1
|
Barcena AJR, Perez JVD, Bernardino MR, San Valentin EMD, Damasco JA, Klusman C, Martin B, Court KA, Godin B, Canlas G, Fowlkes N, Bouchard RR, Cheng J, Huang SY, Melancon MP. Controlled Delivery of Rosuvastatin or Rapamycin through Electrospun Bismuth Nanoparticle-Infused Perivascular Wraps Promotes Arteriovenous Fistula Maturation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33159-33168. [PMID: 38912610 PMCID: PMC11725229 DOI: 10.1021/acsami.4c06042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
In the context of arteriovenous fistula (AVF) failure, local delivery enables the release of higher concentrations of drugs that can suppress neointimal hyperplasia (NIH) while reducing systemic adverse effects. However, the radiolucency of polymeric delivery systems hinders long-term in vivo surveillance of safety and efficacy. We hypothesize that using a radiopaque perivascular wrap to deliver anti-NIH drugs could enhance AVF maturation. Through electrospinning, we fabricated multifunctional perivascular polycaprolactone (PCL) wraps loaded with bismuth nanoparticles (BiNPs) for enhanced radiologic visibility and drugs that can attenuate NIH─rosuvastatin (Rosu) and rapamycin (Rapa). The following groups were tested on the AVFs of a total of 24 Sprague-Dawley rats with induced chronic kidney disease: control (i.e., without wrap), PCL-Bi (i.e., wrap with BiNPs), PCL-Bi-Rosu, and PCL-Bi-Rapa. We found that BiNPs significantly improved the wraps' radiopacity without affecting biocompatibility. The drug release profiles of Rosu (hydrophilic drug) and Rapa (hydrophobic drug) differed significantly. Rosu demonstrated a burst release followed by gradual tapering over 8 weeks, while Rapa demonstrated a gradual release similar to that of the hydrophobic BiNPs. In vivo investigations revealed that both drug-loaded wraps can reduce vascular stenosis on ultrasonography and histomorphometry, as well as reduce [18F]Fluorodeoxyglucose uptake on positron emission tomography. Immunohistochemical studies revealed that PCL-Bi-Rosu primarily attenuated endothelial dysfunction and hypoxia in the neointimal layer, while PCL-Bi-Rapa modulated hypoxia, inflammation, and cellular proliferation across the whole outflow vein. In summary, the controlled delivery of drugs with different properties and mechanisms of action against NIH through a multifunctional, radiopaque perivascular wrap can improve imaging and histologic parameters of AVF maturation.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, USA
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, USA
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Marvin R. Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Carleigh Klusman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, USA
- Baylor College of Medicine, Houston, USA
| | - Benjamin Martin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, USA
- Baylor College of Medicine, Houston, USA
| | - Karem A. Court
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, USA
| | - Gino Canlas
- Department of Chemistry, Lamar University, Beaumont, USA
| | - Natalie Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Richard R. Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, USA
| | - Steven Y. Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, USA
| |
Collapse
|
2
|
Applewhite B, Andreopoulos F, Vazquez-Padron RI. Periadventitial biomaterials to improve arteriovenous fistula and graft outcomes. J Vasc Access 2024; 25:713-727. [PMID: 36349745 DOI: 10.1177/11297298221135621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Periadventitial biomaterials have been employed for nearly three decades to promote adaptive venous remodeling following hemodialysis vascular access creation in preclinical models and clinical trials. These systems are predicated on the combination of scaffolds, hydrogels, and/or particles with therapeutics (small molecules, proteins, genes, and cells) to prevent venous stenosis and subsequent maturation failure. Periadventitial biomaterial therapies have evolved from simple drug delivery vehicles for traditional drugs to more thoughtful designs tailored to the pathophysiology of access failure. The emergence of tissue engineering strategies and gene therapies are another exciting new direction. Despite favorable results in experimental and preclinical studies, no periadventitial therapy has been clinically approved to improve vascular access outcomes. After conducting an exhaustive review of the literature, we identify the seminal studies and clinical trials that utilize periadventitial biomaterials and discuss the key features of each biomaterial format and their respective shortcomings as they pertain to access maturation. This review provides a foundation from which clinicians, surgeons, biologists, and engineers can refer to and will hopefully inspire thoughtful, translatable treatments to finally address access failure.
Collapse
Affiliation(s)
- Brandon Applewhite
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, USA
| | - Fotios Andreopoulos
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, USA
| | - Roberto I Vazquez-Padron
- Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, USA
| |
Collapse
|
3
|
Barcena AJR, Perez JVD, Bernardino MR, Damasco JA, Cortes A, Del Mundo HC, San Valentin EMD, Klusman C, Canlas GM, Heralde FM, Avritscher R, Fowlkes N, Bouchard RR, Cheng J, Huang SY, Melancon MP. Bioresorbable Mesenchymal Stem Cell-Loaded Electrospun Polymeric Scaffold Inhibits Neointimal Hyperplasia Following Arteriovenous Fistula Formation in a Rat Model of Chronic Kidney Disease. Adv Healthc Mater 2023; 12:e2300960. [PMID: 37395729 PMCID: PMC10592251 DOI: 10.1002/adhm.202300960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Bioresorbable perivascular scaffolds loaded with antiproliferative agents have been shown to enhance arteriovenous fistula (AVF) maturation by inhibiting neointimal hyperplasia (NIH). These scaffolds, which can mimic the three-dimensional architecture of the vascular extracellular matrix, also have an untapped potential for the local delivery of cell therapies against NIH. Hence, an electrospun perivascular scaffold from polycaprolactone (PCL) to support mesenchymal stem cell (MSC) attachment and gradual elution at the AVF's outflow vein is fabricated. Chronic kidney disease (CKD) in Sprague-Dawley rats is induced by performing 5/6th nephrectomy, then AVFs for scaffold application are created. The following groups of CKD rats are compared: no perivascular scaffold (i.e., control), PCL alone, and PCL+MSC scaffold. PCL and PCL+MSC significantly improve ultrasonographic (i.e., luminal diameter, wall-to-lumen ratio, and flow rate) and histologic (i.e., neointima-to-lumen ratio, neointima-to-media ratio) parameters compared to control, with PCL+MSC demonstrating further improvement in these parameters compared to PCL alone. Moreover, only PCL+MSC significantly reduces 18 F-fluorodeoxyglucose uptake on positron emission tomography. These findings suggest that adding MSCs promotes greater luminal expansion and potentially reduces the inflammatory process underlying NIH. The results demonstrate the utility of mechanical support loaded with MSCs at the outflow vein immediately after AVF formation to support maturation by minimizing NIH.
