1
|
Dullea JT, Chaluts D, Vasan V, Rutland JW, Gill CM, Ellis E, Kinoshita Y, McBride RB, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. NF2 mutation associated with accelerated time to recurrence for older patients with atypical meningiomas. Br J Neurosurg 2025; 39:173-179. [PMID: 37096420 PMCID: PMC10598238 DOI: 10.1080/02688697.2023.2204927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/01/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Meningiomas occur more frequently in older adults, with the incidence rates increasing from 5.8/100,000 for adults 35-44 years old to 55.2/100,000 for those 85+. Due to the increased risk of surgical management in older adults, there is a need to characterize the risk factors for aggressive disease course to inform management decisions in this population. We therefore sought to determine age-stratified relationships between tumour genomics and recurrence after resection of atypical meningiomas. METHODS We identified 137 primary and recurrent Grade 2 meningiomas from our existing meningioma genomic sequencing database. We examined the differential distribution of genomic alterations in those older than 65 compared to younger. We then performed an age stratified survival analysis to model recurrence for a mutation identified as differentially present. RESULTS In our cohort of 137 patients with grade 2 meningiomas, alterations in NF2 were present at a higher rate in older adults compared to younger (37.8% in < 65 vs. 55.3% in > 65; recurrence adjusted p-value =0.04). There was no association between the presence of NF2 and recurrence in the whole cohort. In the age-stratified model for those less than 65 years old, there was again no relationship. For patients in the older age stratum, there is a relationship between NF2 and worsened recurrence outcomes (HR = 3.64 (1.125 - 11.811); p = 0.031). CONCLUSIONS We found that mutations in NF2 were more common in older adults. Further, the presence of mutant NF2 was associated with an increased risk of recurrence in older adults.
Collapse
Affiliation(s)
- Jonathan T. Dullea
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Danielle Chaluts
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - John W. Rutland
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Corey M. Gill
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Ethan Ellis
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, NY
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount
Sinai, New York, NY
| | - Russell B. McBride
- Department of Pathology, Icahn School of Medicine at Mount
Sinai, New York, NY
- The Institute for Translational Epidemiology, Icahn School
of Medicine at Mount Sinai, New York, NY
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount
Sinai, New York, NY
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, NY
- Sema4, A Mount Sinai venture, Stamford, CT
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount
Sinai, New York, NY
| | - Raj K. Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at
Mount Sinai, New York, NY
| |
Collapse
|
2
|
Panzenboeck L, Schoeny H, Stelzer B, Foels E, Glas M, Pühringer M, Hirschmann D, Loetsch D, Dorfer C, Rampler E, Koellensperger G. Triple acquisition mass spectrometry (TRAM) combining targeted and non-targeted metabolomics in a single run. Anal Chim Acta 2024; 1331:343314. [PMID: 39532411 DOI: 10.1016/j.aca.2024.343314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND We introduce TRAM, a triple acquisition strategy on a high-speed quadrupole time-of-flight mass spectrometer for merging non-targeted and targeted metabolomics into one run. TRAM stands for "quasi-simultaneous" acquisition of (1) a full scan MS1, (2) top 30 data-dependent MS2 (DDA), and (3) targeted scheduled MS2 for multiple reaction monitoring (MRM) within measurement cycles of ∼1 s. TRAM combines the selectivity and sensitivity of state-of-the-art targeted MRM-based methods with the full scope of non-targeted analysis enabled by high-resolution mass spectrometry. RESULTS In this work, we deploy a workflow based on hydrophilic interaction liquid chromatography (HILIC). For a broad panel of metabolites, we provide chromatographic retention times, and optimized conditions as a basis for targeted MRM experiments, listing accurate masses and sum formulas for fragment ions (including fully 13C labeled analogs). Validation experiments showed that TRAM offered (1) linear working ranges and limits of quantification comparable to MRM-only methods, (2) enabled accurate quantification in SRM 1950 human plasma reference material, and (3) was equivalent to DDA-only approaches in non-targeted metabolomics. Metabolomics in human cerebrospinal fluid showcased the power of the strategy, emphasizing the need for high coverage/high throughput metabolomics in clinical studies. SIGNIFICANCE Acquiring up to 30 data-dependent spectra per MS cycle while still offering gold standard absolute quantification down to low nanomolar concentrations, TRAM allows in-depth profiling and reduces required sample volume, time, cost, and environmental impact.
