1
|
Mori G, Liuzzi A, Ronda L, Di Palma M, Chegkazi MS, Bui S, Garcia-Maya M, Ragazzini J, Malatesta M, Della Monica E, Rivetti C, Antin PB, Bettati S, Steiner RA, Percudani R. Cysteine Enrichment Mediates Co-Option of Uricase in Reptilian Skin and Transition to Uricotelism. Mol Biol Evol 2023; 40:msad200. [PMID: 37695804 PMCID: PMC10517255 DOI: 10.1093/molbev/msad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Uric acid is the main means of nitrogen excretion in uricotelic vertebrates (birds and reptiles) and the end product of purine catabolism in humans and a few other mammals. While uricase is inactivated in mammals unable to degrade urate, the presence of orthologous genes without inactivating mutations in avian and reptilian genomes is unexplained. Here we show that the Gallus gallus gene we name cysteine-rich urate oxidase (CRUOX) encodes a functional protein representing a unique case of cysteine enrichment in the evolution of vertebrate orthologous genes. CRUOX retains the ability to catalyze urate oxidation to hydrogen peroxide and 5-hydroxyisourate (HIU), albeit with a 100-fold reduced efficiency. However, differently from all uricases hitherto characterized, it can also facilitate urate regeneration from HIU, a catalytic property that we propose depends on its enrichment in cysteine residues. X-ray structural analysis highlights differences in the active site compared to known orthologs and suggests a mechanism for cysteine-mediated self-aggregation under H2O2-oxidative conditions. Cysteine enrichment was concurrent with the transition to uricotelism and a shift in gene expression from the liver to the skin where CRUOX is co-expressed with β-keratins. Therefore, the loss of urate degradation in amniotes has followed opposite evolutionary trajectories: while uricase has been eliminated by pseudogenization in some mammals, it has been repurposed as a redox-sensitive enzyme in the reptilian skin.
Collapse
Affiliation(s)
- Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Anastasia Liuzzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michele Di Palma
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Magda S Chegkazi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Soi Bui
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Mitla Garcia-Maya
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Jasmine Ragazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Emanuele Della Monica
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Parker B Antin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberto A Steiner
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Dembech E, Malatesta M, De Rito C, Mori G, Cavazzini D, Secchi A, Morandin F, Percudani R. Identification of hidden associations among eukaryotic genes through statistical analysis of coevolutionary transitions. Proc Natl Acad Sci U S A 2023; 120:e2218329120. [PMID: 37043529 PMCID: PMC10120013 DOI: 10.1073/pnas.2218329120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/10/2023] [Indexed: 04/13/2023] Open
Abstract
Coevolution at the gene level, as reflected by correlated events of gene loss or gain, can be revealed by phylogenetic profile analysis. The optimal method and metric for comparing phylogenetic profiles, especially in eukaryotic genomes, are not yet established. Here, we describe a procedure suitable for large-scale analysis, which can reveal coevolution based on the assessment of the statistical significance of correlated presence/absence transitions between gene pairs. This metric can identify coevolution in profiles with low overall similarities and is not affected by similarities lacking coevolutionary information. We applied the procedure to a large collection of 60,912 orthologous gene groups (orthogroups) in 1,264 eukaryotic genomes extracted from OrthoDB. We found significant cotransition scores for 7,825 orthogroups associated in 2,401 coevolving modules linking known and unknown genes in protein complexes and biological pathways. To demonstrate the ability of the method to predict hidden gene associations, we validated through experiments the involvement of vertebrate malate synthase-like genes in the conversion of (S)-ureidoglycolate into glyoxylate and urea, the last step of purine catabolism. This identification explains the presence of glyoxylate cycle genes in metazoa and suggests an anaplerotic role of purine degradation in early eukaryotes.