Collapse
Affiliation(s)
- Allan John R Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- College of Medicine, University of the Philippines Manila, Manila NCR, 1000, Philippines
| | - Joy Vanessa D Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- College of Medicine, University of the Philippines Manila, Manila NCR, 1000, Philippines
| | - Marvin R Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jossana A Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Andrea Cortes
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huckie C Del Mundo
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Erin Marie D San Valentin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carleigh Klusman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- School of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gino Martin Canlas
- Department of Chemistry, Lamar University, P.O. Box 10009, Beaumont, TX, 77710, USA
| | - Francisco M Heralde
- College of Medicine, University of the Philippines Manila, Manila NCR, 1000, Philippines
| | - Rony Avritscher
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Richard R Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven Y Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Cahalane AM, Irani Z, Cui J. Beyond the Veins: Uncovering the History and Advancements of Vascular Access. KIDNEY360 2023; 4:1150-1154. [PMID: 37322593 PMCID: PMC10476679 DOI: 10.34067/kid.0000000000000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Alexis M. Cahalane
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Zubin Irani
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jie Cui
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Applewhite B, Gupta A, Wei Y, Yang X, Martinez L, Rojas MG, Andreopoulos F, Vazquez-Padron RI. Periadventitial β-aminopropionitrile-loaded nanofibers reduce fibrosis and improve arteriovenous fistula remodeling in rats. Front Cardiovasc Med 2023; 10:1124106. [PMID: 36926045 PMCID: PMC10011136 DOI: 10.3389/fcvm.2023.1124106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Background Arteriovenous fistula (AVF) postoperative stenosis is a persistent healthcare problem for hemodialysis patients. We have previously demonstrated that fibrotic remodeling contributes to AVF non-maturation and lysyl oxidase (LOX) is upregulated in failed AVFs compared to matured. Herein, we developed a nanofiber scaffold for the periadventitial delivery of β-aminopropionitrile (BAPN) to determine whether unidirectional periadventitial LOX inhibition is a suitable strategy to promote adaptive AVF remodeling in a rat model of AVF remodeling. Methods Bilayer poly (lactic acid) ([PLA)-]- poly (lactic-co-glycolic acid) ([PLGA)] scaffolds were fabricated with using a two-step electrospinning process to confer directionality. BAPN-loaded and vehicle control scaffolds were wrapped around the venous limb of a rat femoral-epigastric AVF during surgery. AVF patency and lumen diameter were followed monitored using Doppler ultrasound surveillance and flow was measured before euthanasia. AVFs were harvested after 21 days for histomorphometry and immunohistochemistry. AVF compliance was measured using pressure myography. RNA from AVF veins was sequenced to analyze changes in gene expression due to LOX inhibition. Results Bilayer periadventitial nanofiber scaffolds extended BAPN release compared to the monolayer design (p < 0.005) and only released BAPN in one direction. Periadventitial LOX inhibition led to significant increases in AVF dilation and flow after 21 days. Histologically, BAPN trended toward increased lumen and significantly reduced fibrosis compared to control scaffolds (p < 0.01). Periadventitial BAPN reduced downregulated markers associated with myofibroblast differentiation including SMA, FSP-1, LOX, and TGF-β while increasing the contractile marker MYH11. RNA sequencing revealed differential expression of matrisome genes. Conclusion Periadventitial BAPN treatment reduces fibrosis and promotes AVF compliance. Interestingly, the inhibition of LOX leads to increased accumulation of contractile VSMC while reducing myofibroblast-like cells. Periadventitial LOX inhibition alters the matrisome to improve AVF vascular remodeling.
Collapse
Affiliation(s)
- Brandon Applewhite
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Aavni Gupta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yuntao Wei
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiaofeng Yang
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Miguel G. Rojas
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Fotios Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | | |
Collapse
|
6
|
Parikh KS, Josyula A, Inoue T, Fukunishi T, Zhang H, Omiadze R, Shi R, Yazdi Y, Hanes J, Ensign LM, Hibino N. Nanofiber-coated, tacrolimus-eluting sutures inhibit post-operative neointimal hyperplasia in rats. J Control Release 2023; 353:96-104. [PMID: 36375620 PMCID: PMC9892275 DOI: 10.1016/j.jconrel.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
Post-operative complications of vascular anastomosis procedures remain a significant clinical challenge and health burden globally. Each year, millions of anastomosis procedures connect arteries and/or veins in vascular bypass, vascular access, organ transplant, and reconstructive surgeries, generally via suturing. Dysfunction of these anastomoses, primarily due to neointimal hyperplasia and the resulting narrowing of the vessel lumen, results in failure rates of up to 50% and billions of dollars in costs to the healthcare system. Non-absorbable sutures are the gold standard for vessel anastomosis; however, damage from the surgical procedure and closure itself causes an inflammatory cascade that leads to neointimal hyperplasia at the anastomosis site. Here, we demonstrate the development of a novel, scalable manufacturing system for fabrication of high strength sutures with nanofiber-based coatings composed of generally regarded as safe (GRAS) polymers and either sirolimus, tacrolimus, everolimus, or pimecrolimus. These sutures provided sufficient tensile strength for maintenance of the vascular anastomosis and sustained drug delivery at the site of the anastomosis. Tacrolimus-eluting sutures provided a significant reduction in neointimal hyperplasia in rats over a period of 14 days with similar vessel endothelialization in comparison to conventional nylon sutures. In contrast, systemically delivered tacrolimus caused significant weight loss and mortality due to toxicity. Thus, drug-eluting sutures provide a promising platform to improve the outcomes of vascular interventions without modifying the clinical workflow and without the risks associated with systemic drug delivery.
Collapse
Affiliation(s)
- Kunal S Parikh
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Center for Bioengineering Innovation & Design, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aditya Josyula
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Takahiro Inoue
- Department of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Takuma Fukunishi
- Department of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Huaitao Zhang
- Department of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Revaz Omiadze
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Richard Shi
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Youseph Yazdi
- Center for Bioengineering Innovation & Design, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Laura M Ensign
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231, USA; Department of Gynecology and Obstetrics and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Narutoshi Hibino
- Department of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Cardiac Surgery, University of Chicago/Advocate Children's Hospital, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Polkinghorne KR, Viecelli AK. Vascular Access for Hemodialysis. EVIDENCE‐BASED NEPHROLOGY 2022:66-90. [DOI: 10.1002/9781119105954.ch44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
8
|
Barcena AJR, Perez JVD, Liu O, Mu A, Heralde FM, Huang SY, Melancon MP. Localized Perivascular Therapeutic Approaches to Inhibit Venous Neointimal Hyperplasia in Arteriovenous Fistula Access for Hemodialysis Use. Biomolecules 2022; 12:biom12101367. [PMID: 36291576 PMCID: PMC9599524 DOI: 10.3390/biom12101367] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/14/2023] Open
Abstract
An arteriovenous fistula (AVF) is the preferred vascular access for chronic hemodialysis, but high failure rates restrict its use. Optimizing patients' perioperative status and the surgical technique, among other methods for preventing primary AVF failure, continue to fall short in lowering failure rates in clinical practice. One of the predominant causes of AVF failure is neointimal hyperplasia (NIH), a process that results from the synergistic effects of inflammation, hypoxia, and hemodynamic shear stress on vascular tissue. Although several systemic therapies have aimed at suppressing NIH, none has shown a clear benefit towards this goal. Localized therapeutic approaches may improve rates of AVF maturation by providing direct structural and functional support to the maturating fistula, as well as by delivering higher doses of pharmacologic agents while avoiding the adverse effects associated with systemic administration of therapeutic agents. Novel materials-such as polymeric scaffolds and nanoparticles-have enabled the development of different perivascular therapies, such as supportive mechanical devices, targeted drug delivery, and cell-based therapeutics. In this review, we summarize various perivascular therapeutic approaches, available data on their effectiveness, and the outlook for localized therapies targeting NIH in the setting of AVF for hemodialysis use. Highlights: Most systemic therapies do not improve AVF patency outcomes; therefore, localized therapeutic approaches may be beneficial. Locally delivered drugs and medical devices may improve AVF patency outcomes by providing biological and mechanical support. Cell-based therapies have shown promise in suppressing NIH by delivering a more extensive array of bioactive substances in response to the biochemical changes in the AVF microenvironment.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Olivia Liu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Amy Mu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Francisco M. Heralde
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Steven Y. Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
9
|
Kingsmore D, Jackson A, Stevenson K. A critical review of surgical strategies to minimise venous stenosis in arteriovenous grafts. J Vasc Access 2021; 24:11297298211060944. [PMID: 34847754 DOI: 10.1177/11297298211060944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is inevitable that complications arising from surgical procedures are ascribed to surgical technique, and this applies to venous stenosis (VS) in arteriovenous grafts. However, despite a wide range of cellular studies, computer modelling, observational series and clinical trials, there remains uncertainty on whether surgical technique contributes to VS. This article reviews evidence from basic science, fluid dynamics and clinical data to try and rationalise the main surgical options to modify the occurrence of venous stenosis. There is sufficient data from diverse sources to make recommendations on clinical practice (size of target vein, shape of anastomosis, angle of approach, distance from venous needling, trauma to the target vein) whilst at the same time this emphasises the need to carefully report the practical aspects of surgical technique in future clinical trials.
