1
|
Ghosh HS, Patel RV, Claus EB, Gonzalez Castro LN, Wen PY, Ligon KL, Meredith DM, Bi WL. Canonical amplifications and CDKN2A/B loss refine IDH1/2-mutant astrocytoma prognosis. Neuro Oncol 2025; 27:993-1003. [PMID: 39584448 PMCID: PMC12083226 DOI: 10.1093/neuonc/noae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Molecular features have been incorporated alongside histologic criteria to improve glioma diagnostics and prognostication. CDKN2A/B homozygous-loss associates with worse survival in IDH1/2-mutant astrocytomas (IDHmut-astrocytomas), the presence of which denotes a grade 4 tumor independent of histologic features. However, no molecular features distinguish survival amongst histologically defined grade 2 and 3 IDHmut-astrocytomas. METHODS We assembled a cohort of patients ≥19 years old diagnosed with an IDHmut-astrocytoma between 1989 and 2020 from public datasets and several academic medical centers. Multivariate modeling and unbiased clustering were used to stratify risk. RESULTS We identified 998 IDHmut-astrocytoma patients (41.5% female; 85.6% white). Tumor grade, CDKN2A/B loss, and/or ≥1 focal amplification were associated with reduced survival. Grade 2/3 patients with intact CDKN2A/B and no focal amplifications survived the longest (OS 205.7 months). Survival for grade 2/3 cases with either CDKN2A/B hemizygous-loss or focal amplifications (80.4, 88.7 months respectively) did not differ significantly from grade 4 cases with intact CDKN2A/B and no amplifications (91.5 months, P = .93). Grade 4 patients with either hemizygous or homozygous loss of CDKN2A/B had the shortest survival (OS 31.9, 32.5 months respectively), followed by grade 4 cases with intact CDKN2A/B and focal gene amplifications (OS 55.9 months). Integrating CDKN2A/B status and amplifications alongside histopathologic grade refined overall survival prediction. Unbiased clustering revealed 9 distinct molecular profiles, with differential survival. IDHmut-astrocytomas with any CDKN2A/B loss clustered together, regardless of grade, and exhibited the poorest outcomes. CONCLUSIONS Combining CDKN2A/B hemizygous-loss and focal gene amplifications reveals a group of IDHmut-astrocytoma patients with an intermediate prognosis, refining IDHmut-astrocytoma classification.
Collapse
Affiliation(s)
- Hia S Ghosh
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ruchit V Patel
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Elizabeth B Claus
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Luis Nicolas Gonzalez Castro
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David M Meredith
- Department of Pathology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Michaud K, Gould PV, D’Astous M, Paquet C, Saikali S. 1p and/or 19q polysomy is an adverse prognostic factor in oligodendrogliomas, and easy to detect by automated FISH. PLoS One 2025; 20:e0322809. [PMID: 40315229 PMCID: PMC12047829 DOI: 10.1371/journal.pone.0322809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025] Open
Abstract
OBJECTIVE To study the feasibility of automated analysis by FISH technique in the determination of the 1p and/or 19q polysomy in oligodendrogliomas (OGs) and to explore its prognostic value. METHODS We analyzed a retrospective monocentric series of 145 consecutive OGs with IDH mutation and 1p/19q codeletion. For all cases, automated FISH analyses were performed to determine 1p and/or 19q polysomy status and results were compared to manual analysis to verify the concordance of the two methods. Polysomic status was then compared to clinical and histological data, the CDKN2A deletion status when available, event free survival (EFS) and overall survival (OS). RESULTS Our study comprised 79 grade 2 OGs (O2) and 66 grade 3 OGs (O3). Polysomy of 1p and/or 19q was observed in 58 cases (40% of whole cohort) with a significant enrichment in the high grade cohort (59% versus 24%; p < 0,0001) and recurrent cases (55%). A majority of polysomic cases were copolysomic for 1p and 19q (75% of the polysomic cohort) rather than 1p or 19q single polysomy (21% and 4% respectively). Polysomy was correlated to high grade histological criteria of high mitotic and Mib1 proliferative indices (p = 0,002 and p = 0,0005 respectively) and to vascular proliferation (p = 0,0003). Univariate and multivariate analysis showed a significant correlation betwen polysomy and a shorter EFS and OS (p = 0,02 and p = 0,016 respectively). Concordance between manual and automated analysis was almost perfect for both 1p and 19q analysis (96 and 98% respectively, κ = 0,92 and 0,95 respectively). Automated analysis revealed that the large majority of polysomic signatures are represented by a small number of R/G signals (mainly 7 signatures) allowing a very easy implementation to pre-existent FISH platforms analysis software. CONCLUSION 1p and/ or 19q polysomy status represent a prognostic factor in OGs and can be easily determined by automated analysis. Our study supports the clinical interest to determine the polysomic status in all primitive or recurrent OGs and underline the benefits of automated analysis which offers a better archive storage and facilitates multicentric comparison.
Collapse
Affiliation(s)
- Karine Michaud
- Department of Neurosurgery, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Peter Vincent Gould
- Department of Pathology and Molecular Genetics, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Myreille D’Astous
- Department of Neurosurgery, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Claudie Paquet
- Department of Pathology and Molecular Genetics, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Stephan Saikali
- Department of Pathology and Molecular Genetics, Centre Hospitalier Universitaire de Québec, Québec, Canada
| |
Collapse
|
3
|
Jangir H, Yadav S, Hayagrivas MB, Singh J, Sumanta Das, Sahu S, Roy C, Sharma MC, Sarkar C, Suri A, Suri V. CLINICAL utility of assessing CDKN2A status in recurrent astrocytomas. Brain Tumor Pathol 2025; 42:21-25. [PMID: 40080309 DOI: 10.1007/s10014-025-00496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
IDH-mutant astrocytomas exhibit a more indolent natural history and better prognosis compared to their IDH-wild type counterparts. WHO 2021 classification integrated CDKN2A/B homozygous deletion as a crucial criterion for grading these tumors, emphasizing its prognostic implications. FISH assay is commonly used to assess CDKN2A status, but guidelines for interpreting FISH results for glioma prognostication are not well-defined in the literature. We conducted an ambispective study involving 22 cases of recurrent IDH-mutant astrocytomas, including primary tumor samples. Histopathological assessments, including WHO grading and molecular profiling, were performed. Immunohistochemistry confirmed IDH mutation status, and FISH analysis evaluated CDKN2A homozygous deletion. Homozygous CDKN2A deletion was detected in only 1/22 (4.8%) of primary tumors, which was grade 3 astrocytoma, and significantly more frequent in recurrent cases, particularly in histological grade 2/3 tumors (35.3%). Patients harboring CDKN2A deletions exhibited significantly poorer overall survival, highlighting its prognostic significance. Our findings highlight the clinical relevance of CDKN2A assessment in recurrent IDH-mutant astrocytomas and its utility as a prognostic marker. We propose a selective approach to FISH testing, focusing on primary grade 3 and all recurrent cases, regardless of histology grade, to optimize diagnostic accuracy and stratification for personalized treatment strategies.
