1
|
Adella A, Gommers LMM, Bos C, Leermakers PA, de Baaij JHF, Hoenderop JGJ. Characterization of intestine-specific TRPM6 knockout C57BL/6 J mice: effects of short-term omeprazole treatment. Pflugers Arch 2025; 477:99-109. [PMID: 39266724 PMCID: PMC11711252 DOI: 10.1007/s00424-024-03017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The transient receptor potential melastatin type 6 (TRPM6) is a divalent cation channel pivotal for gatekeeping Mg2+ balance. Disturbance in Mg2+ balance has been associated with the chronic use of proton pump inhibitors (PPIs) such as omeprazole. In this study, we investigated if TRPM6 plays a role in mediating the effects of short-term (4 days) omeprazole treatment on intestinal Mg2+ malabsorption using intestine-specific TRPM6 knockout (Vill1-TRPM6-/-) mice. To do this, forty-eight adult male C57BL/6 J mice (50% TRPM6fl/fl and 50% Vill1-TRPM6-/-) were characterized, and the distal colon of these mice was subjected to RNA sequencing. Moreover, these mice were exposed to 20 mg/kg bodyweight omeprazole or placebo for 4 days. Vill1-TRPM6-/- mice had a significantly lower 25Mg2+ absorption compared to control TRPM6fl/fl mice, accompanied by lower Mg2+ serum levels, and urinary Mg2+ excretion. Furthermore, renal Slc41a3, Trpm6, and Trpm7 gene expressions were higher in these animals, indicating a compensatory mechanism via the kidney. RNA sequencing of the distal colon revealed a downregulation of the Mn2+ transporter Slc30a10. However, no changes in Mn2+ serum, urine, and feces levels were observed. Moreover, 4 days omeprazole treatment did not affect Mg2+ homeostasis as no changes in serum 25Mg2+ and total Mg2+ were seen. In conclusion, we demonstrate here for the first time that Vill1-TRPM6-/- mice have a lower Mg2+ absorption in the intestines. Moreover, short-term omeprazole treatment does not alter Mg2+ absorption in both Vill1-TRPM6-/- and TRPM6fl/fl mice. This suggests that TRPM6-mediated Mg2+ absorption in the intestines is not affected by short-term PPI administration.
Collapse
Affiliation(s)
- Anastasia Adella
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisanne M M Gommers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter A Leermakers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
van Megen WH, de Baaij JHF, Churchill GA, Devuyst O, Hoenderop JGJ, Korstanje R. Genetic drivers of age-related changes in urinary magnesium excretion. Physiol Genomics 2024; 56:634-647. [PMID: 39037434 PMCID: PMC11460537 DOI: 10.1152/physiolgenomics.00119.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Although age-dependent alterations in urinary magnesium (Mg2+) excretion have been described, the underlying mechanism remains elusive. As heritability significantly contributes to variations in urinary Mg2+ excretion, we measured urinary Mg2+ excretion at different ages in a cohort of genetically variable Diversity Outbred (DO) mice. Compared with animals aged 6 mo, an increase in Mg2+ excretion was observed at 12 and 18 mo. Quantitative trait locus (QTL) analysis revealed an association of a locus on chromosome 10 with Mg2+ excretion at 6 mo of age, with Oit3 (encoding oncoprotein-induced transcript 3; OIT3) as our primary candidate gene. To study the possible role of OIT3 in renal Mg2+ handling, we generated and characterized Oit3 knockout (Oit3-/-) mice. Although a slightly lower serum Mg2+ concentration was present in male Oit3-/- mice, this effect was not observed in female Oit3-/- mice. In addition, urinary Mg2+ excretion and the expression of renal magnesiotropic genes were unaltered in Oit3-/- mice. For animals aged 12 and 18 mo, QTL analysis revealed an association with a locus on chromosome 19, which contains the gene encoding TRPM6, a known Mg2+ channel involved in renal Mg2+ reabsorption. Comparison with RNA sequencing (RNA-Seq) data revealed that Trpm6 mRNA expression is inversely correlated with the QTL effect, implying that TRPM6 may be involved in age-dependent changes in urinary Mg2+ excretion in mice. In conclusion, we show here that variants in Oit3 and Trpm6 are associated with urinary Mg2+ excretion at distinct periods of life, although OIT3 is unlikely to affect renal Mg2+ handling.NEW & NOTEWORTHY Aging increased urinary magnesium (Mg2+) excretion in mice. We show here that variation in Oit3, a candidate gene for the locus associated with Mg2+ excretion in young mice, is unlikely to be involved as knockout of Oit3 did not affect Mg2+ excretion. Differences in the expression of the renal Mg2+ channel TRPM6 may contribute to the variation in urinary Mg2+ excretion in older mice.