Collapse
Affiliation(s)
- David Kingsmore
- Department of Vascular Surgery, Queen Elizabeth University Hospital Trust, Glasgow, UK
- Department of Renal Transplantation, Queen Elizabeth University Hospital Trust, Glasgow, UK
| | - Andrew Jackson
- Department of Renal Transplantation, Queen Elizabeth University Hospital Trust, Glasgow, UK
| | - Karen Stevenson
- Department of Renal Transplantation, Queen Elizabeth University Hospital Trust, Glasgow, UK
| |
Collapse
|
10
|
Lee J, Jang EH, Kim JH, Park S, Kang Y, Park S, Lee K, Kim JH, Youn YN, Ryu W. Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery. J Control Release 2021; 340:125-135. [PMID: 34688718 DOI: 10.1016/j.jconrel.2021.10.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022]
Abstract
Various perivascular drug delivery techniques have been demonstrated for localized post-treatment of intimal hyperplasia: a vascular inflammatory response caused by endothelial damages. Although most perivascular devices have focused on controlling the delivery duration of anti-proliferation drug, the confined and unidirectional delivery of the drug to the target tissue has become increasingly important. In addition, careful attention should also be paid to the luminal stability and the adequate exchange of vascular protein or cell between the blood vessel and extravascular tissue to avoid any side effect from the long-term application of any perivascular device. Here, a highly flexible and porous silk fibroin microneedle wrap (Silk MN wrap) is proposed to directly inject antiproliferative drug to the anastomosis sites while ensuring sufficient vascular exchanges. Drug-embedded silk MNs were transfer-molded on a highly flexible and porous silk wrap. The enhanced cell compatibility, molecular permeability, and flexibility of silk MN wrap guaranteed the structural integrity of blood vessels. Silk wrap successfully supported the silk MNs and induced multiple MN penetration to the target tissue. Over 28 days, silk MN wrap significantly inhibited intimal hyperplasia with a 62.1% reduction in neointimal formation.
Collapse
Affiliation(s)
- JiYong Lee
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea
| | - Jae Ho Kim
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - SeungHyun Park
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Yosup Kang
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Sanghyun Park
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - KangJu Lee
- Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, South Korea; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90005, USA
| | - Jung-Hwan Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea.
| | - WonHyoung Ryu
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea.
| |
Collapse
|
11
|
Vazquez-Padron RI, Martinez L, Duque JC, Salman LH, Tabbara M. The anatomical sources of neointimal cells in the arteriovenous fistula. J Vasc Access 2021; 24:99-106. [PMID: 33960241 PMCID: PMC8958841 DOI: 10.1177/11297298211011875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neointimal cells are an elusive population with ambiguous origins, functions, and states of differentiation. Expansion of the venous intima in arteriovenous fistula (AVF) is one of the most prominent remodeling processes in the wall after access creation. However, most of the current knowledge about neointimal cells in AVFs comes from extrapolations from the arterial neointima in non-AVF systems. Understanding the origin of neointimal cells in fistulas may have important implications for the design and effective delivery of therapies aimed to decrease intimal hyperplasia (IH). In addition, a broader knowledge of cellular dynamics during postoperative remodeling of the AVF may help clarify other transformation processes in the wall that combined with IH determine the successful remodeling or failure of the access. In this review, we discuss the possible anatomical sources of neointimal cells in AVFs and their relative contribution to intimal expansion.
Collapse
Affiliation(s)
- Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan C Duque
- Katz Family Division of Nephrology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, NY, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
12
|
Brahmbhatt AN, Misra S. Stem Cell Delivery for the Treatment of Arteriovenous Fistula Failure. STEM CELL THERAPY FOR VASCULAR DISEASES 2021:281-297. [DOI: 10.1007/978-3-030-56954-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
13
|
Lawson JH, Niklason LE, Roy-Chaudhury P. Challenges and novel therapies for vascular access in haemodialysis. Nat Rev Nephrol 2020; 16:586-602. [PMID: 32839580 PMCID: PMC8108319 DOI: 10.1038/s41581-020-0333-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Advances in standards of care have extended the life expectancy of patients with kidney failure. However, options for chronic vascular access for haemodialysis - an essential part of kidney replacement therapy - have remained unchanged for decades. The high morbidity and mortality associated with current vascular access complications highlights an unmet clinical need for novel techniques in vascular access and is driving innovation in vascular access care. The development of devices, biological approaches and novel access techniques has led to new approaches to controlling fistula geometry and manipulating the underlying cellular and molecular pathways of the vascular endothelium, and influencing fistula maturation and formation through the use of external mechanical methods. Innovations in arteriovenous graft materials range from small modifications to the graft lumen to the creation of completely novel bioengineered grafts. Steps have even been taken to create new devices for the treatment of patients with central vein stenosis. However, these emerging therapies face difficult hurdles, and truly creative approaches to vascular access need resources that include well-designed clinical trials, frequent interaction with regulators, interventionalist education and sufficient funding. In addition, the heterogeneity of patients with kidney failure suggests it is unlikely that a 'one-size-fits-all' approach for effective vascular access will be feasible in the current environment.
Collapse
Affiliation(s)
- Jeffrey H Lawson
- Department of Surgery, Duke University, Durham, NC, USA.
- Humacyte, Inc., Durham, NC, USA.
| | - Laura E Niklason
- Humacyte, Inc., Durham, NC, USA
- School of Engineering & Applied Science, Yale University, New Haven, CT, USA
| | - Prabir Roy-Chaudhury
- University of North Carolina Kidney Center, Chapel Hill, NC, USA
- WG (Bill) Hefner VA Medical Center, Salisbury, NC, USA
| |
Collapse
|
14
|
Matsubara Y, Kiwan G, Fereydooni A, Langford J, Dardik A. Distinct subsets of T cells and macrophages impact venous remodeling during arteriovenous fistula maturation. JVS Vasc Sci 2020; 1:207-218. [PMID: 33748787 PMCID: PMC7971420 DOI: 10.1016/j.jvssci.2020.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients with end-stage renal failure depend on hemodialysis indefinitely without renal transplantation, requiring a long-term patent vascular access. While the arteriovenous fistula (AVF) remains the preferred vascular access for hemodialysis because of its longer patency and fewer complications compared with other vascular accesses, the primary patency of AVF is only 50-60%, presenting a clinical need for improvement. AVF mature by developing a thickened vascular wall and increased diameter to adapt to arterial blood pressure and flow volume. Inflammation plays a critical role during vascular remodeling and fistula maturation; increased shear stress triggers infiltration of T-cells and macrophages that initiate inflammation, with involvement of several different subsets of T-cells and macrophages. We review the literature describing distinct roles of the various subsets of T-cells and macrophages during vascular remodeling. Immunosuppression with sirolimus or prednisolone reduces neointimal hyperplasia during AVF maturation, suggesting novel approaches to enhance vascular remodeling. However, M2 macrophages and CD4+ T-cells play essential roles during AVF maturation, suggesting that total immunosuppression may suppress adaptive vascular remodeling. Therefore it is likely that regulation of inflammation during fistula maturation will require a balanced approach to coordinate the various inflammatory cell subsets. Advances in immunosuppressive drug development and delivery systems may allow for more targeted regulation of inflammation to improve vascular remodeling and enhance AVF maturation.
Collapse
Affiliation(s)
- Yutaka Matsubara
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT.,Department of Surgery and Sciences, Kyushu University, Fukuoka, Japan
| | - Gathe Kiwan
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - John Langford
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT.,Division of Vascular and Endovascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT
| |
Collapse
|
15
|
DeVita MV, Khine SK, Shivarov H. Novel Approaches to Arteriovenous Access Creation, Maturation, Suitability, and Durability for Dialysis. Kidney Int Rep 2020; 5:769-778. [PMID: 32518859 PMCID: PMC7270716 DOI: 10.1016/j.ekir.2020.02.1024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022] Open
Abstract
Since the arteriovenous fistula (AVF) was first conceived over 50 years ago, the goal to create a vascular conduit with predictable and reproducible maturation and durability continues to elude caregivers. Recently, however, advances in the understanding of vascular biology and new technologies now provides us with some optimism; we are moving toward a viable solution. A quickly maturing, sustainable, and durable arteriovenous access may soon be attainable. This review will discuss these advances. There are novel approaches to AVF creation and devices to enhance maturation, advances in arteriovenous graft material(s), and devices to safely prolong the use of tunneled dialysis catheters. Although hemodialysis (HD) access remains a complex problem, these innovations may lead the way to optimizing the care and the quality of life of those patients who have no choice but to proceed with HD.