Collapse
Affiliation(s)
- Lisa Panzenboeck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090, Vienna, Austria
| | - Harald Schoeny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Bruno Stelzer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Elisabeth Foels
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090, Vienna, Austria; Department of Neurosurgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Marvin Glas
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria
| | - Marlene Pühringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090, Vienna, Austria
| | - Dorian Hirschmann
- Department of Neurosurgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Daniela Loetsch
- Department of Neurosurgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Chaluts D, Dullea JT, Ali M, Vasan V, Devarajan A, Rutland JW, Gill CM, Ellis E, Kinoshita Y, McBride RB, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. ARID1A mutation associated with recurrence and shorter progression-free survival in atypical meningiomas. J Cancer Res Clin Oncol 2023; 149:5165-5172. [PMID: 36348021 DOI: 10.1007/s00432-022-04442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE The oncologic outcomes for atypical meningiomas can be poor. Generally, patients that have had a prior recurrence have a substantially elevated risk of a future recurrence. Additionally, certain tumor genomic profiles have been shown as markers of poor prognosis. We sought to characterize the genomic differences between primary and recurrent tumors as well as assess if those differences had implications on recurrence. METHODS We identified primary and recurrent gross totally resected WHO grade II meningiomas with > 30 days of post-surgical follow-up at our institution. For genes with a prevalence of > 5% in the cohort, we compared the mutational prevalence in primary and recurrent tumors. For a gene of interest, we assessed the time to radiographic recurrence using adjusted cox-regression. RESULTS We identified 88 meningiomas (77 primary, 16 recurrent) with a median follow-up of 5.33 years. Mutations in ARID1A found in association with recurrent tumors (7/16 recurrent tumors vs 5/72 primary tumors, p < 0.001). In the whole cohort, mutations in ARID1A were not associated with alterations in time to recurrence after adjusting for recurrence status (p = 0.713). When restricted to primary tumors, ARID1A is associated with a 625% increase in the hazard of recurrence (HR = 7.26 [1.42-37.0]; p = 0.017). CONCLUSION We demonstrate mutations in ARID1A, a chromatin remodeling gene, in a higher prevalence in recurrent tumors. We further demonstrate that when mutations in ARID1A are present in primary atypical meningiomas, these tumors tend to have worse prognosis. Further prospective study may validate ARID1A as a prognostic marker.
Collapse
Affiliation(s)
- Danielle Chaluts
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Jonathan T Dullea
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA.
| | - Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Alex Devarajan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - John W Rutland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Corey M Gill
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Ethan Ellis
- Sema4, A Mount Sinai Venture, Stamford, CT, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russell B McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, A Mount Sinai Venture, Stamford, CT, USA
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| |
Collapse
|
4
|
Vasan V, Dullea JT, Devarajan A, Ali M, Rutland JW, Gill CM, Kinoshita Y, McBride RB, Gliedman P, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. NF2 mutations are associated with resistance to radiation therapy for grade 2 and grade 3 recurrent meningiomas. J Neurooncol 2023; 161:309-316. [PMID: 36436149 DOI: 10.1007/s11060-022-04197-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE High grade meningiomas have a prognosis characterized by elevated recurrence rates and radiation resistance. Recent work has highlighted the importance of genomics in meningioma prognostication. This study aimed to assess the relationship between the most common meningioma genomic alteration (NF2) and response to postoperative radiation therapy (RT). METHODS From an institutional tissue bank, grade 2 and 3 recurrent meningiomas with both > 30 days of post-surgical follow-up and linked targeted next-generation sequencing were identified. Time to radiographic recurrence was determined with retrospective review. The adjusted hazard of recurrence was estimated using Cox-regression for patients treated with postoperative RT stratified by NF2 mutational status. RESULTS Of 53 atypical and anaplastic meningiomas (29 NF2 wild-type, 24 NF2 mutant), 19 patients underwent postoperative RT. When stratified by NF2 wild-type, postoperative RT in NF2 wild-type patients was associated with a 78% reduction in the risk of recurrence (HR 0.216; 95%CI 0.068-0.682; p = 0.009). When stratified by NF2 mutation, there was a non-significant increase in the risk of recurrence for NF2 mutant patients who received postoperative RT compared to those who did not (HR 2.43; 95%CI 0.88-6.73, p = 0.087). CONCLUSION This study demonstrated a protective effect of postoperative RT in NF2 wild-type patients with recurrent high grade meningiomas. Further, postoperative RT may be associated with no improvement and perhaps an accelerated time to recurrence in NF2 mutant tumors. These differences in recurrence rates provide evidence that NF2 may be a valuable prognostic marker in treatment decisions regarding postoperative RT. Further prospective studies are needed to validate this relationship.
