygian Fishes. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-122120-122554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of a new phylogeny of ray-finned fishes at the turn of the twenty-first century marked a paradigm shift in understanding the evolutionary history of half of living vertebrates. We review how the new ray-finned fish phylogeny radically departs from classical expectations based on morphology. We focus on evolutionary relationships that span the backbone of ray-finned fish phylogeny, from the earliest divergences among teleosts and nonteleosts to the resolution of major lineages of Percomorpha. Throughout, we feature advances gained by the new phylogeny toward a broader understanding of ray-finned fish evolutionary history and the implications for topics that span from the genetics of human health to reconsidering the concept of living fossils. Additionally, we discuss conceptual challenges that involve reconciling taxonomic classification with phylogenetic relationships and propose an alternate higher-level classification for Percomorpha. Our review highlights remaining areas of phylogenetic uncertainty and opportunities for comparative investigations empowered by this new phylogenetic perspective on ray-finned fishes.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina 28223, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
12
|
Vera-Ruiz VA, Robinson J, Jermiin LS. A Likelihood-Ratio Test for Lumpability of Phylogenetic Data: Is the Markovian Property of an Evolutionary Process retained in Recoded DNA? Syst Biol 2021; 71:660-675. [PMID: 34498090 DOI: 10.1093/sysbio/syab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022] Open
Abstract
In molecular phylogenetics, it is typically assumed that the evolutionary process for DNA can be approximated by independent and identically distributed Markovian processes at the variable sites and that these processes diverge over the edges of a rooted bifurcating tree. Sometimes the nucleotides are transformed from a 4-state alphabet to a 3- or 2-state alphabet by a procedure that is called recoding, lumping, or grouping of states. Here, we introduce a likelihood-ratio test for lumpability for DNA that has diverged under different Markovian conditions, which assesses the assumption that the Markovian property of the evolutionary process over each edge is retained after recoding of the nucleotides. The test is derived and validated numerically on simulated data. To demonstrate the insights that can be gained by using the test, we assessed two published data sets, one of mitochondrial DNA from a phylogenetic study of the ratites (Syst. Biol. 59:90-107 [2010]) and the other of nuclear DNA from a phylogenetic study of yeast (Mol. Biol. Evol. 21:1455-1458 [2004]). Our analysis of these data sets revealed that recoding of the DNA eliminated some of the compositional heterogeneity detected over the sequences. However, the Markovian property of the original evolutionary process was not retained by the recoding, leading to some significant distortions of edge lengths in reconstructed trees.
Collapse
Affiliation(s)
- Victor A Vera-Ruiz
- School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia.,Department of Mathematics and Statistics, University of Nevada, Reno, NV 89557, USA
| | - John Robinson
- School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
| | - Lars S Jermiin
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.,School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.,Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Williams TA, Schrempf D, Szöllősi GJ, Cox CJ, Foster PG, Embley TM. Inferring the deep past from molecular data. Genome Biol Evol 2021; 13:6192802. [PMID: 33772552 PMCID: PMC8175050 DOI: 10.1093/gbe/evab067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
There is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here, we discuss some common issues that can influence the topology of trees obtained when using overly simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved. In two of these examples, the sister-group relationship between thermophilic Thermus and mesophilic Deinococcus, and the position of long-branch Microsporidia among eukaryotes, we show that recovering what is now generally considered to be the correct tree is critically dependent on the fit between model and data. In the third example, the position of eukaryotes in the tree of life, the hypothesis that is currently supported by the best available methods is fundamentally different from the classical view of relationships between major cellular domains. Since heterogeneity appears to be pervasive and varied among all molecular sequence data, and even the best available models can still struggle to deal with some problems, the issues we discuss are generally relevant to phylogenetic analyses. It remains essential to maintain a critical attitude to all trees as hypotheses of relationship that may change with more data and better methods.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Dominik Schrempf
- Dept. of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gergely J Szöllősi
- Dept. of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary.,MTA-ELTE "Lendület" Evolutionary Genomics Research Group, 1117 Budapest, Hungary.,Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - T Martin Embley
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| |
Collapse
|
14
|
Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K, Devanna P, Winkler S, Jermiin LS, Skirmuntt EC, Katzourakis A, Burkitt-Gray L, Ray DA, Sullivan KAM, Roscito JG, Kirilenko BM, Dávalos LM, Corthals AP, Power ML, Jones G, Ransome RD, Dechmann DKN, Locatelli AG, Puechmaille SJ, Fedrigo O, Jarvis ED, Hiller M, Vernes SC, Myers EW, Teeling EC. Six reference-quality genomes reveal evolution of bat adaptations. Nature 2020; 583:578-584. [PMID: 32699395 PMCID: PMC8075899 DOI: 10.1038/s41586-020-2486-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/09/2020] [Indexed: 11/08/2022]
Abstract
Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our 'Tool to infer Orthologs from Genome Alignments' (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease1.
Collapse
Affiliation(s)
- David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lars S Jermiin
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Emilia C Skirmuntt
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Aris Katzourakis
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Lucy Burkitt-Gray
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kevin A M Sullivan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | | | - Megan L Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Roger D Ransome
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Dina K N Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Andrea G Locatelli
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Sébastien J Puechmaille
- ISEM, University of Montpellier, Montpellier, France
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Olivier Fedrigo
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Faculty of Computer Science, Technical University Dresden, Dresden, Germany.
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|