Collapse
Affiliation(s)
- Maria V. DeVita
- Division of Nephrology, Lenox Hill Hospital, Northwell Health, Zucker School of Medicine, New York, New York, USA
| | - San Kyaw Khine
- Division of Nephrology, Lenox Hill Hospital, Northwell Health, Zucker School of Medicine, New York, New York, USA
| | - Hristo Shivarov
- Division of Nephrology, Lenox Hill Hospital, Northwell Health, Zucker School of Medicine, New York, New York, USA
| |
Collapse
|
16
|
Hegde AS, Kshirsagar AV, Roy-Chaudhury P. Dialysis Access: At the Intersection of Policy, Innovation, and Clinical Care. Adv Chronic Kidney Dis 2020; 27:263-267. [PMID: 32891311 DOI: 10.1053/j.ackd.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 11/11/2022]
Abstract
The Advancing American Kidney Health executive order aims to reduce the incidence of end-stage kidney disease, promote home dialysis therapies, increase the number of kidney transplants, and encourage innovation in new technologies, evidence-based practice, and early detection of kidney disease. Improvements in dialysis access care are essential to the success and expansion of this program, and to being able to provide high-quality, cost-efficient care to this patient population. Specifically, the need for expanded access to home dialysis will require surgeons and interventionalists to become proficient and trained in peritoneal dialysis catheter placement and for the referral process to be streamlined to accommodate the increased interest in this modality. In addition, new technologies, namely percutaneous fistula creation, bioengineered vessels, and a variety of interventions to reduce arteriovenous stenosis, will hopefully allow for timely and durable vascular access options that will support implementation of the executive order.
Collapse
|
17
|
Lee K, Goudie MJ, Tebon P, Sun W, Luo Z, Lee J, Zhang S, Fetah K, Kim HJ, Xue Y, Darabi MA, Ahadian S, Sarikhani E, Ryu W, Gu Z, Weiss PS, Dokmeci MR, Ashammakhi N, Khademhosseini A. Non-transdermal microneedles for advanced drug delivery. Adv Drug Deliv Rev 2019; 165-166:41-59. [PMID: 31837356 PMCID: PMC7295684 DOI: 10.1016/j.addr.2019.11.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Microneedles (MNs) have been used to deliver drugs for over two decades. These platforms have been proven to increase transdermal drug delivery efficiency dramatically by penetrating restrictive tissue barriers in a minimally invasive manner. While much of the early development of MNs focused on transdermal drug delivery, this technology can be applied to a variety of other non-transdermal biomedical applications. Several variations, such as multi-layer or hollow MNs, have been developed to cater to the needs of specific applications. The heterogeneity in the design of MNs has demanded similar variety in their fabrication methods; the most common methods include micromolding and drawing lithography. Numerous materials have been explored for MN fabrication which range from biocompatible ceramics and metals to natural and synthetic biodegradable polymers. Recent advances in MN engineering have diversified MNs to include unique shapes, materials, and mechanical properties that can be tailored for organ-specific applications. In this review, we discuss the design and creation of modern MNs that aim to surpass the biological barriers of non-transdermal drug delivery in ocular, vascular, oral, and mucosal tissue.
Collapse
Affiliation(s)
- KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus J Goudie
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyton Tebon
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhimin Luo
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiming Zhang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kirsten Fetah
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yumeng Xue
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mohammad Ali Darabi
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Einollah Sarikhani
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, South Korea
| | - Zhen Gu
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Paul S Weiss
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet R Dokmeci
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nureddin Ashammakhi
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Ali Khademhosseini
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA; Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Gorecka J, Fereydooni A, Gonzalez L, Lee SR, Liu S, Ono S, Xu J, Liu J, Taniguchi R, Matsubara Y, Gao X, Gao M, Langford J, Yatsula B, Dardik A. Molecular Targets for Improving Arteriovenous Fistula Maturation and Patency. VASCULAR INVESTIGATION AND THERAPY 2019; 2:33-41. [PMID: 31608322 DOI: 10.4103/vit.vit_9_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The increasing prevalence of chronic and end-stage renal disease creates an increased need for reliable vascular access, and although arteriovenous fistulae (AVF) are the preferred mode of hemodialysis access, 60% fail to mature and only 50% remain patent at one year. Fistulae mature by diameter expansion and wall thickening; this outward remodeling of the venous wall in the fistula environment relies on a delicate balance of extracellular matrix (ECM) remodeling, inflammation, growth factor secretion, and cell adhesion molecule upregulation in the venous wall. AVF failure occurs via two distinct mechanisms with early failure secondary to lack of outward remodeling, that is insufficient diameter expansion or wall thickening, whereas late failure occurs with excessive wall thickening due to neointimal hyperplasia (NIH) and insufficient diameter expansion in a previously functional fistula. In recent years, the molecular basis of AVF maturation and failure are becoming understood in order to develop potential therapeutic targets to aide maturation and prevent access loss. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors, along with their ligands, ephrins, determine vascular identity and are critical for vascular remodeling in the embryo. Manipulation of Eph receptor signaling in adults, as well as downstream pathways, is a potential treatment strategy to improve the rates of AVF maturation and patency. This review examines our current understanding of molecular changes occurring following fistula creation, factors predictive of fistula success, and potential areas of intervention to decrease AVF failure.
Collapse
Affiliation(s)
- Jolanta Gorecka
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Shin Rong Lee
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Jianbiao Xu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Jia Liu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA.,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Yutaka Matsubara
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Xixiang Gao
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA.,Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mingjie Gao
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA.,Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - John Langford
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA.,Section of Vascular and Endovascular Surgery, VA Connecticut Healthcare System, West Haven, USA
| |
Collapse
|
19
|
Guo X, Fereydooni A, Isaji T, Gorecka J, Liu S, Hu H, Ono S, Alozie M, Lee SR, Taniguchi R, Yatsula B, Nassiri N, Zhang L, Dardik A. Inhibition of the Akt1-mTORC1 Axis Alters Venous Remodeling to Improve Arteriovenous Fistula Patency. Sci Rep 2019; 9:11046. [PMID: 31363142 PMCID: PMC6667481 DOI: 10.1038/s41598-019-47542-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/19/2019] [Indexed: 01/06/2023] Open
Abstract
Arteriovenous fistulae (AVF) are the most common access created for hemodialysis, but up to 60% do not sustain dialysis within a year, suggesting a need to improve AVF maturation and patency. In a mouse AVF model, Akt1 regulates fistula wall thickness and diameter. We hypothesized that inhibition of the Akt1-mTORC1 axis alters venous remodeling to improve AVF patency. Daily intraperitoneal injections of rapamycin reduced AVF wall thickness with no change in diameter. Rapamycin decreased smooth muscle cell (SMC) and macrophage proliferation; rapamycin also reduced both M1 and M2 type macrophages. AVF in mice treated with rapamycin had reduced Akt1 and mTORC1 but not mTORC2 phosphorylation. Depletion of macrophages with clodronate-containing liposomes was also associated with reduced AVF wall thickness and both M1- and M2-type macrophages; however, AVF patency was reduced. Rapamycin was associated with improved long-term patency, enhanced early AVF remodeling and sustained reduction of SMC proliferation. These results suggest that rapamycin improves AVF patency by reducing early inflammation and wall thickening while attenuating the Akt1-mTORC1 signaling pathway in SMC and macrophages. Macrophages are associated with AVF wall thickening and M2-type macrophages may play a mechanistic role in AVF maturation. Rapamycin is a potential translational strategy to improve AVF patency.