Collapse
Affiliation(s)
- Elena Dembech
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Carlo De Rito
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Andrea Secchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Francesco Morandin
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma43124, Italy
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
| |
Collapse
|
3
|
Yin N, Li X, Liu W, Qi Y, Wu R, Li Z, Ying S, Yang H, Gu Q, Wu Z, Zou N, Duan W, Peng J, Wan C. Jian Pi Shen Shi formula alleviates hyperuricemia and related renal fibrosis in uricase-deficient rats via suppression of the collagen-binding pathway. Int J Rheum Dis 2022; 25:1395-1407. [PMID: 36082436 DOI: 10.1111/1756-185x.14434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
AIM Jian Pi Shen Shi Formula (JPSSF) is a beneficial treatment for hyperuricemia and related tissue damage in the clinical setting. This study was designed to investigate its therapeutic potential and underlying mechanisms in uricase-deficient rats (Uox-/- rats). METHODS Uox-/- rats were used to assess the therapeutic potential of JPSSF on hyperuricemia. Protein extracts from renal tissues of a Uox-/- group and a JPSSF group were analyzed using tandem mass tag labeling quantitative proteomic workflow. Collagen deposition in Uox-/- rat kidneys was analyzed by Masson trichromatic staining. The gene expression associated with collagen-binding-related signaling pathways in the kidneys was further explored using quantitative polymerase chain reaction assay. The protein expressions of collagen 1a1 (col1a1), col6a1, and α-smooth muscle actin were measured by Western blotting and immunohistochemistry. RESULTS JPSSF significantly decreased renal function indices and alleviated renal injuries. The action of JPSSF was manifested by down-regulation of col6a1 and interleukin-1 receptor-associated kinase-like 2, which blocked the binding sites on collagen and further prevented kidney injury. The anti-renal fibrosis effect of JPSSF was confirmed by reducing the collagen deposition and hydroxyproline concentrations. JPSSF treatment also intensely down-regulated the mRNA and protein expressions of col6a1, col1a1, and α-smooth muscle actin, which inhibited the function of the collagen-binding-related signaling pathway. CONCLUSION Our results indicated that JPSSF notably ameliorated hyperuricemia and related renal fibrosis in Uox-/- rats through lowering uric acid and down-regulating the function of the collagen-binding pathway. This suggested that JPSSF is a potential empirical formula for treating hyperuricemia and accompanying renal fibrosis.
Collapse
Affiliation(s)
- Na Yin
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiaosi Li
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Weichao Liu
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yan Qi
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Runfang Wu
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China.,School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Sai Ying
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China.,School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Haihao Yang
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qianlan Gu
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhao Wu
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Nanting Zou
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Weigang Duan
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China.,School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chunping Wan
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
4
|
Indrischek H, Hammer J, Machate A, Hecker N, Kirilenko B, Roscito J, Hans S, Norden C, Brand M, Hiller M. Vision-related convergent gene losses reveal SERPINE3's unknown role in the eye. eLife 2022; 11:77999. [PMID: 35727138 PMCID: PMC9355568 DOI: 10.7554/elife.77999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Despite decades of research, knowledge about the genes that are important for development and function of the mammalian eye and are involved in human eye disorders remains incomplete. During mammalian evolution, mammals that naturally exhibit poor vision or regressive eye phenotypes have independently lost many eye-related genes. This provides an opportunity to predict novel eye-related genes based on specific evolutionary gene loss signatures. Building on these observations, we performed a genome-wide screen across 49 mammals for functionally uncharacterized genes that are preferentially lost in species exhibiting lower visual acuity values. The screen uncovered several genes, including SERPINE3, a putative serine proteinase inhibitor. A detailed investigation of 381 additional mammals revealed that SERPINE3 is independently lost in 18 lineages that typically do not primarily rely on vision, predicting a vision-related function for this gene. To test this, we show that SERPINE3 has the highest expression in eyes of zebrafish and mouse. In the zebrafish retina, serpine3 is expressed in Müller glia cells, a cell type essential for survival and maintenance of the retina. A CRISPR-mediated knockout of serpine3 in zebrafish resulted in alterations in eye shape and defects in retinal layering. Furthermore, two human polymorphisms that are in linkage with SERPINE3 are associated with eye-related traits. Together, these results suggest that SERPINE3 has a role in vertebrate eyes. More generally, by integrating comparative genomics with experiments in model organisms, we show that screens for specific phenotype-associated gene signatures can predict functions of uncharacterized genes.