Collapse
Affiliation(s)
- Hemlata Jangir
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sahil Yadav
- All India Institute of Medical Sciences, New Delhi, India
| | - M B Hayagrivas
- All India Institute of Medical Sciences, New Delhi, India
| | - Jyotsna Singh
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sumanta Das
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Saumya Sahu
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Charli Roy
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Ippen FM, Hielscher T, Friedel D, Göbel K, Reuss D, Herold-Mende C, Krieg S, Deimling AV, Wick W, Sahm F, Suwala AK. The prognostic impact of CDKN2A/B hemizygous deletions in IDH-mutant glioma. Neuro Oncol 2025; 27:743-754. [PMID: 39530475 PMCID: PMC11889711 DOI: 10.1093/neuonc/noae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Homozygous deletions of CDKN2A/B are known to predict poor prognosis in gliomas, but the impact of hemizygous deletions is less clear. This study aimed to evaluate the prognostic significance of hemizygous CDKN2A/B deletions in IDH-mutant low-grade astrocytomas and oligodendrogliomas. METHODS Tissue samples diagnosed as astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant, 1p/19q co-deleted CNS WHO grade 2 and 3 were collected from the archives of the Institute of Neuropathology in Heidelberg. DNA methylation analysis was performed on formalin-fixed paraffin-embedded samples. Evaluation of the CDKN2A/B locus was performed by visual inspection of copy-number plots derived from methylation-array data for each case. Hemizygous and homozygous losses were assessed in relation to whole chromosomal or larger segmental losses and gains in the chromosomal profile. Survival probabilities were assessed using the Kaplan-Meier method. RESULTS A total of 334 low-grade glioma cases were identified, including 173 astrocytomas and 161 oligodendrogliomas. Hemizygous deletions in CDKN2A/B (37/173 in astrocytomas, 15/161 in oligodendrogliomas) did not confer significantly worse survival outcomes compared to CDKN2A/B wild-type cases in neither low-grade astrocytoma (log-rank P = .2556; HR 2.29, 95% CI [0.76; 6.40], P = .135) nor oligodendroglioma (log-rank P = .2760; HR 0.17; 95% CI [0.01; 5.05]; P = .305), regardless of CNS WHO grade, which was further demonstrated on a subgroup of astrocytoma, IDH mutant CNS WHO 4 cases (log-rank P = .1680; HR 4.55, 95% CI [0.88; 24.51], P = .0689). CONCLUSIONS Hemizygous CDKN2A/B deletions do not significantly worsen OS or progression-free survival in IDH-mutant astrocytomas and oligodendrogliomas, CNS WHO grades 2 and 3.
Collapse
Affiliation(s)
- Franziska M Ippen
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Friedel
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Kirsten Göbel
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David Reuss
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Division of Experimental Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas v Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Abigail K Suwala
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| |
Collapse
|
5
|
Mair MJ, Leibetseder A, Heller G, Tomasich E, Müller L, Busse I, Wöhrer A, Kiesel B, Widhalm G, Eckert F, Weis S, Pichler J, Preusser M, Berghoff AS. Clinical characteristics, molecular reclassification trajectories and DNA methylation patterns of long- and short-term survivors of WHO grade II and III glioma. J Neurol 2025; 272:210. [PMID: 39954095 PMCID: PMC11829921 DOI: 10.1007/s00415-025-12923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE The prognosis of diffuse gliomas previously classified as "lower-grade" is heterogeneous and complicates clinical decisions. We aimed to investigate the molecular profile of clinical outliers to gain insight into biological drivers of long and short-term survivors. METHODS Here, patients aged ≥ 18 years and diagnosed with diffuse glioma, WHO grade II/2 or III/3 were included. Short-term survivors (STS) were defined as overall survival (OS) < 1 years, and long-term survivors (LTS) as OS > 10 years. DNA methylation profiling was performed using the Illumina EPIC 850k platform. RESULTS In total, 385 patients (294 LTS, 91 STS) were included. Median overall survival was 234 months (95%CI: 207-248) in LTS and 7.3 months (95%CI: 6.4-8.1) in STS. Compared to STS, LTS were younger, had higher Karnofsky Performance Status, more extensive resections, and lower symptomatic burden (p < 0.001, respectively). Molecular reclassification showed IDH-mutant gliomas in 240/246 (95.5%) LTS and 10/79 (12.7%) STS. Initial diagnosis (tumor type and/or grading) changed in 69/325 (21.2%) patients based on reclassification according to WHO 2016 and in 45/258 (17.4%) as per WHO 2021. DNA methylation analysis indicated two clusters, one with mainly STS (39/41, 95.1%) and heterogeneous IDH-wildtype tumors (cluster A) and one with mainly LTS (82/106, 77.4%) and IDH-mutant tumors (cluster B). Functional enrichment analysis of rare subtypes indicated altered Hippo/Notch and synaptic/neurotransmitter signaling pathway members. CONCLUSION LTS and STS show distinct clinical and molecular features, underscoring the importance of extended molecular workup for diagnosis. Further characterization of rare subtypes is needed to optimize treatment strategies and clinical trial planning.