Collapse
Affiliation(s)
- Xiangjiang Guo
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Toshihiko Isaji
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jolanta Gorecka
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Haidi Hu
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Michelle Alozie
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Shin Rong Lee
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Naiem Nassiri
- Division of Vascular and Endovascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Lan Zhang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA. .,Division of Vascular and Endovascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Al Adas Z, Haddad G, Patel BC, Kumbar L, Al-Abid B, Balraj P, Kabbani LS. Post-anastomotic venous stenosis after Optiflow deployment: An unexpected outcome. SAGE Open Med Case Rep 2019; 7:2050313X19851002. [PMID: 31210936 PMCID: PMC6545635 DOI: 10.1177/2050313x19851002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
Arteriovenous fistula failure represents a major cause of hospitalization and a significant economic burden for end-stage renal disease patients on hemodialysis. The Optiflow (Bioconnect Systems Inc., Ambler, PA) is a new device developed to improve arteriovenous fistula outcomes and decrease failure rates by reducing the risk of stenosis and improving maturation rates. This case report describes a 50-year-old male with hypertensive nephropathy on dialysis who had multiple arteriovenous fistula failures in the past. He was scheduled to undergo brachiocephalic fistula construction using the Optiflow device. After 8 months of use, the new fistula developed a peri-anastomotic venous stenosis, just distal to the Optiflow device. To our knowledge, this is the first time such a complication has been reported.
Collapse
Affiliation(s)
- Ziad Al Adas
- Department of Vascular Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - George Haddad
- Department of Vascular Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Bhavin C Patel
- Department of Nephrology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Baha Al-Abid
- Department of Nephrology, Henry Ford Hospital, Detroit, MI, USA
| | - Praveen Balraj
- Department of Vascular Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Loay S Kabbani
- Department of Vascular Surgery, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
21
|
Gameiro J, Ibeas J. Factors affecting arteriovenous fistula dysfunction: A narrative review. J Vasc Access 2019; 21:134-147. [PMID: 31113281 DOI: 10.1177/1129729819845562] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular access dysfunction is one of the most important causes of morbidity and mortality in haemodialysis patients, contributing to up to one third of hospitalisations and accounting for a significant amount of the health care costs of these patients. In the past decades, significant scientific advances in understanding mechanisms of arteriovenous fistula maturation and failure have contributed to an increase in the amount of research into techniques for creation and strategies for arteriovenous fistula dysfunction prevention and treatment, in order to improve patient care and outcomes. The aim of this review is to describe the pathogenesis of vascular access failure and provide a comprehensive analysis of the associated risk factors and causes of vascular access failure, in order to interpret possible future therapeutic approaches. Arteriovenous fistula failure is a multifactorial process resulting from the combination of upstream and downstream events with consequent venous neo-intimal hyperplasia and/or inadequate outward remodelling. Inflammation appears to be central in the biology of arteriovenous fistula dysfunction but important triggers still need to be revealed. Given the significant association of arteriovenous fistula failure and patient's prognosis, it is therefore imperative to further research in this area in order to improve prevention, surveillance and treatment, and ultimately patient care and outcomes.
Collapse
Affiliation(s)
- Joana Gameiro
- Division of Nephrology and Renal Transplantation, Department of Medicine, Centro Hospitalar Lisboa Norte, EPE, Lisboa, Portugal
| | - Jose Ibeas
- Nephrology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
22
|
Agarwal AK, Haddad NJ, Vachharajani TJ, Asif A. Innovations in vascular access for hemodialysis. Kidney Int 2019; 95:1053-1063. [DOI: 10.1016/j.kint.2018.11.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
|
23
|
Sato T, Otsuka Y, Kikkawa Y, Iwasaki Y, Fukagawa M. Semiquantitative analysis of virtual histology derived from intravascular ultrasound images at vascular access stenosis. J Vasc Access 2019; 20:55-59. [PMID: 31032725 DOI: 10.1177/1129729818769030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Vascular access failure, such as recurrent stenosis and thrombosis, is a major concern in patients with end-stage kidney disease. Neointimal hyperplasia development at the anastomosis site of outflow vessels is a primal cause for recurrent vascular access failure. We previously shed some lights into a role of vitamin D, which exerts a protective effect against neointimal hyperplasia formation. Virtual histology, derived from intravascular ultrasound technology, provides novel insights into plaque composition analysis in atherosclerotic diseases. However, there is so far a lack of evidence on the relation between virtual histology and pathophysiological findings. To elucidate this missing link, we comprehensively reviewed 10 chronic hemodialysis patients who underwent repeated intravascular ultrasound-guided balloon angioplasty. Their age, dialysis vintage, and follow-up period were 75.0 ± 4.24, 20.5 ± 2.12, and 11.5 ± 0.71 (mean ± standard deviation) years, respectively. Pathological cross-sectional analyses were performed using specimens from vascular access surgeries during the follow-up period. Interestingly, positive relation is found between virtual histology-constructed fibrous tissue and pathological neointimal hyperplasia. Strikingly, immunohistological analysis revealed that vitamin D receptor-positive myofibroblasts were abundantly distributed in the equivalent area to virtual histology fibrous tissue. Our 10-year follow-up data of resistant vascular access stenosis indicates strong correlation between vitamin D receptor-rich neointimal vessel hypertrophy and intravascular ultrasound-assisted virtual histological analysis. Intravascular ultrasound technology is one of the minimally invasive diagnostic tools to provide histologically relevant tissue structure information and help determine target vessel stenosis on vascular access.
Collapse
Affiliation(s)
- Tetsuhiko Sato
- 1 Division of Diabetes and Endocrinology, Nagoya Daini Red Cross Hospital and Masuko Memorial Hospital, Nagoya, Japan
| | - Yasuhiro Otsuka
- 2 Division of Nephrology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Yamato Kikkawa
- 3 Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Yoshiko Iwasaki
- 4 Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan
| | - Masafumi Fukagawa
- 5 Division of Nephrology, Endocrinology and Metabolism, School of Medicine, Tokai University, Isehara, Japan
| |
Collapse
|
24
|
Disruptive technological advances in vascular access for dialysis: an overview. Pediatr Nephrol 2018; 33:2221-2226. [PMID: 29188361 DOI: 10.1007/s00467-017-3853-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022]
Abstract
End-stage kidney disease (ESKD), one of the most prevalent diseases in the world and with increasing incidence, is associated with significant morbidity and mortality. Current available modes of renal replacement therapy (RRT) include dialysis and renal transplantation. Though renal transplantation is the preferred and ideal mode of RRT, this modality may not be available to all patients with ESKD. Moreover, renal transplant recipients are constantly at risk of complications associated with immunosuppression and immunosuppressant use, and posttransplant lymphoproliferative disorder. Dialysis may be the only available modality in certain patients. However, dialysis has its limitations, which include issues associated with lack of vascular access, risks of infections and vascular thrombosis, decreased quality of life, and absence of biosynthetic functions of the kidney. In particular, the creation and maintenance of hemodialysis vascular access in children poses a unique set of challenges to the pediatric nephrologist owing to the smaller vessel diameters and vascular hyperreactivity compared with adult patients. Vascular access issues continue to be one of the major limiting factors prohibiting the delivery of adequate dialysis in ESKD patients and is the Achilles' heel of hemodialysis. This review aims to provide a critical overview of disruptive technological advances and innovations for vascular access. Novel strategies in preventing neointimal hyperplasia, novel bioengineered products, grafts and devices for vascular access will be discussed. The potential impact of these solutions on improving the morbidity encountered by dialysis patients will also be examined.
