1
|
Banakar SN, Karan R, Prasannakumar MK, Venkateshbabu G, Harish J, Patil SS, Chandrashekar BS, Mahesh HB, Devanna P, Manjunatha C, Vamsidharreddy N, Pallavi KN, Sarangi AN, Vaidya K, Guru Murthy DS. Unveiling Fusarium falciforme: Genome sequencing of a Novel wilt causing pathogen in subabul (Leucaena leucocephala L.) in India. Microb Pathog 2025; 200:107281. [PMID: 39761773 DOI: 10.1016/j.micpath.2025.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Subabul (Leucaena leucocephala L.) is a leguminous species often referred to as the "miracle tree," it provides numerous ecosystem services and exhibits robust ecological characteristics. However, the infection caused by phytopathogenic fungi is poorly understood in Subabul. Therefore, this study provides comprehensive insights into the molecular and genomic characteristics of Fusarium falciforme, the causal agent of wilt disease in Subabul (Leucaena leucocephala). Pathogen isolation from infected samples, followed by morpho-molecular characterization through DNA sequencing of key markers (ITS, LSU, TEF1α) and phylogenetic analysis, confirmed the identity of F. falciforme. Host range analysis demonstrated the pathogen's ability to infect additional leguminous crops, including chickpea (Cicer arietinum) and soybean (Glycine max). A complete genome assembly revealed a genome size of 59.19 Mb, comprising 18,853 protein-coding genes. Comparative genomic analysis elucidated evolutionary relationships with other Fusarium species, while functional annotation identified critical virulence factors, such as polyketide synthases, ABC transporters, and secretory proteins, which facilitate host tissue invasion. These findings enhance the understanding of F. falciforme pathogenicity, enabling improved diagnostic tools and management strategies for controlling wilt disease in Subabul and related legumes.
Collapse
Affiliation(s)
- Sahana N Banakar
- PathoGenOmics Lab, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India
| | - R Karan
- PathoGenOmics Lab, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India
| | - M K Prasannakumar
- PathoGenOmics Lab, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India.
| | - Gopal Venkateshbabu
- PathoGenOmics Lab, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India
| | - J Harish
- PathoGenOmics Lab, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India
| | - Swathi S Patil
- PathoGenOmics Lab, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India
| | - B S Chandrashekar
- PathoGenOmics Lab, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India
| | - H B Mahesh
- Department of Genetics and Plant Breeding, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India
| | - Pramesh Devanna
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, Gangavathi, University of Agricultural Sciences, Raichur, 584104, Karnataka, India
| | - C Manjunatha
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - N Vamsidharreddy
- PathoGenOmics Lab, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India
| | - K N Pallavi
- PathoGenOmics Lab, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bangalore, 560065, Karnataka, India
| | | | - Keerthi Vaidya
- BaseSolve Informatics Pvt. Ltd., Ahmedabad, Gujarat, India
| | | |
Collapse
|
2
|
Maestri S, Scalzo D, Damaggio G, Zobel M, Besusso D, Cattaneo E. Navigating triplet repeats sequencing: concepts, methodological challenges and perspective for Huntington's disease. Nucleic Acids Res 2025; 53:gkae1155. [PMID: 39676657 PMCID: PMC11724279 DOI: 10.1093/nar/gkae1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The accurate characterization of triplet repeats, especially the overrepresented CAG repeats, is increasingly relevant for several reasons. First, germline expansion of CAG repeats above a gene-specific threshold causes multiple neurodegenerative disorders; for instance, Huntington's disease (HD) is triggered by >36 CAG repeats in the huntingtin (HTT) gene. Second, extreme expansions up to 800 CAG repeats have been found in specific cell types affected by the disease. Third, synonymous single nucleotide variants within the CAG repeat stretch influence the age of disease onset. Thus, new sequencing-based protocols that profile both the length and the exact nucleotide sequence of triplet repeats are crucial. Various strategies to enrich the target gene over the background, along with sequencing platforms and bioinformatic pipelines, are under development. This review discusses the concepts, challenges, and methodological opportunities for analyzing triplet repeats, using HD as a case study. Starting with traditional approaches, we will explore how sequencing-based methods have evolved to meet increasing scientific demands. We will also highlight experimental and bioinformatic challenges, aiming to provide a guide for accurate triplet repeat characterization for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Simone Maestri
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Davide Scalzo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Gianluca Damaggio
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Martina Zobel
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| |
Collapse
|
3
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Panoyan MA, Wendt FR. The role of tandem repeat expansions in brain disorders. Emerg Top Life Sci 2023; 7:249-263. [PMID: 37401564 DOI: 10.1042/etls20230022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
The human genome contains numerous genetic polymorphisms contributing to different health and disease outcomes. Tandem repeat (TR) loci are highly polymorphic yet under-investigated in large genomic studies, which has prompted research efforts to identify novel variations and gain a deeper understanding of their role in human biology and disease outcomes. We summarize the current understanding of TRs and their implications for human health and disease, including an overview of the challenges encountered when conducting TR analyses and potential solutions to overcome these challenges. By shedding light on these issues, this article aims to contribute to a better understanding of the impact of TRs on the development of new disease treatments.