Collapse
Affiliation(s)
- Wouter H van Megen
- Department of Medical Biosciences, Radboudumc, Nijmegen, The Netherlands
| | | | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States
| |
Collapse
|
3
|
Tang P, van den Broek DHN, Jepson RE, Geddes RF, Chang Y, Lötter N, Moniot D, Biourge V, Elliott J. Dietary magnesium supplementation in cats with chronic kidney disease: A prospective double-blind randomized controlled trial. J Vet Intern Med 2024; 38:2180-2195. [PMID: 38952053 PMCID: PMC11256178 DOI: 10.1111/jvim.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Plasma total magnesium concentration (tMg) is a prognostic indicator in cats with chronic kidney disease (CKD), shorter survival time being associated with hypomagnesemia. Whether this risk factor is modifiable with dietary magnesium supplementation remains unexplored. OBJECTIVES Evaluate effects of a magnesium-enriched phosphate-restricted diet (PRD) on CKD-mineral bone disorder (CKD-MBD) variables. ANIMALS Sixty euthyroid client-owned cats with azotemic CKD, with 27 and 33 allocated to magnesium-enriched PRD or control PRD, respectively. METHODS Prospective double-blind, parallel-group randomized trial. Cats with CKD, stabilized on a PRD, without hypermagnesemia (tMg >2.43 mg/dL) or hypercalcemia (plasma ionized calcium concentration, (iCa) >6 mg/dL), were recruited. Both intention-to-treat and per-protocol (eating ≥50% of study diet) analyses were performed; effects of dietary magnesium supplementation on clinicopathological variables were evaluated using linear mixed effects models. RESULTS In the per-protocol analysis, tMg increased in cats consuming a magnesium-enriched PRD (β, 0.25 ± .07 mg/dL/month; P < .001). Five magnesium supplemented cats had tMg >2.92 mg/dL, but none experienced adverse effects. Rate of change in iCa differed between groups (P = .01), with decreasing and increasing trends observed in cats fed magnesium-enriched PRD and control PRD, respectively. Four control cats developed ionized hypercalcemia versus none in the magnesium supplemented group. Log-transformed plasma fibroblast growth factor-23 concentration (FGF23) increased significantly in controls (β, 0.14 ± .05 pg/mL/month; P = .01), but remained stable in the magnesium supplemented group (β, 0.05±.06 pg/mL/month; P =.37). CONCLUSIONS AND CLINICAL IMPORTANCE Magnesium-enriched PRD is a novel therapeutic strategy for managing feline CKD-MBD in cats, further stabilizing plasma FGF23 and preventing hypercalcemia.
Collapse
Affiliation(s)
- Pak‐Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| | | | - Rosanne E. Jepson
- Department of Clinical Science and Services, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| | - Rebecca F. Geddes
- Department of Clinical Science and Services, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| | - Yu‐Mei Chang
- Research Support Office, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
- Present address:
Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUnited Kingdom
| | - Nicola Lötter
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| | | | | | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeUniversity of LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Nie M, Zhang J, Bal M, Duran C, An SW, Zigman JM, Baum M, Hiremath C, Marciano DK, Wolf MTF. Ghrelin enhances tubular magnesium absorption in the kidney. Front Physiol 2024; 15:1363708. [PMID: 38638279 PMCID: PMC11024433 DOI: 10.3389/fphys.2024.1363708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Osteoporosis after bariatric surgery is an increasing health concern as the rate of bariatric surgery has risen. In animal studies mimicking bariatric procedures, bone disease, together with decreased serum levels of Ca2+, Mg2+ and the gastric hormone Ghrelin were described. Ghrelin regulates metabolism by binding to and activating the growth hormone secretagogue receptor (GHSR) which is also expressed in the kidney. As calcium and magnesium are key components of bone, we tested the hypothesis that Ghrelin-deficiency contributes to osteoporosis via reduced upregulation of the renal calcium channel TRPV5 and the heteromeric magnesium channel TRPM6/7. We expressed GHSR with TRPV5 or TRPM6/7 channel in HEK293 cells and treated them with purified Ghrelin. Whole-cell current density was analyzed by patch-clamp recording. Nephron-specific gene expression was performed by tubular microdissection followed by qPCR in wild-type (WT) mice, and immunofluorescent imaging of GHSR-eGFP mice. Tubular magnesium homeostasis was analyzed in GHSR-null and WT mice at baseline and after caloric restriction. After Ghrelin exposure, whole-cell current density did not change for TRPV5 but increased for TRPM6/7 in a dose-dependent fashion. Applying the Ghrelin-mimetic (D-Trp7, Ala8,D-Phe10)-α-MSH (6-11) amide without and