Collapse
Affiliation(s)
- Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Annette Leibetseder
- Department of Neurology 1, Neuromed Campus, Kepler University Hospital, Johannes Kepler University Linz, and Clinical Research Institute for Neuroscience, Linz, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Lisa Müller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Ilka Busse
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Adelheid Wöhrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, and Clinical Research Institute for Neuroscience, Johannes Kepler University Linz, Linz, Austria
| | - Josef Pichler
- Department of Internal Medicine and Neurooncology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria.
| |
Collapse
|
6
|
Kacimi SEO, Dehais C, Feuvret L, Chinot O, Carpentier C, Bronnimann C, Vauleon E, Djelad A, Cohen-Jonathan Moyal E, Langlois O, Campone M, Ducloie M, Noel G, Cuzzubbo S, Taillandier L, Ramirez C, Younan N, Menei P, Dhermain F, Desenclos C, Ghiringhelli F, Bourg V, Ricard D, Faillot T, Appay R, Tabouret E, Nichelli L, Mathon B, Thomas A, Tran S, Bielle F, Alentorn A, Iorgulescu JB, Boëlle PY, Labreche K, Hoang-Xuan K, Sanson M, Idbaih A, Figarella-Branger D, Ducray F, Touat M. Survival Outcomes Associated With First-Line Procarbazine, CCNU, and Vincristine or Temozolomide in Combination With Radiotherapy in IDH-Mutant 1p/19q-Codeleted Grade 3 Oligodendroglioma. J Clin Oncol 2025; 43:329-338. [PMID: 39356975 DOI: 10.1200/jco.24.00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE Patients with IDH-mutant 1p/19q-codeleted grade 3 oligodendroglioma (O3IDHmt/Codel) benefit from adding alkylating agent chemotherapy to radiotherapy (RT). However, the optimal chemotherapy regimen between procarbazine, 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), and vincristine (PCV) and temozolomide (TMZ) remains unclear given the lack of randomized trial data comparing both regimens. METHODS The objective was to assess the overall survival (OS) and progression-free survival (PFS) associated with first-line PCV/RT versus TMZ/RT in patients newly diagnosed with O3IDHmt/Codel. We included patients with histologically proven O3IDHmt/Codel (according to WHO criteria) from the French national prospective cohort Prise en charge des OLigodendrogliomes Anaplasiques (POLA). All tumors underwent central pathologic review. OS and PFS from surgery were estimated using the Kaplan-Meier method and Cox regression model. RESULTS 305 newly diagnosed patients with O3IDHmt/Codel treated with RT and chemotherapy between 2008 and 2022 were included, of which 67.9% of patients (n = 207) were treated with PCV/RT and 32.1% with TMZ/RT (n = 98). The median follow-up was 78.4 months (IQR, 44.3-102.7). The median OS was not reached (95% CI, Not reached [NR] to NR) in the PCV/RT group and was 140 months (95% CI, 110 to NR) in the TMZ/RT group (log-rank P = .0033). On univariable analysis, there was a significant difference in favor of PCV/RT in both 5-year (PCV/RT: 89%, 95% CI, 85 to 94; TMZ/RT: 75%, 95% CI, 66 to 84) and 10-year OS (PCV/RT: 72%, 95% CI, 61 to 85; TMZ/RT: 60%, 95% CI, 49 to 73), which was confirmed using the multivariable Cox model adjusted for age, type of surgery, gender, Eastern Cooperative Oncology Group performance status, and CDKN2A homozygous deletion (hazard ratio, 0.53 for PCV/RT, 95% CI, 0.30 to 0.92, P = .025). CONCLUSION In patients with newly diagnosed O3IDHmt/Codel from the POLA cohort, first-line PCV/RT was associated with better OS outcomes compared with TMZ/RT. Our data suggest that the improved safety profile associated with TMZ comes at the cost of inferior efficacy in this population. Further investigation using prospective randomized studies is warranted.
Collapse
Affiliation(s)
- Salah Eddine O Kacimi
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Sorbonne Université, CinBioS, UMS 37 PASS, INSERM, Paris, France
| | - Caroline Dehais
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | - Loïc Feuvret
- Hospices Civils de Lyon, Radiotherapy Department, Bron, France
| | - Olivier Chinot
- Department of Neuro-Oncology, Aix-Marseille Université, CHU Timone, AP-HM, Marseille, France
| | - Catherine Carpentier
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
| | - Charlotte Bronnimann
- Department of Medical Oncology, University Hospital of Bordeaux, Bordeaux, France
| | - Elodie Vauleon
- Centre Eugène Marquis, Medical Oncology, INSERM U1242, University of Rennes, Rennes, France
| | - Apolline Djelad
- Department of Neurosurgery, University Hospital of Lille, Lille, France
| | - Elizabeth Cohen-Jonathan Moyal
- Department of Radiation Oncology, Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale U1037, Centre de Recherche contre le Cancer de Toulouse, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Olivier Langlois
- Department of Neurosurgery, University Hospital of Rouen, Rouen, France
| | - Mario Campone
- Institut de Cancérologie de l'Ouest-René Gauducheau, Centre de Recherche en Cancérologie, Saint Herblain, France
| | | | - Georges Noel
- Radiation Oncology Department, Institut de cancérologie Strasbourg Europe (ICANS), Strasbourg, France
- Radiobiology Laboratory, Centre Paul Strauss, IIMIS - Imagerie Multimodale Integrative en Santé, ICube, Strasbourg University, Strasbourg, France
| | - Stefania Cuzzubbo
- Neurology Department, APHP, University Hospital Saint Louis, Paris, France
- Université Paris Cité, Paris, France
| | | | - Carole Ramirez
- Neurology Department, North Hospital, University Hospital of Saint Etienne, Saint-Priest-en-Jarez, France
| | - Nadia Younan
- Neurology Department, Hôpital Foch, Suresnes, France
| | | | | | | | | | | | - Damien Ricard
- Neurology department, Hôpital National d'Instruction des Armées Percy, Service de Santé des Armées, Clamart, France
| | - Thierry Faillot
- Neurosurgery Department, AP-HP, Hôpital Beaujon, Clichy, France
| | - Romain Appay
- Department of Pathology and Neuropathology, Aix-Marseille University, CHU Timone, AP-HM, Marseille, France
| | - Emeline Tabouret
- Department of Neuro-Oncology, Aix-Marseille Université, CHU Timone, AP-HM, Marseille, France
| | - Lucia Nichelli
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neuroradiologie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | - Bertrand Mathon
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neurochirurgie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | - Alice Thomas
- Service de Radiothérapie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | - Suzanne Tran
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neuropathologie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | - Franck Bielle
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neuropathologie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | - Agusti Alentorn
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | - J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Karim Labreche
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Sorbonne Université, CinBioS, UMS 37 PASS, INSERM, Paris, France
| | - Khê Hoang-Xuan
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | - Marc Sanson
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | - Ahmed Idbaih
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