Collapse
Affiliation(s)
- Mary Anne Panoyan
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
5
|
Hannan AJ. Expanding horizons of tandem repeats in biology and medicine: Why 'genomic dark matter' matters. Emerg Top Life Sci 2023; 7:ETLS20230075. [PMID: 38088823 PMCID: PMC10754335 DOI: 10.1042/etls20230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Approximately half of the human genome includes repetitive sequences, and these DNA sequences (as well as their transcribed repetitive RNA and translated amino-acid repeat sequences) are known as the repeatome. Within this repeatome there are a couple of million tandem repeats, dispersed throughout the genome. These tandem repeats have been estimated to constitute ∼8% of the entire human genome. These tandem repeats can be located throughout exons, introns and intergenic regions, thus potentially affecting the structure and function of tandemly repetitive DNA, RNA and protein sequences. Over more than three decades, more than 60 monogenic human disorders have been found to be caused by tandem-repeat mutations. These monogenic tandem-repeat disorders include Huntington's disease, a variety of ataxias, amyotrophic lateral sclerosis and frontotemporal dementia, as well as many other neurodegenerative diseases. Furthermore, tandem-repeat disorders can include fragile X syndrome, related fragile X disorders, as well as other neurological and psychiatric disorders. However, these monogenic tandem-repeat disorders, which were discovered via their dominant or recessive modes of inheritance, may represent the 'tip of the iceberg' with respect to tandem-repeat contributions to human disorders. A previous proposal that tandem repeats may contribute to the 'missing heritability' of various common polygenic human disorders has recently been supported by a variety of new evidence. This includes genome-wide studies that associate tandem-repeat mutations with autism, schizophrenia, Parkinson's disease and various types of cancers. In this article, I will discuss how tandem-repeat mutations and polymorphisms could contribute to a wide range of common disorders, along with some of the many major challenges of tandem-repeat biology and medicine. Finally, I will discuss the potential of tandem repeats to be therapeutically targeted, so as to prevent and treat an expanding range of human disorders.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Magdy Mohamed Abdelaziz Barakat S, Sallehuddin R, Yuhaniz SS, R. Khairuddin RF, Mahmood Y. Genome assembly composition of the String "ACGT" array: a review of data structure accuracy and performance challenges. PeerJ Comput Sci 2023; 9:e1180. [PMID: 37547391 PMCID: PMC10403225 DOI: 10.7717/peerj-cs.1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/27/2023] [Indexed: 08/08/2023]
Abstract
Background The development of sequencing technology increases the number of genomes being sequenced. However, obtaining a quality genome sequence remains a challenge in genome assembly by assembling a massive number of short strings (reads) with the presence of repetitive sequences (repeats). Computer algorithms for genome assembly construct the entire genome from reads in two approaches. The de novo approach concatenates the reads based on the exact match between their suffix-prefix (overlapping). Reference-guided approach orders the reads based on their offsets in a well-known reference genome (reads alignment). The presence of repeats extends the technical ambiguity, making the algorithm unable to distinguish the reads resulting in misassembly and affecting the assembly approach accuracy. On the other hand, the massive number of reads causes a big assembly performance challenge. Method The repeat identification method was introduced for misassembly by prior identification of repetitive sequences, creating a repeat knowledge base to reduce ambiguity during the assembly process, thus enhancing the accuracy of the assembled genome. Also, hybridization between assembly approaches resulted in a lower misassembly degree with the aid of the reference genome. The assembly performance is optimized through data structure indexing and parallelization. This article's primary aim and contribution are to support the researchers through an extensive review to ease other researchers' search for genome assembly studies. The study also, highlighted the most recent developments and limitations in genome assembly accuracy and performance optimization. Results Our findings show the limitations of the repeat identification methods available, which only allow to detect of specific lengths of the repeat, and may not perform well when various types of repeats are present in a genome. We also found that most of the hybrid assembly approaches, either starting with de novo or reference-guided, have some limitations in handling repetitive sequences as it is more computationally costly and time intensive. Although the hybrid approach was found to outperform individual assembly approaches, optimizing its performance remains a challenge. Also, the usage of parallelization in overlapping and reads alignment for genome assembly is yet to be fully implemented in the hybrid assembly approach. Conclusion We suggest combining multiple repeat identification methods to enhance the accuracy of identifying the repeats as an initial step to the hybrid assembly approach and combining genome indexing with parallelization for better optimization of its performance.
Collapse
Affiliation(s)
| | - Roselina Sallehuddin
- Computer Science, School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Siti Sophiayati Yuhaniz
- Advanced Informatics Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, Kuala Lumpur, Malaysia
| | | | - Yasir Mahmood
- Faculty of Information Technology, The University of Lahore, Lahore, Lahore, Pakistan
| |
Collapse
|