Collapse
Affiliation(s)
- Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Floor 8, New York, NY, 10129, USA.
| | - Jonathan T Dullea
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Devarajan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John W Rutland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corey M Gill
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Floor 8, New York, NY, 10129, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russell B McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Gliedman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Sema4, A Mount Sinai Venture, Stamford, CT, USA
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Dullea JT, Vasan V, Rutland JW, Gill CM, Chaluts D, Ranti D, Ellis E, Subramanium V, Arrighi-Allisan A, Kinoshita Y, McBride RB, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. Association between tumor mutations and meningioma recurrence in Grade I/II disease. Oncoscience 2022; 9:70-81. [PMID: 36514795 PMCID: PMC9733702 DOI: 10.18632/oncoscience.570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Meningiomas are common intracranial tumors with variable prognoses not entirely captured by commonly used classification schemes. We sought to determine the relationship between meningioma mutations and oncologic outcomes using a targeted next-generation sequencing panel. MATERIALS AND METHODS We identified 184 grade I and II meningiomas with both >90 days of post-surgical follow-up and linked targeted next-generation sequencing. For mutated genes in greater than 5% of the sample, we computed progression-free survival Cox-regression models stratified by gene. We then built a multi-gene model by including all gene predictors with a p-value of less than 0.20. Starting with that model, we performed backward selection to identify the most predictive factors. RESULTS ATM (HR = 4.448; 95% CI: 1.517-13.046), CREBBP (HR = 2.727; 95% CI = 1.163-6.396), and POLE (HR = 0.544; HR = 0.311-0.952) were significantly associated with alterations in disease progression after adjusting for clinical and pathologic factors. In the multi-gene model, only POLE remained a significant predictor of recurrence after adjusting for the same clinical covariates. Backwards selection identified recurrence status, resection extent, and mutations in ATM (HR = 7.333; 95% CI = 2.318-23.195) and POLE (HR = 0.413; 95% CI = 0.229-0.743) as predictive of recurrence. CONCLUSIONS Mutations in ATM and CREBBP were associated with accelerated meningioma recurrence, and mutations in POLE were protective of recurrence. Each mutation has potential implications for treatment. The effect of these mutations on oncologic outcomes and as potential targets for intervention warrants future study.
Collapse
Affiliation(s)
- Jonathan T. Dullea
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA,Correspondence to:Jonathan T. Dullea, email:
| | - Vikram Vasan
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - John W. Rutland
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Corey M. Gill
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Danielle Chaluts
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Daniel Ranti
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Ethan Ellis
- 4Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Varun Subramanium
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Annie Arrighi-Allisan
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Yayoi Kinoshita
- 2Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Russell B. McBride
- 2Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA,3The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Joshua Bederson
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Michael Donovan
- 2Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Robert Sebra
- 4Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA,5Sema4, A Mount Sinai Venture, Stamford, CT 06902, USA
| | - Melissa Umphlett
- 2Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| | - Raj K. Shrivastava
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10129, USA
| |
Collapse
|
6
|
Rutland JW, Dullea JT, Gill CM, Chaluts D, Ranti D, Ellis E, Arrighi-Allisan A, Kinoshita Y, McBride RB, Bederson J, Donovan M, Sebra R, Fowkes M, Umphlett M, Shrivastava RK. Association of mutations in DNA polymerase epsilon with increased CD8+ cell infiltration and prolonged progression-free survival in patients with meningiomas. Neurosurg Focus 2022; 52:E7. [PMID: 35104796 DOI: 10.3171/2021.11.focus21592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Prior studies have demonstrated a relationship between underlying tumor genetics and lymphocyte infiltration in meningiomas. In this study, the authors aimed to further characterize the relationship between meningioma genomics, CD4+ and CD8+ T-cell infiltration, and oncological outcomes of meningiomas. Understanding specific