with the GHSR antagonist (D-Lys3)-GHRP6, we confirmed the stimulatory role of Ghrelin towards TRPM6/7. As GHSR initiates downstream signaling via protein kinase A (PKA), we found that the PKA inhibitor H89 abrogated TRPM6/7 stimulation by Ghrelin. Similarly, transfected Gαs, but not the Gαs mutant Q227L, nor Gαi2, Gαq, or Gα13 upregulated TRPM6/7 current density. In microdissected TALs and DCTs similar levels of GHSR mRNA were detected. In contrast, TRPM6 mRNA was expressed in the DCT and also detected in the TAL at 25% expression compared to DCT. Immunofluorescent studies using reporter GHSR-eGFP mice showed a strong eGFP signal in the TAL but surprisingly displayed no eGFP signal in the DCT. In 3-, 6-, and 9-month-old GHSR-null and WT mice, baseline serum magnesium was not significantly different, but 24-h urinary magnesium excretion was elevated in 9-month-old GHSR-null mice. In calorically restricted GHSR-null mice, we detected excess urinary magnesium excretion and reduced serum magnesium levels compared to WT mice. The kidneys from calorically restricted WT mice showed upregulated gene expression of magnesiotropic genes Hnf1b, Cldn-16, Cldn-19, Fxyd-2b, and Parvalbumin compared to GHSR-null mice. Our in vitro studies show that Ghrelin stimulates TRPM6/7 via GHSR and Gαs-PKA signaling. The murine studies are consistent with Ghrelin-GHSR signaling inducing reduced urinary magnesium excretion, particularly in calorically restricted mice when Ghrelin levels are elevated. This effect may be mediated by Ghrelin-upregulation of TRPM6 in the TAL and/or upregulation of other magnesiotropic genes. We postulate that rising Ghrelin levels with hunger contribute to increased renal Mg2+ reabsorption to compensate for lack of enteral Mg2+ uptake.
Collapse
Affiliation(s)
- Mingzhu Nie
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jing Zhang
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Manjot Bal
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Claudia Duran
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sung Wan An
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey M. Zigman
- Department of Internal Medicine, Center for Hypothalamic Research, UTSW Medical Center, Dallas, TX, United States
| | - Michel Baum
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chitkale Hiremath
- Department of Internal Medicine, Nephrology, and Department of Cell Biology, UTSW Medical Center, Dallas, TX, United States
| | - Denise K. Marciano
- Department of Internal Medicine, Nephrology, and Department of Cell Biology, UTSW Medical Center, Dallas, TX, United States
| | - Matthias T. F. Wolf
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Maeoka Y, McCormick JA. NaCl cotransporter activity and Mg 2+ handling by the distal convoluted tubule. Am J Physiol Renal Physiol 2020; 319:F1043-F1053. [PMID: 33135481 DOI: 10.1152/ajprenal.00463.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The genetic disease Gitelman syndrome, knockout mice, and pharmacological blockade with thiazide diuretics have revealed that reduced activity of the NaCl cotransporter (NCC) promotes renal Mg2+ wasting. NCC is expressed along the distal convoluted tubule (DCT), and its activity determines Mg2+ entry into DCT cells through transient receptor potential channel subfamily M member 6 (TRPM6). Several other genetic forms of hypomagnesemia lower the drive for Mg2+ entry by inhibiting activity of basolateral Na+-K+-ATPase, and reduced NCC activity may do the same. Lower intracellular Mg2+ may promote further Mg2+ loss by directly decreasing activity of Na+-K+-ATPase. Lower intracellular Mg2+ may also lower Na+-K+-ATPase indirectly by downregulating NCC. Lower NCC activity also induces atrophy of DCT cells, decreasing the available number of TRPM6 channels. Conversely, a mouse model with increased NCC activity was recently shown to display normal Mg2+ handling. Moreover, recent studies have identified calcineurin and uromodulin (UMOD) as regulators of both NCC and Mg2+ handling by the DCT. Calcineurin inhibitors paradoxically cause hypomagnesemia in a state of NCC activation, but this may be related to direct effects on TRPM6 gene expression. In Umod-/- mice, the cause of hypomagnesemia may be partly due to both decreased NCC expression and lower TRPM6 expression on the cell surface. This mini-review discusses these new findings and the possible role of altered Na+ flux through NCC and ultimately Na+-K+-ATPase in Mg2+ reabsorption by the DCT.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
6
|