| | | | - François Ducray
- Neuro-Oncology Unit, Hospices Civils de Lyon, Lyon, France
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard, Villeurbanne, France
| | - Mehdi Touat
- Institut du Cerveau, Paris Brain Institute (ICM), Inserm, CNRS, Sorbonne Université, AP-HP, SIRIC CURAMUS, Paris, France
- Service de Neuro-oncologie, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, AP-HP, Sorbonne Université, Paris, France
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
7
|
Wetzel EA, Nohman AI, Hsieh AL, Reuss D, Unterberg AW, Eyüpoglu IY, Hua L, Youssef G, Wen PY, Cahill DP, Jungk C, Juratli TA, Miller JJ. A multi-center, clinical analysis of IDH-mutant gliomas, WHO Grade 4: implications for prognosis and clinical trial design. J Neurooncol 2025; 171:373-381. [PMID: 39432026 PMCID: PMC11695381 DOI: 10.1007/s11060-024-04852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Mutations in the Isocitrate Dehydrogenase (IDH) genes, IDH1 or IDH2, define a group of adult diffuse gliomas associated with a younger age at diagnosis and better prognosis than IDH wild-type glioblastoma. Within IDH mutant gliomas, a small fraction of astrocytic tumors present with grade 4 histologic features and poor prognosis. In molecular studies, homozygous deletion of CDKN2A/B is independently predictive of poor prognosis and short survival. As a consequence, 2021 WHO classification now also recognizes this molecular feature, CDKN2A/B deletion, as sufficient for classifying an astrocytoma as IDH-mutant, WHO Grade 4, regardless of histological grading. Here, we investigate outcomes of patients with WHO Grade 4 IDH-mutant astrocytoma both with and without CDKN2A/B deletion, to compare these groups and evaluate clinical and radiographic factors that contribute to survival. METHODS We retrospectively identified 79 patients with IDH-mutant astrocytoma with CDKN2A/B deletion detected at initial diagnosis across five international institutions as well as a comparison group of 51 patients with IDH-mutant, astrocytoma, histologically Grade 4 without detectable CDKN2A/B deletion. We assembled clinical and radiographic features for all patients. RESULTS We find that CDKN2A/B deletion was associated with significantly worse overall survival (OS; p = 0.0004) and progression-free survival (PFS; p = 0.0026), with median OS of 5.0 years and PFS of 3.0 years, compared to 10.1 and 5.0 years for tumors with a grade 4 designation based only on histologic criteria. Multivariate analysis confirmed CDKN2A/B deletion as a strong negative prognosticator for both OS (HR = 3.51, p < 0.0001) and PFS (HR = 2.35, p = 0.00095). In addition, in tumors with CDKN2A/B deletion, preoperative contrast enhancement is a significant predictor of worse OS (HR 2.19, 95% CI 1.22-3.93, p = 0.0090) and PFS (HR = 1.74, 95% CI = 1.02-2.97, p = 0.0420). CONCLUSIONS These findings underscore the severe prognostic impact of CDKN2A/B deletion in IDH-mutant astrocytomas and highlight the need for further refinement of tumor prognostic categorization. Our results provide a key benchmark of baseline patient outcomes for therapeutic trials, underscoring the importance of CDKN2A/B status assessment, in addition to histologic grading, in clinical trial design and therapeutic decision-making for IDH-mutant astrocytoma patients.
Collapse
Affiliation(s)
- Ethan A Wetzel
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amin I Nohman
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Annie L Hsieh
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Ilker Y Eyüpoglu
- Faculty of Medicine, Department of Neurosurgery, TU Dresden, Dresden, Germany
| | - Lingyang Hua
- Hospital of Huashan, Fudan University, Shanghai, China
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine Jungk
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Department of Neurosurgery, TU Dresden, Dresden, Germany
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Kinslow CJ, Mehta MP. Future Directions in the Treatment of Low-Grade Gliomas. Cancer J 2025; 31:e0759. [PMID: 39841425 DOI: 10.1097/ppo.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ABSTRACT There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors. Advances in imaging, surgery, and radiotherapy have improved outcomes in low-grade gliomas. Emerging biomarkers, targeted therapies, immunotherapy, radionuclides, and novel medical devices are a promising frontier for future treatment. Diverse representation in glioma research and clinical trials will help to ensure that advancements in care are realized by all groups.
Collapse
Affiliation(s)
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| |
Collapse
|
9
|
Noack D, Wach J, Barrantes-Freer A, Nicolay NH, Güresir E, Seidel C. Homozygous CDKN2A/B deletions in low- and high-grade glioma: a meta-analysis of individual patient data and predictive values of p16 immunohistochemistry testing. Acta Neuropathol Commun 2024; 12:180. [PMID: 39593128 PMCID: PMC11590270 DOI: 10.1186/s40478-024-01889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
CDKN2A/B deletions are prognostically relevant in low- and high-grade gliomas. Data on this is derived from heterogeneous series, an accurate estimation of survival risk from homozygous CDKN2A/B deletion is missing. Besides genetic testing, p16-immunohistochemistry (IHC) as a less cost intensive means for indirect detection of CDKN2A/B alterations is possible but not validated in larger datasets. The present meta-analysis aimed to (1) reconstruct individual patient data (IPD) and estimate overall survival (OS) stratified by CDKN2A/B status from all literature and to (2) determine accuracy of p16 testing for CDKNA2/B detection from published studies. For survival analysis according to CDKN2A/B status 460 records were screened, four articles with 714 participants were included. In IDH-wildtype (IDH-wt) gliomas, 57.07% harbored the deletion compared to 9.76% in IDH-mutant (IDH-mut) gliomas. Median OS of patients with IDH-wt gliomas and homozygous CDKN2A/B deletion was 13.0 months compared to 18.0 months with non-deleted CDKN2A/B (p = 0.014, Log-Rank). With homozygous deletion of CDKN2A/B the risk of death was increased by 1.5 (95%-CI 1.1-2.1). Median OS in patients with IDH-mut gliomas without CDKN2A/B deletion was 92.0 months compared to 40.0 months with CDKN2A/B deletion (p < 0.001, Log-Rank). CDKN2A/B deletions were associated with a significantly shorter OS (HR = 3.2; 95%-CI 2.2-5.5). For p16 IHC analysis, 10 eligible studies with 1087 examined samples were included. The cut-off for retention differed between the studies. In 588/662 p16 retained cases CDKN2A/B deletions was not detected, implying a negative predictive value (NPV) of p16 staining of 88.8%. Conversely, 279/425 p16 absent cases showed a CDKN2A/B deletion resulting in a positive predictive value (PPV) of 65.6%. Sensitivity of p16 staining for CDKN2A/B detection was 79.0%, specificity 80.1%. Highest diagnostic accuracy of p16 IHC was reached with a cut-off of > 5% and within IDH-mut glioma.
Collapse
Affiliation(s)
- Darius Noack
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Johannes Wach
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Alonso Barrantes-Freer
- Paul-Flechsig Institute of Neuropathology, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany.