Collapse
Affiliation(s)
- Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Juliane Hammer
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Juliana Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | | |
Collapse
|
5
|
Blumer M, Brown T, Freitas MB, Destro AL, Oliveira JA, Morales AE, Schell T, Greve C, Pippel M, Jebb D, Hecker N, Ahmed AW, Kirilenko BM, Foote M, Janke A, Lim BK, Hiller M. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. SCIENCE ADVANCES 2022; 8:eabm6494. [PMID: 35333583 PMCID: PMC8956264 DOI: 10.1126/sciadv.abm6494] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 05/06/2023]
Abstract
Vampire bats are the only mammals that feed exclusively on blood. To uncover genomic changes associated with this dietary adaptation, we generated a haplotype-resolved genome of the common vampire bat and screened 27 bat species for genes that were specifically lost in the vampire bat lineage. We found previously unknown gene losses that relate to reduced insulin secretion (FFAR1 and SLC30A8), limited glycogen stores (PPP1R3E), and a unique gastric physiology (CTSE). Other gene losses likely reflect the biased nutrient composition (ERN2 and CTRL) and distinct pathogen diversity of blood (RNASE7) and predict the complete lack of cone-based vision in these strictly nocturnal bats (PDE6H and PDE6C). Notably, REP15 loss likely helped vampire bats adapt to high dietary iron levels by enhancing iron excretion, and the loss of CYP39A1 could have contributed to their exceptional cognitive abilities. These findings enhance our understanding of vampire bat biology and the genomic underpinnings of adaptations to blood feeding.
Collapse
Affiliation(s)
- Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Tom Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Ana Luiza Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Juraci A. Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Ariadna E. Morales
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexis-Walid Ahmed
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Bogdan M. Kirilenko
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Maddy Foote
- Native Bat Conservation Program, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario M1B 5K7, Canada
| | - Axel Janke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Burton K. Lim
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
6
|
Cao G, Xuan X, Zhang R, Hu J, Dong H. Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Front Cardiovasc Med 2021; 8:760140. [PMID: 34805315 PMCID: PMC8602679 DOI: 10.3389/fcvm.2021.760140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the vital role of genetic factors in human diseases have been widely recognized by scholars with the deepening of life science research, accompanied by the rapid development of gene-editing technology. In early years, scientists used homologous recombination technology to establish gene knock-out and gene knock-in animal models, and then appeared the second-generation gene-editing technology zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) that relied on nucleic acid binding proteins and endonucleases and the third-generation gene-editing technology that functioned through protein-nucleic acids complexes-CRISPR/Cas9 system. This holds another promise for refractory diseases and genetic diseases. Cardiovascular disease (CVD) has always been the focus of clinical and basic research because of its high incidence and high disability rate, which seriously affects the long-term survival and quality of life of patients. Because some inherited cardiovascular diseases do not respond well to drug and surgical treatment, researchers are trying to use rapidly developing genetic techniques to develop initial attempts. However, significant obstacles to clinical application of gene therapy still exists, such as insufficient understanding of the nature of cardiovascular disease, limitations of genetic technology, or ethical concerns. This review mainly introduces the types and mechanisms of gene-editing techniques, ethical concerns of gene therapy, the application of gene therapy in atherosclerosis and inheritable cardiovascular diseases, in-stent restenosis, and delivering systems.