Ferdaus MZ, Mukherjee A, Nelson JW, Blatt PJ, Miller LN, Terker AS, Staub O, Lin DH, McCormick JA. Mg 2+ restriction downregulates NCC through NEDD4-2 and prevents its activation by hypokalemia. Am J Physiol Renal Physiol 2019; 317:F825-F838. [PMID: 31364380 PMCID: PMC6843039 DOI: 10.1152/ajprenal.00216.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypomagnesemia is associated with reduced kidney function and life-threatening complications and sustains hypokalemia. The distal convoluted tubule (DCT) determines final urinary Mg2+ excretion and, via activity of the Na+-Cl- cotransporter (NCC), also plays a key role in K+ homeostasis by metering Na+ delivery to distal segments. Little is known about the mechanisms by which plasma Mg2+ concentration regulates NCC activity and how low-plasma Mg2+ concentration and K+ concentration interact to modulate NCC activity. To address this, we performed dietary manipulation studies in mice. Compared with normal diet, abundances of total NCC and phosphorylated NCC (pNCC) were lower after short-term (3 days) or long-term (14 days) dietary Mg2+ restriction. Altered NCC activation is unlikely to play a role, since we also observed lower total NCC abundance in mice lacking the two NCC-activating kinases, STE20/SPS-1-related proline/alanine-rich kinase and oxidative stress response kinase-1, after Mg2+ restriction. The E3 ubiquitin-protein ligase NEDD4-2 regulates NCC abundance during dietary NaCl loading or K+ restriction. Mg2+ restriction did not lower total NCC abundance in inducible nephron-specific neuronal precursor cell developmentally downregulated 4-2 (NEDD4-2) knockout mice. Total NCC and pNCC abundances were similar after short-term Mg2+ or combined Mg2+-K+ restriction but were dramatically lower compared with a low-K+ diet. Therefore, sustained NCC downregulation may serve a mechanism that enhances distal Na+ delivery during states of hypomagnesemia, maintaining hypokalemia. Similar results were obtained with long-term Mg2+-K+ restriction, but, surprisingly, NCC was not activated after long-term K+ restriction despite lower plasma K+ concentration, suggesting significant differences in distal tubule adaptation to acute or chronic K+ restriction.
Collapse
Affiliation(s)
- Mohammed Z. Ferdaus
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Anindit Mukherjee
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Jonathan W. Nelson
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Philip J. Blatt
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Lauren N. Miller
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Andrew S. Terker
- 2Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Olivier Staub
- 3Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Dao-Hong Lin
- 4Department of Pharmacology, New York Medical College, Valhalla, New York
| | - James A. McCormick
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
7
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Trapani V, Petito V, Di Agostini A, Arduini D, Hamersma W, Pietropaolo G, Luongo F, Arena V, Stigliano E, Lopetuso LR, Gasbarrini A, Wolf FI, Scaldaferri F. Dietary Magnesium Alleviates Experimental Murine Colitis Through Upregulation of the Transient Receptor Potential Melastatin 6 Channel. Inflamm Bowel Dis 2018; 24:2198-2210. [PMID: 29788266 DOI: 10.1093/ibd/izy186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Magnesium (Mg) is essential for human health and is absorbed mainly in the intestine. In view of the likely occurrence of an Mg deficit in inflammatory bowel disease (IBD) and the documented role of Mg in modulating inflammation, the present study addresses whether Mg availability can affect the onset and progression of intestinal inflammation. METHODS To study the correlation between Mg status and disease activity, we measured magnesemia by atomic absorption spectroscopy in a cohort of IBD patients. The effects of dietary Mg modulation were assessed in a murine model of dextran sodium sulfate (DSS)-induced colitis by monitoring magnesemia, weight, fecal occult blood, diarrhea, colon length, and histology. Expression of the transient receptor potential melastatin (TRPM) 6 channel was assessed by real-time reverse transcription polymerase chain reaction and immunohistochemistry in murine colon tissues. The effect of Mg on epithelial barrier formation/repair was evaluated in human colon cell lines. RESULTS Inflammatory bowel disease patients presented with a substantial Mg deficit, and serum Mg levels were inversely correlated with disease activity. In mice, an Mg-deficient diet caused hypomagnesemia and aggravated DSS-induced colitis. Colitis severely compromised intestinal Mg2+ absorption due to mucosal damage and reduction in TRPM6 expression, but Mg supplementation resulted in better restoration of mucosal integrity and channel expression. CONCLUSIONS Our results highlight the importance of evaluating and correcting magnesemia in IBD patients. The murine model suggests that Mg supplementation may represent a safe and cost-effective strategy to reduce inflammation and restore normal mucosal function.