Collapse
|
25
|
Viecelli AK, Mori TA, Roy-Chaudhury P, Polkinghorne KR, Hawley CM, Johnson DW, Pascoe EM, Irish AB. The pathogenesis of hemodialysis vascular access failure and systemic therapies for its prevention: Optimism unfulfilled. Semin Dial 2017; 31:244-257. [PMID: 29178510 DOI: 10.1111/sdi.12658] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andrea K Viecelli
- Department of Nephrology; Princess Alexandra Hospital; Brisbane Qld Australia
- Australasian Kidney Trials Network; School of Medicine; University of Queensland; Brisbane Qld Australia
| | - Trevor A Mori
- Medical School; University of Western Australia; Perth WA Australia
| | - Prabir Roy-Chaudhury
- Department of Medicine; University of Arizona College of Medicine and Southern Arizona VA Healthcare System; Tucson AZ USA
| | - Kevan R Polkinghorne
- Department of Nephrology; Monash Medical Centre; Melbourne Vic. Australia
- School of Public Health and Preventive Medicine; Monash University; Melbourne Vic. Australia
- Department of Medicine; Monash University; Melbourne Vic. Australia
| | - Carmel M Hawley
- Department of Nephrology; Princess Alexandra Hospital; Brisbane Qld Australia
- Australasian Kidney Trials Network; School of Medicine; University of Queensland; Brisbane Qld Australia
- Translational Research Institute; Brisbane Qld Australia
| | - David W Johnson
- Department of Nephrology; Princess Alexandra Hospital; Brisbane Qld Australia
- Australasian Kidney Trials Network; School of Medicine; University of Queensland; Brisbane Qld Australia
- Translational Research Institute; Brisbane Qld Australia
| | - Elaine M Pascoe
- Australasian Kidney Trials Network; School of Medicine; University of Queensland; Brisbane Qld Australia
| | - Ashley B Irish
- Australasian Kidney Trials Network; School of Medicine; University of Queensland; Brisbane Qld Australia
- Department of Nephrology; Fiona Stanley Hospital; Perth WA Australia
| |
Collapse
|
26
|
Lee J, Kim DH, Lee KJ, Seo IH, Park SH, Jang EH, Park Y, Youn YN, Ryu W. Transfer-molded wrappable microneedle meshes for perivascular drug delivery. J Control Release 2017; 268:237-246. [PMID: 29030224 DOI: 10.1016/j.jconrel.2017.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/11/2017] [Accepted: 10/06/2017] [Indexed: 12/27/2022]
Abstract
After surgical procedures such as coronary/peripheral bypass grafting or endarterectomy for the treatment of organ ischemia derived from atherosclerosis, intimal hyperplasia (IH) which leads to restenosis or occlusion at the site of graft anastomosis frequently occurs. In order to inhibit IH caused by abnormal growth of smooth muscle cells (SMCs) in tunica media, various perivascular drug delivery devices are reported for delivery of anti-proliferation drugs into vascular tissue. However, there still remain conflicting requirements such as local and unidirectional delivery vs device porosity, and conformal tight device installation vs pulsatile expansion and constriction of blood vessels. In this study, a biodegradable microneedle (MN) array is developed on a flexible woven surgical mesh using a transfer molding method. Mechanical properties of 'wrappable' MN meshes are investigated and compared to the properties of blood vessels. Ex vivo and in vivo animal studies demonstrate enhanced drug delivery efficiency, efficacy for IH reduction, and safety of MN mesh. In particular, MN mesh showed significantly reduced neointiamal formation (11.1%) compared to other competitive groups (23.7 and 22.2%) after 4-week in vivo animal study. Additionally, wrappable MN meshes effectively suppressed side effects such as IH due to mechanical constriction, loss of toxic drug to the surroundings, and cell death that were frequently observed with other previous perivascular drug delivery devices.
Collapse
Affiliation(s)
- JiYong Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dae-Hyun Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kang Ju Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Il Ho Seo
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seung Hyun Park
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Youngjoo Park
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
27
|
Thomas M, Nesbitt C, Ghouri M, Hansrani M. Maintenance of Hemodialysis Vascular Access and Prevention of Access Dysfunction: A Review. Ann Vasc Surg 2017; 43:318-327. [DOI: 10.1016/j.avsg.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 01/24/2023]
|
28
|
Surgical technique determines the outcome of the Brescia/Cimino AVF. J Vasc Access 2017; 18:1-4. [PMID: 28297045 DOI: 10.5301/jva.5000698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Over the past 50 years, since Dr. Appel performed the first internal vascular access procedure for hemodialysis, the distal radiocephalic arteriovenous fistula continues to be the access of choice. Over time, failure to maturation has evolved as a major problem associated with this procedure depriving its benefits to many patients with end-stage renal disease. A variable incidence of this problem within similar patients suggests that surgical technique may play an important role in the development of non-maturation. Evaluating the current surgical techniques based on the hemodynamic consequences of anatomic and physiologic alterations following this procedure highlights the role of surgical technique in mitigating or reducing complications. Piggy-back straight line on-lay, a technique that helps to tailor the blood flow and reduce the oscillatory shear stress appears to reduce the incidence of early juxta-anastomotic problems, which contribute significantly to the problem of non-maturation.
Collapse
|
29
|
Mylonaki I, Allémann É, Saucy F, Haefliger JA, Delie F, Jordan O. Perivascular medical devices and drug delivery systems: Making the right choices. Biomaterials 2017; 128:56-68. [PMID: 28288349 DOI: 10.1016/j.biomaterials.2017.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/13/2017] [Accepted: 02/26/2017] [Indexed: 12/31/2022]
Abstract
Perivascular medical devices and perivascular drug delivery systems are conceived for local application around a blood vessel during open vascular surgery. These systems provide mechanical support and/or pharmacological activity for the prevention of intimal hyperplasia following vessel injury. Despite abundant reports in the literature and numerous clinical trials, no efficient perivascular treatment is available. In this review, the existing perivascular medical devices and perivascular drug delivery systems, such as polymeric gels, meshes, sheaths, wraps, matrices, and metal meshes, are jointly evaluated. The key criteria for the design of an ideal perivascular system are identified. Perivascular treatments should have mechanical specifications that ensure system localization, prolonged retention and adequate vascular constriction. From the data gathered, it appears that a drug is necessary to increase the efficacy of these systems. As such, the release kinetics of pharmacological agents should match the development of the pathology. A successful perivascular system must combine these optimized pharmacological and mechanical properties to be efficient.
Collapse
Affiliation(s)
- Ioanna Mylonaki
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Éric Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - François Saucy
- Department of Vascular Surgery, Lausanne University Hospital, rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Jacques-Antoine Haefliger
- Department of Vascular Surgery, Lausanne University Hospital, rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Florence Delie
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, rue Michel Servet 1, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
30
|
Koller FL, Woodside KJ. Advances in Vascular Access. TECHNOLOGICAL ADVANCES IN ORGAN TRANSPLANTATION 2017:87-115. [DOI: 10.1007/978-3-319-62142-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
31
|
Hu H, Patel S, Hanisch JJ, Santana JM, Hashimoto T, Bai H, Kudze T, Foster TR, Guo J, Yatsula B, Tsui J, Dardik A. Future research directions to improve fistula maturation and reduce access failure. Semin Vasc Surg 2016; 29:153-171. [PMID: 28779782 DOI: 10.1053/j.semvascsurg.2016.08.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the increasing prevalence of end-stage renal disease, there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis, but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes in the setting of uremia, systemic inflammation, oxidative stress, and pre-existent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis and development of neointimal hyperplasia that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to neointimal hyperplasia involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure require a multidisciplinary approach involving nephrologists, vascular surgeons, and interventional radiologists, careful patient selection, and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy.