characteristics of the inflammatory infiltration could have implications for treatment and prognostication. METHODS Immunohistochemically stained meningioma slides were reviewed to assess the CD4+ and CD8+ cell infiltration burden. The relationship between immune cell infiltration and tumor genomics was then assessed using an adjusted ANOVA model. For a specific gene identified by the ANOVA, the relationship between that mutation and tumor recurrence was assessed using Cox regression. RESULTS In immunohistochemically stained samples from a subcohort of 25 patients, the mean number of CD4+ cells was 42.2/400× field and the mean number of CD8+ cells was 69.8/400× field. Elevated CD8+ cell infiltration was found to be associated with the presence of a mutation in the gene encoding for DNA polymerase epsilon, POLE (51.6 cells/hpf in wild-type tumors vs 95.9 cells/hpf in mutant tumors; p = 0.0199). In a retrospective cohort of 173 patients, the presence of any mutation in POLE was found to be associated with a 46% reduction in hazard of progression (HR 0.54, 95% CI 0.311-0.952; p = 0.033). The most frequent mutation was a near-C-terminal nonsense mutation. CONCLUSIONS A potential association was found between mutant POLE and both an increase in CD8+ cell infiltration and progression-free survival. The predominant mutation was found outside of the known exonuclease hot spot; however, it was still associated with a slight increase in mutational burden, CD8+ cell infiltration, and progression-free survival. Alterations in gene expression, resulting from alterations in POLE, may yield an increased presentation of neoantigens, and, thus, greater CD8+ cell-mediated apoptosis of neoplastic cells. These findings have suggested the utility of checkpoint inhibitors in the treatment of POLE-mutant meningiomas.
Collapse
Affiliation(s)
- John W Rutland
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Jonathan T Dullea
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Corey M Gill
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Danielle Chaluts
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Daniel Ranti
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Ethan Ellis
- 2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai
| | | | - Yayoi Kinoshita
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai
| | - Russell B McBride
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai.,4The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Joshua Bederson
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Michael Donovan
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai
| | - Robert Sebra
- 2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai.,5Sema4, A Mount Sinai venture, Stamford, Connecticut
| | - Mary Fowkes
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai
| | - Melissa Umphlett
- 3Department of Pathology, Icahn School of Medicine at Mount Sinai
| | - Raj K Shrivastava
- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
7
|
Progestin-related WHO grade II meningiomas behavior-a single-institution comparative case series. Neurosurg Rev 2021; 45:1691-1699. [PMID: 34850321 DOI: 10.1007/s10143-021-01708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
WHO grade II progestin-related meningiomas have been reported in recent series but we found no previous study describing their long-term outcome. Our study aimed to evaluate patients operated on for high-grade intracranial meningioma and who underwent long-term exposure to high dose of cyproterone acetate, nomegestrol acetate, and chlormadinone acetate. Our study retrospectively included 9 patients with high-grade progestin-related intracranial meningioma between December 2006 and September 2021. In each patient, clinico-radiological follow-up was performed every 6 months after diagnosis and treatment withdrawal recommendation. The mean progestative exposure was 11.4 years. Edema existence or absence of cleft sign on MRI were the key factors for surgical indication. All patients underwent surgery. Adjuvant radiotherapy was indicated in 1 patient, and Gamma Knife radiosurgery was proposed in 2 other patients for a second location of meningioma. Six patients harbored a grade II chordoid meningioma subtype with 100% PR expression and 3 patients a grade II atypical meningioma subtype with lower PR expression. The mean follow-up was 8.1 years and none of the 9 patients presented with a recurrence. Patients with grade II progestin-related meningiomas have less tumor recurrence after surgery than patients with sporadic grade II meningiomas, especially after progestin withdrawal. The presence/appearance of peri-meningioma edema and the absence of cleft sign before volumetric change should suggest the existence of an underlying WHO grade II meningiomas. In these cases, surgical resection may immediately be considered and adjuvant radiotherapy should be reserved for proven recurrence cases.