Collapse
Affiliation(s)
- Valentina Trapani
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Valentina Petito
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Angelica Di Agostini
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Daniela Arduini
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Willem Hamersma
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Giuseppe Pietropaolo
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Francesca Luongo
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Vincenzo Arena
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Egidio Stigliano
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Loris R Lopetuso
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Antonio Gasbarrini
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Federica I Wolf
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Franco Scaldaferri
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| |
Collapse
|
9
|
Nie M, Bal MS, Liu J, Yang Z, Rivera C, Wu XR, Hoenderop JGJ, Bindels RJM, Marciano DK, Wolf MTF. Uromodulin regulates renal magnesium homeostasis through the ion channel transient receptor potential melastatin 6 (TRPM6). J Biol Chem 2018; 293:16488-16502. [PMID: 30139743 DOI: 10.1074/jbc.ra118.003950] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
Up to 15% of the population have mild to moderate chronic hypomagnesemia, which is associated with type 2 diabetes mellitus, hypertension, metabolic syndrome, and chronic kidney disease. The kidney is the key organ for magnesium homeostasis, but our understanding of renal magnesium regulation is very limited. Uromodulin (UMOD) is the most abundant urinary protein in humans, and here we report that UMOD has a role in renal magnesium homeostasis. Umod-knockout (Umod -/-) mice excreted more urinary magnesium than WT mice and displayed up-regulation of genes promoting magnesium absorption. The majority of magnesium is absorbed in the thick ascending limb. However, both mouse strains responded similarly to the diuretic agent furosemide, indicating appropriate function of the thick ascending limb in the Umod -/- mice. Magnesium absorption is fine-tuned in the distal convoluted tubule (DCT) via the apical magnesium channel transient receptor potential melastatin 6 (TRPM6). We observed decreased apical Trpm6 staining in the DCT of Umod -/- mice. Applying biotinylation assays and whole-cell patch-clamp recordings, we found that UMOD enhances TRPM6 cell-surface abundance and current density from the extracellular space. UMOD physically interacted with TRPM6 and thereby impaired dynamin-dependent TRPM6 endocytosis. WT mice fed a low-magnesium diet had an increased urinary UMOD secretion compared with the same mice on a regular diet. Our results suggest that increased urinary UMOD secretion in low-magnesium states reduces TRPM6 endocytosis and thereby up-regulates TRPM6 cell-surface abundance to defend against further urinary magnesium losses.
Collapse
Affiliation(s)
| | | | - Jie Liu
- From the Departments of Pediatrics and
| | - Zhufeng Yang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | - Xue-Ru Wu
- the Departments of Urology and Pathology, New York University School of Medicine, New York, New York 10016, and
| | - Joost G J Hoenderop
- the Department of Physiology, Radboud Center for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - René J M Bindels
- the Department of Physiology, Radboud Center for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Denise K Marciano
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
10
|
Malik S, Lambert E, Zhang J, Wang T, Clark HL, Cypress M, Goldman BI, Porter GA, Pena S, Nino W, Gray DA. Potassium conservation is impaired in mice with reduced renal expression of Kir4.1. Am J Physiol Renal Physiol 2018; 315:F1271-F1282. [PMID: 30110571 DOI: 10.1152/ajprenal.00022.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To better understand the role of the inward-rectifying K channel Kir4.1 (KCNJ10) in the distal nephron, we initially studied a global Kir4.1 knockout mouse (gKO), which demonstrated the hypokalemia and hypomagnesemia seen in SeSAME/EAST syndrome and was associated with reduced Na/Cl cotransporter (NCC) expression. Lethality by ~3 wk, however, limits the usefulness of this model, so we developed a kidney-specific Kir4.1 "knockdown" mouse (ksKD) using a cadherin 16 promoter and Cre-loxP methodology. These mice appeared normal and survived to adulthood. Kir4.1 protein expression was decreased ~50% vs. wild-type (WT) mice by immunoblotting, and immunofluorescence showed moderately reduced Kir4.1 staining in distal convoluted tubule that was minimal or absent in connecting tubule and cortical collecting duct. Under control conditions, the ksKD mice showed metabolic alkalosis and relative hypercalcemia but were normokalemic and mildly hypermagnesemic despite decreased NCC expression. In addition, the mice had a severe urinary concentrating defect associated with hypernatremia, enlarged kidneys with tubulocystic dilations, and reduced aquaporin-3 expression. On a K/Mg-free diet for 1 wk, however, ksKD mice showed marked hypokalemia (serum K: 1.5 ± 0.1 vs. 3.0 ± 0.1 mEq/l for WT), which was associated with renal K wasting (transtubular K gradient: 11.4 ± 0.8 vs. 1.6 ± 0.4 in WT). Phosphorylated-NCC expression increased in WT but not ksKD mice on the K/Mg-free diet, suggesting that loss of NCC adaptation underlies the hypokalemia. In conclusion, even modest reduction in Kir4.1 expression results in impaired K conservation, which appears to be mediated by reduced expression of activated NCC.