Collapse
Affiliation(s)
- Haidi Hu
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Sandeep Patel
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; Royal Free Hospital, University College London, London, UK
| | - Jesse J Hanisch
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jeans M Santana
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Takuya Hashimoto
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Hualong Bai
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Tambudzai Kudze
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Trenton R Foster
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jianming Guo
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Bogdan Yatsula
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Janice Tsui
- Royal Free Hospital, University College London, London, UK
| | - Alan Dardik
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; VA Connecticut Healthcare System, West Haven, CT.
| |
Collapse
|
32
|
Lee T, Misra S. New Insights into Dialysis Vascular Access: Molecular Targets in Arteriovenous Fistula and Arteriovenous Graft Failure and Their Potential to Improve Vascular Access Outcomes. Clin J Am Soc Nephrol 2016; 11:1504-1512. [PMID: 27401527 PMCID: PMC4974876 DOI: 10.2215/cjn.02030216] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular access dysfunction remains a major cause of morbidity and mortality in hemodialysis patients. At present there are few effective therapies for this clinical problem. The poor understanding of the pathobiology that leads to arteriovenous fistula (AVF) and graft (AVG) dysfunction remains a critical barrier to development of novel and effective therapies. However, in recent years we have made substantial progress in our understanding of the mechanisms of vascular access dysfunction. This article presents recent advances and new insights into the pathobiology of AVF and AVG dysfunction and highlights potential therapeutic targets to improve vascular access outcomes.
Collapse
Affiliation(s)
- Timmy Lee
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
- Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
33
|
Affiliation(s)
- Michael Allon
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
34
|
Graft Modification Strategies to Improve Patency of Prosthetic Arteriovenous Grafts for Hemodialysis. J Vasc Access 2016; 17 Suppl 1:S85-90. [DOI: 10.5301/jva.5000526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
Prosthetic arteriovenous grafts (AVGs) are indicated for vascular access for long-term hemodialysis in patients in whom creation or maintenance of an arteriovenous fistula (AVF) has failed or is contraindicated. AVGs have an inferior long-term patency as compared to AVFs. To ameliorate patency rates of prosthetic AVGs, different strategies have emerged to improve graft materials. This review aims to describe current strategies and future perspectives on graft modification, by graft geometry, drug coatings and graft surface technology, to improve AVG patency.
Collapse
|
35
|
Periadventitial drug delivery for the prevention of intimal hyperplasia following open surgery. J Control Release 2016; 233:174-80. [PMID: 27179635 DOI: 10.1016/j.jconrel.2016.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intimal hyperplasia (IH) remains a major cause of poor patient outcomes after surgical revascularization to treat atherosclerosis. A multitude of drugs have been shown to prevent the development of IH. Moreover, endovascular drug delivery following angioplasty and stenting has been achieved with a marked diminution in the incidence of restenosis. Despite advances in endovascular drug delivery, there is currently no clinically available method of periadventitial drug delivery suitable for open vascular reconstructions. Herein we provide an overview of the recent literature regarding innovative polymer platforms for periadventitial drug delivery in preclinical models of IH as well as insights about barriers to clinical translation. METHODS A comprehensive PubMed search confined to the past 15years was performed for studies of periadventitial drug delivery. Additional searches were performed for relevant clinical trials, patents, meeting abstracts, and awards of NIH funding. RESULTS Most of the research involving direct periadventitial delivery without a drug carrier was published prior to 2000. Over the past 15years there have been a surge of reports utilizing periadventitial drug-releasing polymer platforms, most commonly bioresorbable hydrogels and wraps. These methods proved to be effective for the inhibition of IH in various animal models (e.g. balloon angioplasty, wire injury, and vein graft), but very few have advanced to clinical trials. There are a number of barriers that may account for this lack of translation. Promising new approaches including the use of nanoparticles will be described. CONCLUSIONS No periadventitial drug delivery system has reached clinical application. For periadventitial delivery, polymer hydrogels, wraps, and nanoparticles exhibit overlapping and complementary properties. The ideal periadventitial delivery platform would allow for sustained drug release yet exert minimal mechanical and inflammatory stresses to the vessel wall. A clinically applicable strategy for periadventitial drug delivery would benefit thousands of patients undergoing open vascular reconstruction each year.
Collapse
|
36
|
Lee T, Haq NU. New Developments in Our Understanding of Neointimal Hyperplasia. Adv Chronic Kidney Dis 2015; 22:431-7. [PMID: 26524947 DOI: 10.1053/j.ackd.2015.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/26/2015] [Indexed: 12/20/2022]
Abstract
The vascular access remains the lifeline for the hemodialysis patient. The most common etiology of vascular access dysfunction is venous stenosis at the vein-artery anastomosis in arteriovenous fistula and at the vein-graft anastomosis in arteriovenous grafts (AVG). This stenotic lesion is typically characterized on histology as aggressive venous neointimal hyperplasia in both arteriovenous fistula and AVG. In recent years, we have advanced our knowledge and understanding of neointimal hyperplasia in vascular access and begun testing several novel therapies. This article will (1) review recent developments in our understanding of the pathophysiology of neointimal hyperplasia development in AVG and fistula failure, (2) discuss atypical factors leading to neointimal hyperplasia development, (3) highlight key novel therapies that have been evaluated in clinical trials, and (4) discuss future opportunities and challenges to improve our understanding of vascular access dysfunction and translate this knowledge into novel and innovative therapies.
Collapse
|
37
|
Influence of drugs on arteriovenous vascular access dysfunction. J Vasc Access 2015; 16 Suppl 9:S61-5. [PMID: 25751553 DOI: 10.5301/jva.5000365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2015] [Indexed: 01/04/2023] Open
Abstract
Vascular access dysfunction, due to venous stenosis at the vein-artery anastomosis in arteriovenous fistulas and vein-graft anastomosis in synthetic arteriovenous grafts, is a major cause of morbidity and mortality in dialysis patients. The two overarching approaches to prevent and treat vascular access dysfunction are from systemic or local (including endovascular and perivascular) routes. However, there are currently very few effective therapies to treat vascular access dysfunction. This article will review major studies evaluating systemic, endovascular, and perivascular therapies for vascular access dysfunction. Ongoing research to evaluate novel innovations to prevent and/or manage vascular access dysfunction appears promising.
Collapse
|
38
|
Abstract
The arteriovenous fistula (AVF) failure is a major cause of morbidity in the hemodialysis population. Most AVFs fail due to neointimal hyperplasia (NIH). In this issue, Yang et al. delineated a mechanism responsible for transforming the fistula adventitia into a fertile soil for neointimal precursors. These authors pondered the role of hypoxia-regulated hypoxia-inducible factor-1 (HIF-1α), vascular endothelial growth factor A (VEGF-A), and matrix metalloproteinases (MMPs) in the activation of those adventitial myofibroblasts that may significantly contribute to the formation of the fistula neointima.
Collapse
|
39
|
Affiliation(s)
- Michael Allon
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
40
|
Lee KJ, Park SH, Lee JY, Joo HC, Jang EH, Youn YN, Ryu W. Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. J Control Release 2014; 192:174-81. [PMID: 25025286 DOI: 10.1016/j.jconrel.2014.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/30/2014] [Accepted: 07/06/2014] [Indexed: 11/28/2022]
Abstract
Restenosis often occurs at the site of vascular grafting and may become fatal for patients. Restenosis at anastomosis sites is due to neointimal hyperplasia (NH) and difficult to treat with conventional treatments. Such abnormal growth of smooth muscle cells in tunica media of vascular tissue can be reduced by delivering anti-proliferation drugs such as paclitaxel (PTX) to the inner vascular layer. Drug eluting stents (DES) or drug eluting balloon (DEB) have been developed to treat such vascular diseases. However, they are less efficient in drug delivery due to the drug loss to blood stream and inadequate to be applied to re-stenotic area in the presence of stent or anastomosis sites. Recently, we have introduced microneedle cuff (MNC) as perivascular delivery devices to achieve high delivery efficiency to tunica media. In this study, we investigated in vivo microneedle insertion and efficacy in treating NH using a rabbit balloon injury model. Microneedle shape was optimized for reliable insertion into tunica media layer. Uniform distribution of PTX in tunica media delivered by MNC devices was also confirmed. Animal study demonstrated significant NH reduction by MNC treatments and much higher delivery efficiency than flat type devices.