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Roscito JG, Subramanian K, Naumann R, Sarov M, Shevchenko A, Bogdanova A, Kurth T, Foerster L, Kreysing M, Hiller M. Recapitulating Evolutionary Divergence in a Single Cis-Regulatory Element Is Sufficient to Cause Expression Changes of the Lens Gene Tdrd7. Mol Biol Evol 2021; 38:380-392. [PMID: 32853335 PMCID: PMC7826196 DOI: 10.1093/molbev/msaa212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mutations in cis-regulatory elements play important roles for phenotypic changes during evolution. Eye degeneration in the blind mole rat (BMR; Nannospalax galili) and other subterranean mammals is significantly associated with widespread divergence of eye regulatory elements, but the effect of these regulatory mutations on eye development and function has not been explored. Here, we investigate the effect of mutations observed in the BMR sequence of a conserved noncoding element upstream of Tdrd7, a pleiotropic gene required for lens development and spermatogenesis. We first show that this conserved element is a transcriptional repressor in lens cells and that the BMR sequence partially lost repressor activity. Next, we recapitulated evolutionary changes in this element by precisely replacing the endogenous regulatory element in a mouse line by the orthologous BMR sequence with CRISPR-Cas9. Strikingly, this repressor replacement caused a more than 2-fold upregulation of Tdrd7 in the developing lens; however, increased mRNA level does not result in a corresponding increase in TDRD7 protein nor an obvious lens phenotype, possibly explained by buffering at the posttranscriptional level. Our results are consistent with eye degeneration in subterranean mammals having a polygenic basis where many small-effect mutations in different eye-regulatory elements collectively contribute to phenotypic differences.
Collapse
Affiliation(s)
- Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Kaushikaram Subramanian
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, TU, Dresden, Germany
| | - Leo Foerster
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany.,Center of Excellence, Physics of Life, Technical University, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| |
Collapse
|
8
|
Sharma V, Hecker N, Walther F, Stuckas H, Hiller M. Convergent Losses of TLR5 Suggest Altered Extracellular Flagellin Detection in Four Mammalian Lineages. Mol Biol Evol 2021; 37:1847-1854. [PMID: 32145026 DOI: 10.1093/molbev/msaa058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role for the innate immune system by detecting pathogen-associated molecular patterns. TLR5 encodes the major extracellular receptor for bacterial flagellin and frequently evolves under positive selection, consistent with coevolutionary arms races between the host and pathogens. Furthermore, TLR5 is inactivated in several vertebrates and a TLR5 stop codon polymorphism is widespread in human populations. Here, we analyzed the genomes of 120 mammals and discovered that TLR5 is convergently lost in four independent lineages, comprising guinea pigs, Yangtze river dolphin, pinnipeds, and pangolins. Validated inactivating mutations, absence of protein-coding transcript expression, and relaxed selection on the TLR5 remnants confirm these losses. PCR analysis further confirmed the loss of TLR5 in the pinniped stem lineage. Finally, we show that TLR11, encoding a second extracellular flagellin receptor, is also absent in these four lineages. Independent losses of TLR5 and TLR11 suggest that a major pathway for detecting flagellated bacteria is not essential for different mammals and predicts an impaired capacity to sense extracellular flagellin.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,CRTD-DFG Center for Regenerative Therapies Dresden, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden; German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Felix Walther
- Senckenberg Natural History Collections Dresden, Senckenberg - Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Heiko Stuckas
- Senckenberg Natural History Collections Dresden, Senckenberg - Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
9
|
Patterns and tempo of PCSK9 pseudogenizations suggest an ancient divergence in mammalian cholesterol homeostasis mechanisms. Genetica 2021; 149:1-19. [PMID: 33515402 PMCID: PMC7929951 DOI: 10.1007/s10709-021-00113-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/04/2021] [Indexed: 01/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a central role in cholesterol homeostasis in humans as a major regulator of LDLR levels. PCSK9 is an intriguing protease in that it does not act by proteolysis but by preventing LDLR recirculation from endosomes to the plasma membrane. This, and the inexistence of any other proteolytic substrate but itself could suggest that PCSK9 is an exquisite example of evolutionary fine-tuning. However, the gene has been lost in several mammalian species, and null alleles are present (albeit at low frequencies) in some human populations without apparently deleterious health effects, raising the possibility that the PCSK9 may have become dispensable in the mammalian lineage. To address this issue, we systematically recovered, assembled, corrected, annotated and analysed publicly available PCSK9 sequences for 420 eutherian species to determine the distribution, frequencies, mechanisms and timing of PCSK9 pseudogenization events, as well as the evolutionary pressures underlying the preservation or loss of the gene. We found a dramatic difference in the patterns of PCSK9 retention and loss between Euarchontoglires—where there is strong pressure for gene preservation—and Laurasiatheria, where multiple independent events have led to PCSK9 loss in most species. These results suggest that there is a fundamental difference in the regulation of cholesterol metabolism between Euarchontoglires and Laurasiatheria, which in turn has important implications for the use of Laurasiatheria species (e.g. pigs) as animal models of human cholesterol-related diseases.