Collapse
Affiliation(s)
- Sundeep Malik
- Department of Pharmacology and Physiology, School of Medicine, University of Rochester , Rochester, New York
| | - Emily Lambert
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Junhui Zhang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut
| | - Heather L Clark
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Michael Cypress
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Bruce I Goldman
- Pathology and Laboratory Medicine, University of Rochester , Rochester, New York
| | - George A Porter
- Cardiology Division, Department of Pediatrics, University of Rochester , Rochester, New York
| | - Salvador Pena
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Wilson Nino
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Daniel A Gray
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| |
Collapse
|
11
|
TRPM6 is Essential for Magnesium Uptake and Epithelial Cell Function in the Colon. Nutrients 2018; 10:nu10060784. [PMID: 29912157 PMCID: PMC6024373 DOI: 10.3390/nu10060784] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022] Open
Abstract
Intestinal magnesium (Mg) uptake is essential for systemic Mg homeostasis. Colon cells express the two highly homologous transient receptor potential melastatin type (TRPM) 6 and 7 Mg2+ channels, but their precise function and the consequences of their mutual interaction are not clear. To explore the functional role of TRPM6 and TRPM7 in the colon, we used human colon cell lines that innately express both channels and analyzed the functional consequences of genetic knocking-down, by RNA interference, or pharmacological inhibition, by NS8593, of either channel. TRPM7 silencing caused an increase in Mg2+ influx, and correspondingly enhanced cell proliferation and migration, while downregulation of TRPM6 did not affect significantly either Mg2+ influx or cell proliferation. Exposure to the specific TRPM6/7 inhibitor NS8593 reduced Mg2+ influx, and consequently cell proliferation and migration, but Mg supplementation rescued the inhibition. We propose a model whereby in colon cells the functional Mg2+ channel at the plasma membrane may consist of both TRPM7 homomers and TRPM6/7 heteromers. A different expression ratio between the two proteins may result in different functional properties. Altogether, our findings confirm that TRPM6 cannot be replaced by TRPM7, and that TRPM6/7 complexes and TRPM6/7-mediated Mg2+ influx are indispensable in human epithelial colon cells.
Collapse
|
12
|
van den Broek DHN, Chang YM, Elliott J, Jepson RE. Prognostic importance of plasma total magnesium in a cohort of cats with azotemic chronic kidney disease. J Vet Intern Med 2018; 32:1359-1371. [PMID: 29704284 PMCID: PMC6060321 DOI: 10.1111/jvim.15141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/10/2018] [Accepted: 03/28/2018] [Indexed: 12/28/2022] Open
Abstract
Background Hypomagnesemia is associated with increased mortality and renal function decline in humans with chronic kidney disease (CKD). Magnesium is furthermore inversely associated with fibroblast growth factor 23 (FGF23), an important prognostic factor in CKD in cats. However, the prognostic significance of plasma magnesium in cats with CKD is unknown. Objectives To explore associations of plasma total magnesium concentration (tMg) with plasma FGF23 concentration, all‐cause mortality, and disease progression in cats with azotemic CKD. Animals Records of 174 client‐owned cats with IRIS stage 2‐4 CKD. Methods Cohort study. Cats with azotemic CKD were identified from the records of two London‐based first opinion practices (1999–2013). Possible associations of baseline plasma tMg with FGF23 concentration and risks of death and progression were explored using, respectively, linear, Cox, and logistic regression. Results Plasma tMg (reference interval, 1.73–2.57 mg/dL) was inversely associated with plasma FGF23 when controlling for plasma creatinine and phosphate concentrations (partial correlation coefficient, −0.50; P < .001). Hypomagnesemia was observed in 12% (20/174) of cats, and independently associated with increased risk of death (adjusted hazard ratio, 2.74; 95% confidence interval [CI], 1.35–5.55; P = .005). The unadjusted associations of hypermagnesemia (prevalence, 6%; 11/174 cats) with survival (hazard ratio, 2.88; 95% CI, 1.54–5.38; P = .001), and hypomagnesemia with progressive CKD (odds ratio, 17.7; 95% CI, 2.04–154; P = .009) lost significance in multivariable analysis. Conclusions and Clinical Importance Hypomagnesemia was associated with higher plasma FGF23 concentrations and increased risk of death. Measurement of plasma tMg augments prognostic information in cats with CKD, but whether these observations are associations or causations warrants further investigation.
Collapse
Affiliation(s)
- D Hendrik N van den Broek
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Yu-Mei Chang
- Research Support Office, Royal Veterinary College, University of London, London, United Kingdom
| | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Rosanne E Jepson
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
13
|
Ortega B, Dey JM, Gardella AR, Proano J, Vaneerde D. Antibody-mediated inhibition of EGFR reduces phosphate excretion and induces hyperphosphatemia and mild hypomagnesemia in mice. Physiol Rep 2017; 5:5/5/e13176. [PMID: 28292888 PMCID: PMC5350180 DOI: 10.14814/phy2.13176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Monoclonal antibody therapies targeting the EGF receptor (EGFR) frequently result in hypomagnesemia in human patients. In contrast, EGFR tyrosine kinase inhibitors do not affect Mg2+ balance in patients and only have a mild effect on Mg2+ homeostasis in rodents at elevated doses. EGF has also been shown to affect phosphate (Pi) transport in rat and rabbit proximal convoluted tubules (PCT), but evidence from studies targeting EGFR and looking at Pi excretion in whole animals is still missing. Thus, the role of EGF in regulating reabsorption of Mg2+ and/or Pi in the kidney remains controversial. Here, we inject mice with the anti-EGFR monoclonal antibody ME-1 for 2 weeks and observe a significant increase in serum Pi and mild hypomagnesemia, but no changes in Pi or Mg2+ excretion. In contrast, a single injection of ME-1 resulted in hyperphosphatemia and a significant reduction in Pi excretion 2 days after treatment, while no changes in serum Mg2+ or Mg2+ excretion were observed. Dietary Mg2+ deprivation is known to trigger a rapid Mg2+ conservation response in addition to hyperphosphatemia and hyperphosphaturia. Interestingly, one dose of ME-1 did not significantly modify the response of mice to 2 days of Mg2+ deprivation. These data show that EGFR plays a significant role in regulating Pi reabsorption in the kidney PCT, but suggest only a minor role in long-term regulation of Mg2+ transport in the distal convoluted tubule.