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany.
| |
Collapse
|
10
|
Ghisai SA, van Hijfte L, Vallentgoed WR, Tesileanu CMS, de Heer I, Kros JM, Sanson M, Gorlia T, Wick W, Vogelbaum MA, Brandes AA, Franceschi E, Clement PM, Nowak AK, Golfinopoulos V, van den Bent MJ, French PJ, Hoogstrate Y. Epigenetic landscape reorganisation and reactivation of embryonic development genes are associated with malignancy in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:50. [PMID: 39382765 PMCID: PMC11464554 DOI: 10.1007/s00401-024-02811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is challenging, and aside from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n = 138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA-sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. Since discrete classes do not adequately capture grading of these tumours, we utilised DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) based on classification scores from a CNS-tumour classifier. CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with (i) upregulation of cell cycling genes; (ii) downregulation of glial differentiation genes; (iii) upregulation of embryonic development genes (e.g. HOX, PAX, and TBX) and (iv) upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes. Higher grade IDH-mutant astrocytomas have DNA-methylation signatures that, on the RNA level, are associated with increased cell cycling, tumour cell de-differentiation and extracellular matrix remodelling. These combined molecular signatures can serve as an objective marker for grading of IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Santoesha A Ghisai
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Levi van Hijfte
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Tumour Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wies R Vallentgoed
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Iris de Heer
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marc Sanson
- ICM Institute for Brain and Spinal Cords, Sorbonne University, Paris, France
| | | | - Wolfgang Wick
- Neurology Department, University Clinic Heidelberg, Heidelberg University & German Center, Heidelberg, Germany
| | | | - Alba A Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paul M Clement
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Anna K Nowak
- Medical School, The University of Western Australia, Crawley, WA, Australia
| | | | | | - Pim J French
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Youri Hoogstrate
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
11
|
van den Bent MJ, French PJ, Brat D, Tonn JC, Touat M, Ellingson BM, Young RJ, Pallud J, von Deimling A, Sahm F, Figarella Branger D, Huang RY, Weller M, Mellinghoff IK, Cloughsey TF, Huse JT, Aldape K, Reifenberger G, Youssef G, Karschnia P, Noushmehr H, Peters KB, Ducray F, Preusser M, Wen PY. The biological significance of tumor grade, age, enhancement, and extent of resection in IDH-mutant gliomas: How should they inform treatment decisions in the era of IDH inhibitors? Neuro Oncol 2024; 26:1805-1822. [PMID: 38912846 PMCID: PMC11449017 DOI: 10.1093/neuonc/noae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 06/25/2024] Open
Abstract
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
Collapse
Affiliation(s)
| | - Pim J French
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Mehdi Touat
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Johan Pallud
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Université Paris Cité, Paris, France
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Figarella Branger
- DFB Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tim F Cloughsey
- Department of Neurology, TC David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gilbert Youssef
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp Karschnia
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital+Michigan State University, Detroit, Michigan, USA
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Francois Ducray
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, LabEx Dev2CAN, Centre de Recherche en Cancérologie de Lyon, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Kinslow CJ, Roy S, Iwamoto FM, Brown PD, DeStephano DM, Canoll PD, Qureshi SS, Gallito M, Sisti MB, Bruce JN, Horowitz DP, Kachnic LA, Neugut AI, Yu JB, Mehta MP, Cheng SK, Wang TJC. The IDH paradox: Meta-analysis of alkylating chemotherapy in IDH-wild type and -mutant lower grade gliomas. Neuro Oncol 2024; 26:1839-1849. [PMID: 38943513 PMCID: PMC11449043 DOI: 10.1093/neuonc/noae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND IDH-wild type (-wt) status is a prerequisite for the diagnosis of glioblastoma (GBM); however, IDH-wt gliomas with low-grade or anaplastic morphology have historically been excluded from GBM trials and may represent a distinct prognostic entity. While alkylating agent chemotherapy improves overall survival (OS) and progression-free survival (PFS) for IDH-wt GBM and also IDH-mutant gliomas, irrespective of grade, the benefit for IDH-wt diffuse histologic lower-grade gliomas is unclear. METHODS We performed a meta-analysis of randomized clinical trials for World Health Organization (WHO) grades 2-3 gliomas (2009 to present) to determine the effect of alkylating chemotherapy on IDH-wt and -mutant gliomas using a random-effects model with inverse-variance pooling. RESULTS We identified 6 trials with 1204 patients (430 IDH-wt, 774 IDH-mutant) that evaluated alkylating chemoradiotherapy versus radiotherapy alone, allowing us to perform an analysis focused on the value of adding alkylating chemotherapy to radiotherapy. For patients with IDH-wt tumors, alkylating chemotherapy added to radiotherapy was associated with improved PFS (HR:0.77 [95% CI: 0.62-0.97], P = .03) but not OS (HR:0.87 [95% CI: 0.64-1.18], P = .17). For patients with IDH-mutant tumors, alkylating chemotherapy added to radiotherapy improved both OS (HR:0.52 [95% CI: 0.42-0.64], P < .001) and PFS (HR = 0.47 [95% CI: 0.39-0.57], P < .001) compared to radiotherapy alone. The magnitude of benefit was similar for IDH-mutant gliomas with or without 1p19q-codeletion. CONCLUSIONS Alkylating chemotherapy reduces mortality by 48% and progression by 53% for patients with IDH-mutant gliomas. Optimal management of IDH-wt diffuse histologic lower-grade gliomas remains to be determined, as there is little evidence supporting an OS benefit from alkylating chemotherapy.