Collapse
|
10
|
Alves LQ, Ruivo R, Fonseca MM, Lopes-Marques M, Ribeiro P, Castro L. PseudoChecker: an integrated online platform for gene inactivation inference. Nucleic Acids Res 2020; 48:W321-W331. [PMID: 32449938 PMCID: PMC7319564 DOI: 10.1093/nar/gkaa408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 01/21/2023] Open
Abstract
The rapid expansion of high-quality genome assemblies, exemplified by ongoing initiatives such as the Genome-10K and i5k, demands novel automated methods to approach comparative genomics. Of these, the study of inactivating mutations in the coding region of genes, or pseudogenization, as a source of evolutionary novelty is mostly overlooked. Thus, to address such evolutionary/genomic events, a systematic, accurate and computationally automated approach is required. Here, we present PseudoChecker, the first integrated online platform for gene inactivation inference. Unlike the few existing methods, our comparative genomics-based approach displays full automation, a built-in graphical user interface and a novel index, PseudoIndex, for an empirical evaluation of the gene coding status. As a multi-platform online service, PseudoChecker simplifies access and usability, allowing a fast identification of disruptive mutations. An analysis of 30 genes previously reported to be eroded in mammals, and 30 viable genes from the same lineages, demonstrated that PseudoChecker was able to correctly infer 97% of loss events and 95% of functional genes, confirming its reliability. PseudoChecker is freely available, without login required, at http://pseudochecker.ciimar.up.pt.
Collapse
Affiliation(s)
- Luís Q Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Raquel Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Miguel M Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Pedro Ribeiro
- CRACS & INESC-TEC Department of Computer Science, FCUP, Porto, 4169-007, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
- Department of Biology, FCUP, Porto, 4169-007, Portugal
| |
Collapse
|
11
|
Yu Y, Zhang N, Dong X, Fan N, Wang L, Xu Y, Chen H, Duan W. Uricase-deficient rat is generated with CRISPR/Cas9 technique. PeerJ 2020; 8:e8971. [PMID: 32368418 PMCID: PMC7192158 DOI: 10.7717/peerj.8971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
Urate oxidase (uricase, Uox) is a big obstacle for scientists to establish stable animal models for studying hyperuricemia and associated disorders. Due to the low survival rate of uricase-deficient mice, we generated a Uox-knockout model animal from Sprague Dawley (SD) rats using the CRISPR/Cas9 technique by deleting exons 2 to 4 of the Uox gene. The uricase-deficient rats were named "Kunming-DY rats", and were apparently healthy with more than a 95% survival up to one year. The male rats' serum uric acid (SUA) increased to 48.3 ± 19.1 µg/ml, significantly higher than those of wild-type rats. Some indexes of the blood fat like total triglyceride, low density lipoprotein, and renal function indexes including blood urea nitrogen and serum creatinine were significantly different from those of wild-type rats, however, all the indexes were close to or in normal ranges. Histological renal changes including mild glomerular/tubular lesions were observed in these uricase-deficient rats. Thus, "Kunming-DY rats" with stable uricase-deficiency were successfully established and are an alternative model animal to study hyperuricemia and associated diseases mimicking human conditions.
Collapse
Affiliation(s)
- Yun Yu
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Nan Zhang
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Xianxiang Dong
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Nan Fan
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Lei Wang
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Yuhui Xu
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Huan Chen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Weigang Duan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|