Collapse
Affiliation(s)
- Bernardo Ortega
- Department of Biology, The College at Brockport State University of New York, Brockport, New York
| | - Jason M Dey
- Department of Biology, The College at Brockport State University of New York, Brockport, New York
| | - Allison R Gardella
- Department of Biology, The College at Brockport State University of New York, Brockport, New York
| | - Jacob Proano
- Department of Biology, The College at Brockport State University of New York, Brockport, New York
| | - Deanna Vaneerde
- Department of Biology, The College at Brockport State University of New York, Brockport, New York
| |
Collapse
|
14
|
Corre T, Olinger E, Harris SE, Traglia M, Ulivi S, Lenarduzzi S, Belge H, Youhanna S, Tokonami N, Bonny O, Houillier P, Polasek O, Deary IJ, Starr JM, Toniolo D, Gasparini P, Vollenweider P, Hayward C, Bochud M, Devuyst O. Common variants in CLDN14 are associated with differential excretion of magnesium over calcium in urine. Pflugers Arch 2016; 469:91-103. [DOI: 10.1007/s00424-016-1913-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
|
15
|
Robak P, Ożgo M, Michałek K, Kolasa-Wołosiuk A, Taciak M, Barszcz M, Marynowska M. Identification of TRPM6 and TRPM7 expression changes in response to a diet supplemented with inulin in porcine kidney. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-267-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Magnesium is the fourth most abundant mineral element in vertebrates and the second most common intracellular cation. Recently identified Mg2+-specific channels – TRPM6 and TRPM7 – have been shown to be essential for whole-body and cellular Mg2+ homeostasis. The aim of the study was to determine the effect of inulin on the expression of TRPM6 and TRPM7 in the renal cortex and medulla of growing pigs. The study was carried out on 16 Danbred × Duroc castrated male piglets fed a cereal-based diet without inulin or with 2 % addition of inulin from chicory root from the 10th day of life. In pigs fed a diet with inulin, TRPM6 expression was greater in both the renal cortex and medulla compared to the control group. The expression of TRPM7 in both the renal cortex and medulla in the control group and in piglets fed a diet enriched with inulin was relatively stable. To our knowledge, this is the first study aimed at the identification of TRPM6 and TRPM7 in the kidneys of pig. It is proposed that inulin addition to fodder resulted not only in a magnesium absorption increase, but also, due to prolonged low plasma Mg concentration of examined piglets, renal magnesium retention. Therefore, higher magnesium reabsorption via increased TRPM6 expression in the kidney was probably observed in order to supplement deficiencies of this element. Diet-unresponsive expression of TRPM7 supports the concept that this channel is not involved in the extracellular magnesium homeostasis.