Collapse
Affiliation(s)
- Kang Ju Lee
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Seung Hyun Park
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Ji Yong Lee
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun Chel Joo
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| | - WonHyoung Ryu
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
41
|
Yu X, Takayama T, Goel SA, Shi X, Zhou Y, Kent KC, Murphy WL, Guo LW. A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia. J Control Release 2014; 191:47-53. [PMID: 24852098 DOI: 10.1016/j.jconrel.2014.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 01/02/2023]
Abstract
Intimal hyperplasia produces restenosis (re-narrowing) of the vessel lumen following vascular intervention. Drugs that inhibit intimal hyperplasia have been developed, however there is currently no clinical method of perivascular drug-delivery to prevent restenosis following open surgical procedures. Here we report a poly(ε-caprolactone) (PCL) sheath that is highly effective in preventing intimal hyperplasia through perivascular delivery of rapamycin. We first screened a series of bioresorbable polymers, i.e., poly(lactide-co-glycolide) (PLGA), poly(lactic acid) (PLLA), PCL, and their blends, to identify desired release kinetics and sheath physical properties. Both PLGA and PLLA sheaths produced minimal (<30%) rapamycin release within 50days in PBS buffer. In contrast, PCL sheaths exhibited more rapid and near-linear release kinetics, as well as durable integrity (>90days) as evidenced in both scanning electron microscopy and subcutaneous embedding experiments. Moreover, a PCL sheath deployed around balloon-injured rat carotid arteries was associated with a minimum rate of thrombosis compared to PLGA and PLLA. Morphometric analysis and immunohistochemistry revealed that rapamycin-loaded perivascular PCL sheaths produced pronounced (85%) inhibition of intimal hyperplasia (0.15±0.05 vs 1.01±0.16), without impairment of the luminal endothelium, the vessel's anti-thrombotic layer. Our data collectively show that a rapamycin-loaded PCL delivery system produces substantial mitigation of neointima, likely due to its favorable physical properties leading to a stable yet flexible perivascular sheath and steady and prolonged release kinetics. Thus, a PCL sheath may provide useful scaffolding for devising effective perivascular drug delivery particularly suited for preventing restenosis following open vascular surgery.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Toshio Takayama
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - Shakti A Goel
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - Xudong Shi
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - Yifan Zhou
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA
| | - K Craig Kent
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA; Department of Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA.
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin, 5151 Wisconsin Institute of Medical Research, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
42
|
Terry CM, Dember LM. Novel therapies for hemodialysis vascular access dysfunction: myth or reality? Clin J Am Soc Nephrol 2013; 8:2202-12. [PMID: 24235283 DOI: 10.2215/cjn.07360713] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hemodialysis vascular access dysfunction is a major source of morbidity for patients with ESRD. Development of effective approaches to prevent and treat vascular access failure requires an understanding of the underlying mechanisms, suitable models for preclinical testing, systems for targeted delivery of interventions to maximize efficacy and minimize toxicity, and rigorous clinical trials that use appropriate outcome measures. This article reviews the substantial progress and ongoing challenges in developing novel treatments for arteriovenous vascular access failure and focuses on localized rather than systemic interventions.
Collapse
Affiliation(s)
- Christi M Terry
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, †Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
43
|
Baek I, Cho AJ, Hwang J, Kim H, Park JS, Kim DJ. Comparison of the Neointima Inhibition Between Paclitaxel- and Sirolimus-Eluting Expanded Polytetrafluoroethylene Hemodialysis Grafts in a Porcine Model. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.6.1663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Riella MC, Roy-Chaudhury P. Vascular access in haemodialysis: strengthening the Achilles' heel. Nat Rev Nephrol 2013; 9:348-57. [DOI: 10.1038/nrneph.2013.76] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Krokidis M, Spiliopoulos S, Katsanos K, Sabharwal T. Peripheral applications of drug-coated balloons: past, present and future. Cardiovasc Intervent Radiol 2013; 36:281-91. [PMID: 22915325 DOI: 10.1007/s00270-012-0467-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/31/2012] [Indexed: 02/08/2023]
Abstract
Drug-coated balloon (DCB) technologies represent the latest and hottest development in the field of endovascular treatment of peripheral arterial disease. Initial experience with paclitaxel-coated balloon use in the femoral artery has demonstrated lower mid-term restenosis and superior mid-term clinical outcomes in terms of improved wound healing and reduced repeat angioplasty rates compared with standard balloon angioplasty. Many companies are presently developing and/or improving DCB catheters and therefore ongoing, technical improvements of the already existing platforms, new drugs, and innovative carriers are expected. The ongoing basic research studies and various multicenter randomized, controlled trials that are currently in progress will offer valuable scientific insights regarding the long-term effectiveness and other crucial issues, such as efficacy in various vascular beds, optimal balloon dosage, and post angioplasty antiplatelet therapy. Future applications of these devices also could include in-stent restenosis, anastomotic stenosis of surgical bypass, and benign stenoses of the central venous system. The authors envision that DCB angioplasty will evolve to a major paradigm shift in the endovascular treatment of occlusive vascular diseases.
Collapse
Affiliation(s)
- Miltiadis Krokidis
- Department of Radiology, Guy's and St. Thomas' Hospitals, NHS Foundation Trust, 1st Floor Lambeth Wing, Lambeth Palace Road, London, SE1 7EH, UK.
| | | | | | | |
Collapse
|
46
|
Rothuizen TC, Wong C, Quax PHA, van Zonneveld AJ, Rabelink TJ, Rotmans JI. Arteriovenous access failure: more than just intimal hyperplasia? Nephrol Dial Transplant 2013; 28:1085-92. [PMID: 23543595 DOI: 10.1093/ndt/gft068] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Haemodialysis vascular access patency is severely compromised by fistula non-maturation and access stenosis. Intimal hyperplasia (IH) is considered the culprit lesion in failed fistulas, resulting in luminal narrowing and stenosis. This review focuses on the biology and pathophysiology of fistula failure and highlights not only the classically associated IH but also some relatively neglected but potentially important contributors such as inadequate outward remodelling. In addition, the complex process and fragile balance of successful fistula maturation might be partially hindered by pre-existent chronic kidney disease-mediated vasculopathy. Further unravelling the (patho)physiology of outward remodelling and IH could contribute to novel therapies and enhance fistula patency.
Collapse
Affiliation(s)
- Tonia C Rothuizen
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Novel techniques and innovation in blood purification: a clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int 2013; 83:359-71. [DOI: 10.1038/ki.2012.450] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Choi CK, Lee KJ, Youn YN, Jang EH, Kim W, Min BK, Ryu W. Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Petrisor G, Ion RM, Brachais CH, Boni G, Plasseraud L, Couvercelle JP, Chambin O. In VitroRelease of Local Anaesthetic and Anti-Inflammatory Drugs from Crosslinked Collagen Based Device. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2012. [DOI: 10.1080/10601325.2012.703491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Dukkipati R, Peck M, Dhamija R, Hentschel DM, Reynolds T, Tammewar G, McAllister T. Biological grafts for hemodialysis access: historical lessons, state-of-the-art and future directions. Semin Dial 2012; 26:233-9. [PMID: 22909001 DOI: 10.1111/j.1525-139x.2012.01106.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vast majority of arteriovenous grafts (AVG) have been constructed using expanded polytetrafluoroethylene (ePTFE). While ePTFE grafts have the advantage of being relatively inexpensive and easy to manufacture, distribute, ship, and store, their primary patency rates are disappointing when compared with the native AVF. Though use of arteriovenous fistulas (AVF) in the United States has increased substantially, approximately 25% of hemodialysis patients continue to use AVG as their vascular access. We present here a comprehensive review of biological grafts and their use in hemodialysis vascular access. In this review, we discuss the use of synthetics and then explore the evolution of biological grafts over the past 20 years, their clinical impact, and future challenges in widespread clinical use in hemodialysis patients. Provided are in depth descriptions of currently used nonbiological arteriovenous grafts and the recent approaches in increasing the patency of synthetic grafts. Recent technological advances using tissue-engineered AVGs have shown promise for patients receiving hemodialysis and their potential to provide an attractive, viable option for vascular access have been discussed.
Collapse
Affiliation(s)
- Ramanath Dukkipati
- Division of Nephrology and Hypertension, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90509, USA.
| | | | | | | | | | | | | |
Collapse
|