Collapse
Affiliation(s)
- Connor J Kinslow
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois, USA
| | - Fabio M Iwamoto
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - David M DeStephano
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Peter D Canoll
- Departments of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Summer S Qureshi
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Matthew Gallito
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Michael B Sisti
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - David P Horowitz
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Lisa A Kachnic
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Alfred I Neugut
- Department of Medicine, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - James B Yu
- Department of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Radiation Oncology Medical Oncology, Saint Francis Hospital, Hartford, Connecticut, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Simon K Cheng
- Department of Radiation Oncology, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| | - Tony J C Wang
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, New York, New York, USA
| |
Collapse
|
13
|
Kling T, Ferreyra Vega S, Suman M, Dénes A, Lipatnikova A, Lagerström S, Olsson Bontell T, Jakola AS, Carén H. Refinement of prognostication for IDH-mutant astrocytomas using DNA methylation-based classification. Brain Pathol 2024; 34:e13233. [PMID: 38168467 PMCID: PMC11328339 DOI: 10.1111/bpa.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The 2021 World Health Organization (WHO) grading system of isocitrate dehydrogenase (IDH)-mutant astrocytomas relies on histological features and the presence of homozygous deletion of the cyclin-dependent kinase inhibitor 2A and 2B (CDKN2A/B). DNA methylation profiling has become highly relevant in the diagnosis of central nervous system (CNS) tumors including gliomas, and it has been incorporated into routine clinical diagnostics in some countries. In this study, we, therefore, examined the value of DNA methylation-based classification for prognostication of patients with IDH-mutant astrocytomas. We analyzed histopathological diagnoses, genome-wide DNA methylation array data, and chromosomal copy number alteration profiles from a cohort of 385 adult-type IDH-mutant astrocytomas, including a local cohort of 127 cases and 258 cases from public repositories. Prognosis based on WHO 2021 CNS criteria (histological grade and CDKN2A/B homozygous deletion status), other relevant chromosomal/gene alterations in IDH-mutant astrocytomas and DNA methylation-based subclassification according to the molecular neuropathology classifier were assessed. We demonstrate that DNA methylation-based classification of IDH-mutant astrocytomas can be used to predict outcome of the patients equally well as WHO 2021 CNS criteria. In addition, methylation-based subclassification enabled the identification of IDH-mutant astrocytoma patients with poor survival among patients with grade 3 tumors and patients with grade 4 tumors with a more favorable outcome. In conclusion, DNA methylation-based subclassification adds prognostic information for IDH-mutant astrocytomas that can further refine the current WHO 2021 grading scheme for these patients.
Collapse
Affiliation(s)
- Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Ferreyra Vega
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Medha Suman
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Dénes
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lipatnikova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stina Lagerström
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
15
|
Nasser AM, Melamed L, Wetzel EA, Chang JCC, Nagashima H, Kitagawa Y, Muzyka L, Wakimoto H, Cahill DP, Miller JJ. CDKN2A/B Homozygous Deletion Sensitizes IDH-Mutant Glioma to CDK4/6 Inhibition. Clin Cancer Res 2024; 30:2996-3005. [PMID: 38718141 PMCID: PMC11250907 DOI: 10.1158/1078-0432.ccr-24-0562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE Treatment paradigms for isocitrate dehydrogenase (IDH)-mutant gliomas are rapidly evolving. Although typically indolent and responsive to initial treatment, these tumors invariably recur at a higher grade and require salvage treatment. Homozygous deletion of the tumor suppressor gene CDKN2A/B frequently emerges at recurrence in these tumors, driving poor patient outcomes. We investigated the effect of CDK-Rb pathway blockade on IDH-mutant glioma growth in vitro and in vivo using CDK4/6 inhibitors (CDKi). EXPERIMENTAL DESIGN Cell viability, proliferation assays, and flow cytometry were used to examine the pharmacologic effect of two distinct CDKi, palbociclib and abemaciclib, in multiple patient-derived IDH-mutant glioma lines. Isogenic models were used to directly investigate the influence of CDKN2A/B status on CDKi sensitivity. Orthotopic xenograft tumor models were used to examine the efficacy and tolerability of CDKi in vivo. RESULTS CDKi treatment leads to decreased cell viability and proliferative capacity in patient-derived IDH-mutant glioma lines, coupled with enrichment of cells in the G1 phase. CDKN2A inactivation sensitizes IDH-mutant glioma to CDKi in both endogenous and isogenic models with engineered CDKN2A deletion. CDK4/6 inhibitor administration improves survival in orthotopically implanted IDH-mutant glioma models. CONCLUSIONS IDH-mutant gliomas with deletion of CDKN2A/B are sensitized to CDK4/6 inhibitors. These results support the investigation of the use of these agents in a clinical setting.
Collapse
Affiliation(s)
- Ali M. Nasser
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lisa Melamed
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ethan A. Wetzel
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jenny Chia-Chen Chang
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hiroaki Nagashima
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yosuke Kitagawa
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Logan Muzyka
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Daniel P. Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Julie J. Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Trabzonlu L, Martinez-Lage M, Deschler D, Paly JJ, Faquin WC. FNA of Meningioma with Rhabdoid Features Presenting as a Lateral Neck Mass. Head Neck Pathol 2024; 18:32. [PMID: 38658429 PMCID: PMC11043294 DOI: 10.1007/s12105-024-01644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 04/26/2024]
Abstract
Primary meningioma at extracranial head and neck sites is uncommon. Since fine needle aspiration (FNA) is often the first line diagnostic modality for the evaluation of masses in the head and neck, extracranial meningiomas can create a significant diagnostic pitfall for FNA. We report a case of meningioma with rhabdoid features and BAP1 loss in a 26-year-old woman, presenting as a large neck mass along the carotid sheath. FNA biopsy of the mass demonstrated a highly cellular specimen with clusters of uniform, epithelioid cells with round to ovoid nuclei and moderate nuclear to cytoplasmic ratio. An extensive immunohistochemical panel performed on cell block sections showed that the tumor cells were weakly EMA positive, progesterone receptor was focally positive, and SSTR2A was diffuse and strongly positive. BAP1 immunohistochemistry showed a diffuse loss of expression in the tumor cells. After the cytologic diagnosis of meningioma, a tissue biopsy was performed, and the diagnosis of meningioma with rhabdoid features and BAP1 loss was confirmed. We also perform a literature review of meningioma cases presenting as a neck mass and evaluated by FNA. Our case highlights the significant diagnostic challenges that can be caused by extracranial meningiomas on FNA and the importance of ancillary studies to avoid diagnostic pitfalls.