Collapse
|
8
|
SWI/SNF chromatin remodeling complex alterations in meningioma. J Cancer Res Clin Oncol 2021; 147:3431-3440. [PMID: 33715086 DOI: 10.1007/s00432-021-03586-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE While SWI/SNF chromatin remodeling complex alterations occur in approximately 20% of cancer, the frequency and potential impact on clinical outcomes in meningiomas remains to be comprehensively elucidated. METHODS A large series of 255 meningiomas from a single institution that was enriched for high grade and recurrent lesions was identified. We performed next-generation targeted sequencing of known meningioma driver genes, including NF2, AKT1, PIK3CA, PIK3R1, and SMO and SWI/SNF chromatin remodeling complex genes, including ARID1A, SMARCA4, and SMARCB1 in all samples. Clinical correlates focused on clinical presentation and patient outcomes are presented. RESULTS The series included 63 grade I meningiomas and 192 high-grade meningiomas, including 173 WHO grade II and 19 WHO grade III. Samples from recurrent surgeries comprised 37.3% of the series. A total of 41.6% meningiomas were from the skull base. NF2, AKT1, PIK3CA, PIK3R1, and SMO were mutated in 40.8, 7.1, 3.5, 3.9, and 2.4% of samples, respectively. ARID1A, SMARCA4, and SMARCB1 mutations were observed in 17.3, 3.5, and 5.1% of samples, respectively. A total of 68.2% of ARID1A-mutant meningiomas harbored a p.Gln1327del in-frame deletion. ARID1A mutations were seen in 19.1% of Grade I, 16.8% of Grade II, and 15.8% of Grade III meningiomas (P = 0.9, Fisher's exact). Median overall survival was 16.3 years (95% CI 10.9, 16.8). With multivariable analysis, the presence of an ARID1A mutation was significantly associated with a 7.421-fold increased hazard of death (P = 0.04). CONCLUSION ARID1A mutations occur with similar frequency between low and high-grade meningiomas, but ARID1A mutations are independently prognostic of worse prognosis beyond clinical and histopathologic features.
Collapse
|
9
|
Williams EA, Santagata S, Wakimoto H, Shankar GM, Barker FG, Sharaf R, Reddy A, Spear P, Alexander BM, Ross JS, Brastianos PK, Cahill DP, Ramkissoon SH, Juratli TA. Distinct genomic subclasses of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic. Acta Neuropathol Commun 2020; 8:171. [PMID: 33087175 PMCID: PMC7580027 DOI: 10.1186/s40478-020-01040-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Genomic studies of high-grade/progressive meningiomas have reported a heterogeneous mutation spectrum, identifying few recurrently mutated genes. Most studies have been underpowered to detect genomic subclasses of aggressive meningiomas due to relatively small number of available samples. Here, we present a genomic survey of one of the largest multi-institutional cohorts of high-grade/progressive meningiomas to date. METHODS 850 high-grade/progressive meningiomas, including 441 WHO grade 2 and 176 WHO grade 3 meningiomas and 220 progressive WHO grade 1 meningiomas, were tested as part of a clinical testing program by hybridization capture of 406 cancer-related genes to detect base substitutions, indels, amplifications, deletions, and rearrangements. Information from pathology reports, histopathology review, and patient clinical data was assessed. RESULTS Genomic analyses converged to identify at least three distinct patterns of biologically-aggressive meningiomas. The first and most common contained NF2-mutant tumors (n = 426, 50%), was associated with male sex (64.4% %, p = 0.0001) and often harbored additional mutations in CDKN2A/B (24%), and the chromatin regulators ARID1A (9%), and KDM6A (6%). A second group (NF2-agnostic) featured TERT promoter (TERTp; n = 56) or TP53 mutations (n = 25) and were either NF2-mutant or wild-type, and displayed no association with either sex (p = 0.39). The remaining group generally lacked NF2 mutations, and accounted for 40% of the cases-with three subgroups. One consistent primarily of grade 3 lesions harboring alterations in chromatin regulators BAP1 (n = 22) or PBRM1 (n = 16). A second subgroup contained AKT1 (n = 26), PIK3CA (n = 14) and SMO (n = 7) mutant skull-based meningiomas, and a third mixed subgroup included 237 meningiomas with a heterogeneous spectrum of low frequency and non-recurrent alterations. CONCLUSIONS Our findings indicate that the patterns of genomic alterations in high-grade/progressive meningiomas commonly group into three different categories. The most common NF2-associated canonical group frequently harbored CDKN2A/B alterations, which is potentially amenable to targeted therapies. An NF2-agnostic group harbored frequent TERTp and TP53 mutations. The final subclass, distinct from the canonical NF2 mutant associated pathway, was partly characterized by BAP1/PBRM1 alterations (rhabdoid/papillary histology) or skull-base disease. Overall, these data increase our understanding of the pathobiology of high-grade/progressive meningiomas and can guide the design of clinical trials. IRB APPROVAL STATUS Reviewed and approved by Western IRB; Protocol No. 20152817.