Collapse
|
16
|
Bech AP, Wetzels JF, Bongers EMHF, Nijenhuis T. Thiazide Responsiveness Testing in Patients With Renal Magnesium Wasting and Correlation With Genetic Analysis: A Diagnostic Test Study. Am J Kidney Dis 2016; 68:168-70. [PMID: 26830254 DOI: 10.1053/j.ajkd.2015.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/18/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Anneke P Bech
- Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Jack F Wetzels
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Tom Nijenhuis
- Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
17
|
Henzi T, Schwaller B. Antagonistic Regulation of Parvalbumin Expression and Mitochondrial Calcium Handling Capacity in Renal Epithelial Cells. PLoS One 2015; 10:e0142005. [PMID: 26540196 PMCID: PMC4634853 DOI: 10.1371/journal.pone.0142005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
Parvalbumin (PV) is a cytosolic Ca2+-binding protein acting as a slow-onset Ca2+ buffer modulating the shape of Ca2+ transients in fast-twitch muscles and a subpopulation of neurons. PV is also expressed in non-excitable cells including distal convoluted tubule (DCT) cells of the kidney, where it might act as an intracellular Ca2+ shuttle facilitating transcellular Ca2+ resorption. In excitable cells, upregulation of mitochondria in “PV-ergic” cells in PV-/- mice appears to be a general hallmark, evidenced in fast-twitch muscles and cerebellar Purkinje cells. Using Gene Chip Arrays and qRT-PCR, we identified differentially expressed genes in the DCT of PV-/- mice. With a focus on genes implicated in mitochondrial Ca2+ transport and membrane potential, uncoupling protein 2 (Ucp2), mitocalcin (Efhd1), mitochondrial calcium uptake 1 (Micu1), mitochondrial calcium uniporter (Mcu), mitochondrial calcium uniporter regulator 1 (Mcur1), cytochrome c oxidase subunit 1 (COX1), and ATP synthase subunit β (Atp5b) were found to be up-upregulated. At the protein level, COX1 was increased by 31 ± 7%, while ATP-synthase subunit β was unchanged. This suggested that these mitochondria were better suited to uphold the electrochemical potential across the mitochondrial membrane, necessary for mitochondrial Ca2+ uptake. Ectopic expression of PV in PV-negative Madin-Darby canine kidney (MDCK) cells decreased COX1 and concomitantly mitochondrial volume, while ATP synthase subunit β levels remained unaffected. Suppression of PV by shRNA in PV-expressing MDCK cells led subsequently to an increase in COX1 expression. The collapsing of the mitochondrial membrane potential by the uncoupler CCCP occurred at lower concentrations in PV-expressing MDCK cells than in control cells. In support, a reduction of the relative mitochondrial mass was observed in PV-expressing MDCK cells. Deregulation of the cytoplasmic Ca2+ buffer PV in kidney cells was counterbalanced in vivo and in vitro by adjusting the relative mitochondrial volume and modifying the mitochondrial protein composition conceivably to increase their Ca2+-buffering/sequestration capacity.
Collapse
Affiliation(s)
- Thomas Henzi
- Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Iguchi A, Watanabe Y, Iino N, Kazama JJ, Iesato H, Narita I. Serum magnesium concentration is inversely associated with fibroblast growth factor 23 in haemodialysis patients. Nephrology (Carlton) 2015; 19:667-71. [PMID: 24899171 DOI: 10.1111/nep.12287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2014] [Indexed: 12/22/2022]
Abstract
AIM Fibroblast growth factor 23 is reported to be a pivotal regulator for the chronic kidney disease-mineral bone disorders, working in coordinated ways with phosphate, calcium, and parathyroid hormone. However, whether there is a relationship between fibroblast growth factor 23 and magnesium is currently unclear. To address this, we performed a cross-sectional observational study in haemodialysis patients. METHODS We measured the serum levels of fibroblast growth factor 23, magnesium and other factors that are implicated in chronic kidney disease-mineral bone disorders in 225 haemodialysis patients. RESULTS Simple correlation analysis showed that fibroblast growth factor 23 was not correlated with magnesium. However, upon multiple regression analysis, a significant negative correlation was found between fibroblast growth factor 23 and magunesium (b = -0.164, P = 0.0020). Moreover, the levels of fibroblast growth factor 23 in patients treated with magnesium oxide had significantly lower levels than those without magnesium oxide. CONCLUSION We speculate that the magnesium is a potential regulator of fibroblast growth factor 23 levels in haemodialysis patients. Our data suggest that follow-up studies to elucidate the molecular mechanisms that underlie this relationship are warranted.
Collapse
Affiliation(s)
- Akira Iguchi
- Department of Internal Medicine, Ojiya General Hospital, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The tight control of blood magnesium (Mg) levels is of central importance for numerous physiological processes. A persistent low Mg status (hypomagnesemia) is associated with severe health risks and is involved in the pathogenesis of type 2 diabetes mellitus, osteoporosis, asthma, and heart and vascular diseases. The current view has expanded significantly as a result of the identification of novel genes and regulatory pathways involved in hypomagnesemic disorders. This review aims to give an up-to-date overview of transient receptor potential melastatin 6 (TRPM6) regulation and its role in the maintenance of Mg homeostasis. RECENT FINDINGS The epithelial Mg channel TRPM6 is considered to be the Mg entry pathway in the distal convoluted tubule of the kidney, where it functions as gatekeeper for controlling the body's Mg balance. Various factors and hormones contribute not only to the function, but also to the dysregulation of TRPM6, which has a substantial impact on renal Mg handling. Recent genetic and molecular studies have further elucidated the signaling processes of epithelial Mg transport, including their effect on the expression and function of TRPM6. SUMMARY Knowledge of TRPM6 functioning is of vital importance to decipher its role in Mg handling and will, in particular, provide a molecular basis for achieving a better understanding of Mg mal(re)absorption and hence systemic Mg balance.
Collapse
|
20
|
|