Collapse
Affiliation(s)
- Levent Trabzonlu
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, 55 Fruit Street, WRN 219, Boston, MA, 02114, USA
| | - Maria Martinez-Lage
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, 55 Fruit Street, WRN 219, Boston, MA, 02114, USA
| | - Daniel Deschler
- Department of Otolaryngology, Massachusetts Eye and Ear, and Harvard Medical School, Boston, MA, USA
| | - Jonathan J Paly
- Department of Radiation Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, 55 Fruit Street, WRN 219, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
Nassiri F, Ajisebutu A, Patil V, Mamatjan Y, Liu J, Wang JZ, Voisin MR, Nejad R, Mansouri S, Karimi S, Chakravarthy A, Chen E, De Carvalho DD, Aldape K, Zadeh G. Metabologenomic characterization uncovers a clinically aggressive IDH mutant glioma subtype. Acta Neuropathol 2024; 147:68. [PMID: 38583102 PMCID: PMC11973830 DOI: 10.1007/s00401-024-02713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Mutations in the pivotal metabolic isocitrate dehydrogenase (IDH) enzymes are recognized to drive the molecular footprint of diffuse gliomas, and patients with IDH mutant gliomas have overall favorable outcomes compared to patients with IDH wild-type tumors. However, survival still varies widely among patients with IDH mutated tumors. Here, we aimed to characterize molecular signatures that explain the range of IDH mutant gliomas. By integrating matched epigenome-wide methylome, transcriptome, and global metabolome data in 154 patients with gliomas, we identified a group of IDH mutant gliomas with globally altered metabolism that resembled IDH wild-type tumors. IDH-mutant gliomas with altered metabolism have significantly shorter overall survival from their IDH mutant counterparts that is not fully accounted for by recognized molecular prognostic markers of CDKN2A/B loss and glioma CpG Island Methylator Phenotype (GCIMP) status. IDH-mutant tumors with dysregulated metabolism harbored distinct epigenetic alterations that converged to drive proliferative and stem-like transcriptional profiles, providing a window to target novel dependencies in gliomas.
Collapse
Affiliation(s)
- Farshad Nassiri
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Andrew Ajisebutu
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Vikas Patil
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Yasin Mamatjan
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Jeff Liu
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Justin Z Wang
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mathew R Voisin
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Romina Nejad
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Sheila Mansouri
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Shirin Karimi
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Eric Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kenneth Aldape
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, MacFeeters Hamilton Neuro-Oncology Program, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Ge Y, Jia B, Zhang P, Chen B, Liu L, Shi Y, Huang S, Liu X, Wang R, Xie Y, Li Z, Dong J. TBX15 facilitates malignant progression of glioma by transcriptional activation of TXDNC5. iScience 2024; 27:108950. [PMID: 38327797 PMCID: PMC10847739 DOI: 10.1016/j.isci.2024.108950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
T-box transcription factor 15 (TBX15) plays important role in various cancers; however, its expression and role in glioma is still unclear. In this study, our findings indicated that TBX15 was increased in gliomas compared to normal brain tissues, and high levels of TBX15 were related to poor survival. Furthermore, TBX15 silencing in glioma cells not only inhibited their proliferation, migration, and invasion in vitro, but also weakened their ability to recruit macrophages and polarize the latter to the M2 subtype. Mechanism study indicated that thioredoxin domain containing 5 (TXNDC5) lies downstream of TBX15. Furthermore, rescue assays verified that the role of TBX15 in glioma cells is dependent on TXNDC5. Moreover, sh-TBX15 loaded into DNA origami nanocarrier suppressed the malignant phenotype of glioma in vitro and in vivo. Taken together, the TBX15/TXNDC5 axis is involved in the genesis and progression of glioma, and is a potential therapeutic target.
Collapse
Affiliation(s)
- Yuyuan Ge
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Bin Jia
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Peng Zhang
- Department of Neurosurgery, People’s Hospital of Rugao, Nantong 226500, China
- Department of Neurosurgery, Rugao Clinical College, Jiangsu Health Vocational College, Nantong 226500, China
| | - Baomin Chen
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yan Shi
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shilu Huang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xinglei Liu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yandong Xie
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
19
|
Xi S, Huang Q, Zeng J. A novel grading system combining histological grade and CDKN2A homozygous and hemizygous deletion to predict prognosis in IDH-mutant astrocytoma. J Neuropathol Exp Neurol 2024; 83:125-130. [PMID: 38175671 DOI: 10.1093/jnen/nlad112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Isocitrate dehydrogenase (IDH)-mutant astrocytoma with microvascular proliferation, necrosis, CDKN2A/B homozygous deletion, or any combination of these features corresponds to World Health Organization grade 4 according to current criteria. However, the prognostic significance of CDKN2A hemizygous deletion in IDH-mutant astrocytoma is not well established. We undertook a comprehensive study that included assessments of histological and genetic approaches to prognosis for these tumors. Samples from a cohort of 114 patients with extended observation were subjected to histological review and molecular analysis. CDKN2A (9p21) deletion was detected by fluorescence in situ hybridization. Overall survival (OS) was calculated via Kaplan-Meier estimation using the log-rank test. Histological grade, Ki-67 index, and the extent of surgical resection correlated with the OS of IDH-mutant astrocytoma patients. Both CDKN2A homozygous deletion and hemizygous deletion were detectable. Patients with CDKN2A homozygous-deletion tumors had the poorest OS; those with CDKN2A hemizygous-deletion tumors had an intermediate OS (p < .001). We then established a novel grading system that combined CDKN2A homozygous and hemizygous deletions with histological grade; the combined grading system was an independent prognostic factor for IDH-mutant astrocytomas. We conclude that CDKN2A homozygous and hemizygous deletion should be combined in a grading system for IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Shaoyan Xi
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qitao Huang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Zeng
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
20
|
Kinslow CJ, Siegelin MD, Iwamoto FM, Gallitto M, Neugut AI, Yu JB, Cheng SK, Wang TJC. MGMT promoter methylation in 1p19q-intact gliomas. J Neurooncol 2024; 166:73-78. [PMID: 38114801 DOI: 10.1007/s11060-023-04515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Standard-of-care for 1p19q-intact anaplastic gliomas is defined by the international randomized phase III CATNON trial, which found an overall survival (OS) benefit for adjuvant temozolomide (TMZ) when added to radiotherapy. Paradoxically, TMZ did not appear to benefit patients with IDH-wildtype gliomas, regardless of MGMT promoter status. The authors concluded that well-powered prospective study on the clinical efficacy of TMZ for patients with IDH-wildtype anaplastic gliomas (meeting criteria for glioblastoma) is warranted. Given that the prognostic and predictive role of MGMT status for grade 2-3 gliomas is unresolved, we determined the effect of MGMT status on OS in patients with 1p19q-intact gliomas in the National Cancer Database (NCDB). METHODS We queried the NCDB from 2018 to 2019 for patients with diffuse (grade 2) and anaplastic (grade 3) IDH-wildtype or -mutant astrocytomas who received chemotherapy with follow-up through 2022. The Kaplan-Meier method and Cox proportional hazards regressions models were used to determine the association of MGMT with OS. RESULTS We identified 1514 patients who were newly diagnosed with IDH-wildtype (n = 802, 33% methylated) or -mutant astrocytomas (n = 712, 48% methylated) and received chemotherapy during initial management. An unmethylated promoter was associated with poorer survival in patients with IDH-wildtype (3-year OS 34% [95%CI 29-39%] vs. 46% [95%CI 39-54%], p < .001, adjusted HR 1.53 [95%CI 1.24-1.89]) but not IDH-mutant astrocytomas (3-year OS 79% [95%CI 74-84%] vs. 80% [95%CI 75-86%], p =0 .81, HR 1.04 [95%CI 0.73-1.50]). CONCLUSIONS This ancillary analysis supports conclusions from the CATNON trial for adjuvant TMZ as standard-of-care for anaplastic astrocytomas (IDH-mutant and 1p19q-intact), irrespective of MGMT status. Determining the optimal strategy for diffuse gliomas that are IDH-wildtype will be particularly important. MGMT promoter methylation should be considered as a stratification factor in future clinical trials for these patients.
