1
|
Feng Y, Liu G, Li H, Cheng L. The landscape of cell lineage tracing. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2751-6. [PMID: 40035969 DOI: 10.1007/s11427-024-2751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
Cell fate changes play a crucial role in the processes of natural development, disease progression, and the efficacy of therapeutic interventions. The definition of the various types of cell fate changes, including cell expansion, differentiation, transdifferentiation, dedifferentiation, reprogramming, and state transitions, represents a complex and evolving field of research known as cell lineage tracing. This review will systematically introduce the research history and progress in this field, which can be broadly divided into two parts: prospective tracing and retrospective tracing. The initial section encompasses an array of methodologies pertaining to isotope labeling, transient fluorescent tracers, non-fluorescent transient tracers, non-fluorescent genetic markers, fluorescent protein, genetic marker delivery, genetic recombination, exogenous DNA barcodes, CRISPR-Cas9 mediated DNA barcodes, and base editor-mediated DNA barcodes. The second part of the review covers genetic mosaicism, genomic DNA alteration, TCR/BCR, DNA methylation, and mitochondrial DNA mutation. In the final section, we will address the principal challenges and prospective avenues of enquiry in the field of cell lineage tracing, with a particular focus on the sequencing techniques and mathematical models pertinent to single-cell genetic lineage tracing, and the value of pursuing a more comprehensive investigation at both the spatial and temporal levels in the study of cell lineage tracing.
Collapse
Affiliation(s)
- Ye Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Schlegel B, Morikone M, Mu F, Tang WY, Kohanbash G, Rajasundaram D. bcRflow: a Nextflow pipeline for characterizing B cell receptor repertoires from non-targeted transcriptomic data. NAR Genom Bioinform 2024; 6:lqae137. [PMID: 39411512 PMCID: PMC11474772 DOI: 10.1093/nargab/lqae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
B cells play a critical role in the adaptive recognition of foreign antigens through diverse receptor generation. While targeted immune sequencing methods are commonly used to profile B cell receptors (BCRs), they have limitations in cost and tissue availability. Analyzing B cell receptor profiling from non-targeted transcriptomics data is a promising alternative, but a systematic pipeline integrating tools for accurate immune repertoire extraction is lacking. Here, we present bcRflow, a Nextflow pipeline designed to characterize BCR repertoires from non-targeted transcriptomics data, with functional modules for alignment, processing, and visualization. bcRflow is a comprehensive, reproducible, and scalable pipeline that can run on high-performance computing clusters, cloud-based computing resources like Amazon Web Services (AWS), the Open OnDemand framework, or even local desktops. bcRflow utilizes institutional configurations provided by nf-core to ensure maximum portability and accessibility. To demonstrate the functionality of the bcRflow pipeline, we analyzed a public dataset of bulk transcriptomic samples from COVID-19 patients and healthy controls. We have shown that bcRflow streamlines the analysis of BCR repertoires from non-targeted transcriptomics data, providing valuable insights into the B cell immune response for biological and clinical research. bcRflow is available at https://github.com/Bioinformatics-Core-at-Childrens/bcRflow.
Collapse
Affiliation(s)
- Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Michael Morikone
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, 312 Schenley Place, 4420 Bayard Street, Pittsburgh, PA 15260, USA
| | - Wan-Yee Tang
- Department of Environmental and Occupational Health, University of Pittsburgh, School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15261, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, John G. Rangos Sr. Research Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
3
|
Irac SE, Soon MSF, Borcherding N, Tuong ZK. Single-cell immune repertoire analysis. Nat Methods 2024; 21:777-792. [PMID: 38637691 DOI: 10.1038/s41592-024-02243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024]
Abstract
Single-cell T cell and B cell antigen receptor-sequencing data analysis can potentially perform in-depth assessments of adaptive immune cells that inform on understanding immune cell development to tracking clonal expansion in disease and therapy. However, it has been extremely challenging to analyze and interpret T cells and B cells and their adaptive immune receptor repertoires at the single-cell level due to not only the complexity of the data but also the underlying biology. In this Review, we delve into the computational breakthroughs that have transformed the analysis of single-cell T cell and B cell antigen receptor-sequencing data.