Collapse
Affiliation(s)
- Erik A Williams
- Foundation Medicine Inc, 150 Second Street, Cambridge, MA, 02141, USA.
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Fred G Barker
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Radwa Sharaf
- Foundation Medicine Inc, 150 Second Street, Cambridge, MA, 02141, USA
| | - Abhinav Reddy
- Foundation Medicine Inc, 150 Second Street, Cambridge, MA, 02141, USA
| | - Phoebe Spear
- Foundation Medicine Inc, 150 Second Street, Cambridge, MA, 02141, USA
| | - Brian M Alexander
- Foundation Medicine Inc, 150 Second Street, Cambridge, MA, 02141, USA
| | - Jeffrey S Ross
- Foundation Medicine Inc, 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Priscilla K Brastianos
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Division of Hematology/Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Shakti H Ramkissoon
- Foundation Medicine Inc, 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology, Wake Forest School of Medicine, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden, Germany.
| |
Collapse
|
10
|
NF2 mutation status and tumor mutational burden correlate with immune cell infiltration in meningiomas. Cancer Immunol Immunother 2020; 70:169-176. [PMID: 32661686 DOI: 10.1007/s00262-020-02671-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/10/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND The tumor microenvironment is an emerging biomarker of underlying genomic heterogeneity and response to immunotherapy-based treatment regimens in solid malignancies. How tumor mutational burden influences the density, distribution, and presence of a localized immune response in meningiomas is unknown. METHODS Representative hematoxylin and eosin slides were reviewed at 40X to assess for the density of inflammatory cells. Lymphocytes and macrophages were quantified in the following ordinal manner: 0 = not present, 1 = 1-25 cells present, and 2 = greater than 26 cells present. Immune cell infiltrate grade was scored for both scattered and aggregated distributions. Next generation targeted sequencing was performed on all meningiomas included in this study. RESULTS One hundred and forty-five meningiomas were evaluated in this study. Lymphocytes were observed in both scattered (95.9%) and aggregated (21.4%) distributions. A total of 115 (79.3%) meningiomas had 1-25 scattered lymphocytes, and 24 (16.6%) had > 25 scattered lymphocytes, and 6 (4.1%) had no scattered lymphocytes. Twenty (13.8%) meningiomas had 1-25 aggregated lymphocytes. Eleven (7.6%) had > 25 aggregated lymphocytes and 114 (78.6%) had no aggregated lymphocytes. Six (4.1%) meningiomas had 1-25 aggregated macrophages, 5 (3.4%) had > 25 aggregated macrophages, and 134 (92.4%) had no aggregated macrophages. Density of aggregated lymphocytes and aggregated macrophages were associated with higher tumor grade, P = 0.0071 and P = 0.0068, respectively. Scattered lymphocyte density was not associated with meningioma grade. The presence of scattered lymphocytes was associated with increased tumor mutational burden. Meningiomas that did not have scattered lymphocytes had a mean number of single mutations of 2.3 ± 2.9, compared with meningiomas that had scattered lymphocytes, 6.9 ± 20.3, P = 0.03. NF2 mutations were identified in 59 (40.7%) meningiomas and were associated with increased density of scattered lymphocytes. NF2 mutations were seen in 0 (0%) meningiomas that did not have scattered lymphocytes, 46 (40.0%) meningiomas that had 1-25 scattered lymphocytes, and 13 (54.2%) meningiomas that had > 25 scattered lymphocytes, P = 0.046. CONCLUSIONS Our findings suggest that distribution of immune cell infiltration in meningiomas is associated with tumor mutational burden. NF2 mutational status was associated with an increasing density of scattered lymphocytes. As the role of immunotherapy in meningiomas continues to be elucidated with clinical trials that are currently underway, these results may serve as a novel biomarker of tumor mutational burden in meningiomas.
Collapse
|