Collapse
Affiliation(s)
- Sergio E Irac
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Megan Sioe Fei Soon
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Omniscope, Palo Alto, CA, USA
| | - Zewen Kelvin Tuong
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Arulraj T, Wang H, Ippolito A, Zhang S, Fertig EJ, Popel AS. Leveraging multi-omics data to empower quantitative systems pharmacology in immuno-oncology. Brief Bioinform 2024; 25:bbae131. [PMID: 38557676 PMCID: PMC10982948 DOI: 10.1093/bib/bbae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Understanding the intricate interactions of cancer cells with the tumor microenvironment (TME) is a pre-requisite for the optimization of immunotherapy. Mechanistic models such as quantitative systems pharmacology (QSP) provide insights into the TME dynamics and predict the efficacy of immunotherapy in virtual patient populations/digital twins but require vast amounts of multimodal data for parameterization. Large-scale datasets characterizing the TME are available due to recent advances in bioinformatics for multi-omics data. Here, we discuss the perspectives of leveraging omics-derived bioinformatics estimates to inform QSP models and circumvent the challenges of model calibration and validation in immuno-oncology.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alberto Ippolito
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Balashova D, van Schaik BDC, Stratigopoulou M, Guikema JEJ, Caniels TG, Claireaux M, van Gils MJ, Musters A, Anang DC, de Vries N, Greiff V, van Kampen AHC. Systematic evaluation of B-cell clonal family inference approaches. BMC Immunol 2024; 25:13. [PMID: 38331731 PMCID: PMC11370117 DOI: 10.1186/s12865-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The reconstruction of clonal families (CFs) in B-cell receptor (BCR) repertoire analysis is a crucial step to understand the adaptive immune system and how it responds to antigens. The BCR repertoire of an individual is formed throughout life and is diverse due to several factors such as gene recombination and somatic hypermutation. The use of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using next generation sequencing enabled the generation of full BCR repertoires that also include rare CFs. The reconstruction of CFs from AIRR-seq data is challenging and several approaches have been developed to solve this problem. Currently, most methods use the heavy chain (HC) only, as it is more variable than the light chain (LC). CF reconstruction options include the definition of appropriate sequence similarity measures, the use of shared mutations among sequences, and the possibility of reconstruction without preliminary clustering based on V- and J-gene annotation. In this study, we aimed to systematically evaluate different approaches for CF reconstruction and to determine their impact on various outcome measures such as the number of CFs derived, the size of the CFs, and the accuracy of the reconstruction. The methods were compared to each other and to a method that groups sequences based on identical junction sequences and another method that only determines subclones. We found that after accounting for data set variability, in particular sequencing depth and mutation load, the reconstruction approach has an impact on part of the outcome measures, including the number of CFs. Simulations indicate that unique junctions and subclones should not be used as substitutes for CF and that more complex methods do not outperform simpler methods. Also, we conclude that different approaches differ in their ability to correctly reconstruct CFs when not considering the LC and to identify shared CFs. The results showed the effect of different approaches on the reconstruction of CFs and highlighted the importance of choosing an appropriate method.
Collapse
Affiliation(s)
- Daria Balashova
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Barbera D C van Schaik
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Maria Stratigopoulou
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Pathology, Lymphoma and Myeloma Center Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Tom G Caniels
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Anne Musters
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Dornatien C Anang
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Niek de Vries
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Antoine H C van Kampen
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Wang L, Zhou Y, Cui H, Zhuang X, Cheng C, Weng Y, Liu H, Wang S, Pan X, Cui Y, Zhang W. IGH repertoire analysis at scale: deciphering the complexity of B cell infiltration and migration in esophageal squamous cell carcinoma. Cancer Gene Ther 2024; 31:131-147. [PMID: 37985722 DOI: 10.1038/s41417-023-00689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Tumor-infiltrating B-lineage cells have become predictors of prognosis and immunotherapy responses in various cancers. However, limited knowledge about their infiltration and migration patterns has hindered the understanding of their anti-tumor functions. Here, we examined the immunoglobulin heavy chain (IGH) repertoires in 496 multi-regional tumor, 107 normal tissue, and 48 metastatic lymph node samples obtained from 107 patients with esophageal squamous cell carcinoma (ESCC). Our study revealed higher IgG-type B-lineage cells infiltration in tumors than in healthy tissue, which was associated with improved patient outcomes. Genes such as ACTN1, COL6A5, and pathways like focal adhesion, which shapes the physical structure of tumors, could affect B-lineage cell infiltration. Notably, the IGH sequence was used as an identity-tag to monitor B cell migration, and their infiltration schema within the tumor were depicted based on our multi-regional tumor specimens. This analysis revealed an escalation in B cell clones overlapped between metastatic lymph nodes and tumors. Therefore, the Lymph Node Activation Index was defined, which could predict the outcomes of patients with lymph node metastasis. This research introduces a novel framework for probing B cell infiltration and migration within the tumor microenvironment using large-scale transcriptome data, while simultaneously providing fresh perspectives on B cell immunology within ESCC.
Collapse
Affiliation(s)
- Longlong Wang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Yong Zhou
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Heyang Cui
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Xuehan Zhuang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Chen Cheng
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Yongjia Weng
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Huijuan Liu
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shubin Wang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yongping Cui
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China.
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Weimin Zhang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China.
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
7
|
Heumos L, Schaar AC, Lance C, Litinetskaya A, Drost F, Zappia L, Lücken MD, Strobl DC, Henao J, Curion F, Schiller HB, Theis FJ. Best practices for single-cell analysis across modalities. Nat Rev Genet 2023; 24:550-572. [PMID: 37002403 PMCID: PMC10066026 DOI: 10.1038/s41576-023-00586-w] [Citation(s) in RCA: 358] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 04/03/2023]
Abstract
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
Collapse
Affiliation(s)
- Lukas Heumos
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Anna C Schaar
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Technical University of Munich, Garching, Germany
| | - Christopher Lance
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anastasia Litinetskaya
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Felix Drost
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Luke Zappia
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Malte D Lücken
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Institute of Lung Health and Immunity, Helmholtz Munich, Munich, Germany
| | - Daniel C Strobl
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Juan Henao
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Fabiola Curion
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Munich Center for Machine Learning, Technical University of Munich, Garching, Germany.
| |
Collapse
|
8
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|