Collapse
Affiliation(s)
- Connor J Kinslow
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Markus D Siegelin
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
- Departments of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Ave Rm. 1001, New York, NY, 10032, USA
| | - Fabio M Iwamoto
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 710 West 168th Street, New York, NY, 10032, USA
| | - Matthew Gallitto
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Alfred I Neugut
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY, 10032, USA
| | - James B Yu
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA
| | - Simon K Cheng
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
- Department of Radiation Oncology, James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
| | - Tony J C Wang
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 622 West 168th Street, BNH B011, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 St Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Otsuji R, Hata N, Yamamoto H, Kuga D, Hatae R, Sangatsuda Y, Fujioka Y, Noguchi N, Sako A, Togao O, Yoshitake T, Nakamizo A, Mizoguchi M, Yoshimoto K. Hemizygous deletion of cyclin-dependent kinase inhibitor 2A/B with p16 immuno-negative and methylthioadenosine phosphorylase retention predicts poor prognosis in IDH-mutant adult glioma. Neurooncol Adv 2024; 6:vdae069. [PMID: 39022644 PMCID: PMC11252564 DOI: 10.1093/noajnl/vdae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Homozygous deletion of the tumor suppression genes cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) is a strong adverse prognostic factor in IDH-mutant gliomas, particularly astrocytoma. However, the impact of hemizygous deletion of CDKN2A/B is unknown. Furthermore, the influence of CDKN2A/B status in IDH-mutant and 1p/19q-codeleted oligodendroglioma remains controversial. We examined the impact of CDKN2A/B status classification, including hemizygous deletions, on the prognosis of IDH-mutant gliomas. Methods We enrolled 101 adults with IDH-mutant glioma between December 2002 and November 2021. CDKN2A/B deletion was evaluated with multiplex ligation-dependent probe amplification (MLPA). Immunohistochemical analysis of p16/MTAP and promoter methylation analysis with methylation-specific MLPA was performed for cases with CDKN2A/B deletion. Kaplan - Meier plots and Cox proportion hazards model analyses were performed to evaluate the impact on overall (OS) and progression-free survival. Results Of 101 cases, 12 and 4 were classified as hemizygous and homozygous deletion, respectively. Immunohistochemistry revealed p16-negative and MTAP retention in cases with hemizygous deletion, whereas homozygous deletions had p16-negative and MTAP loss. In astrocytoma, OS was shorter in the order of homozygous deletion, hemizygous deletion, and copy-neutral groups (median OS: 38.5, 59.5, and 93.1 months, respectively). Multivariate analysis revealed hazard ratios of 9.30 (P = .0191) and 2.44 (P = .0943) for homozygous and hemizygous deletions, respectively. Conclusions CDKN2A/B hemizygous deletions exerted a negative impact on OS in astrocytoma. Immunohistochemistry of p16/MTAP can be utilized to validate hemizygous or homozygous deletions in combination with conventional molecular diagnosis.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Kinslow CJ, Garton ALA, Rae AI, Kocakavuk E, McKhann GM, Cheng SK, Sisti MB, Bruce JN, Wang TJC. Extent of resection for low-grade gliomas - Prognostic or therapeutic? Clin Neurol Neurosurg 2024; 236:108117. [PMID: 38219356 DOI: 10.1016/j.clineuro.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Affiliation(s)
- Connor J Kinslow
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 622 West 168th Street, BNH B011, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Andrew L A Garton
- Department of Neurosurgery, Weill Cornell Medical Center and NewYork-Presbyterian Hospital, New York City, NY, USA
| | - Ali I Rae
- Department of Neurological Surgery, Oregon Health & Sciences University, 3181 SW Sam Jackson Pkwy, Portland, OR 97239, USA
| | - Emre Kocakavuk
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA; Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), National Center for Tumor Diseases (NCT) West, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Guy M McKhann
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA; Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032, USA
| | - Simon K Cheng
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 622 West 168th Street, BNH B011, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA
| | - Michael B Sisti
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA; Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032, USA
| | - Jeffrey N Bruce
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA; Department of Neurological Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY 10032, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 622 West 168th Street, BNH B011, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 1130 St Nicholas Ave, New York, NY 10032, USA.
| |
Collapse
|
23
|
Hickman RA, Gedvilaite E, Ptashkin R, Reiner AS, Cimera R, Nandakumar S, Price A, Vanderbilt C, Fahy T, Young RJ, Miller AM, Mellinghoff IK, Rosenblum MK, Ladanyi M, Arcila ME, Zhang Y, Brannon AR, Bale TA. CDKN2A/B mutations and allele-specific alterations stratify survival outcomes in IDH-mutant astrocytomas. Acta Neuropathol 2023; 146:845-847. [PMID: 37831210 PMCID: PMC10628020 DOI: 10.1007/s00401-023-02639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Richard A Hickman
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Murtha Cancer Center Research Program, Uniformed Services of the Health Sciences, Bethesda, MD, 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, 20817, USA
| | - Erika Gedvilaite
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ryan Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert Cimera
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Subhiksha Nandakumar
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Adam Price
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tara Fahy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandra M Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - A Rose Brannon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Tateishi K, Miyake Y, Nakamura T, Iwashita H, Hayashi T, Oshima A, Honma H, Hayashi H, Sugino K, Kato M, Satomi K, Fujii S, Komori T, Yamamoto T, Cahill DP, Wakimoto H. Genetic alterations that deregulate RB and PDGFRA signaling pathways drive tumor progression in IDH2-mutant astrocytoma. Acta Neuropathol Commun 2023; 11:186. [PMID: 38012788 PMCID: PMC10680361 DOI: 10.1186/s40478-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
In IDH-mutant astrocytoma, IDH2 mutation is quite rare and biological mechanisms underlying tumor progression in IDH2-mutant astrocytoma remain elusive. Here, we report a unique case of IDH2 mutant astrocytoma, CNS WHO grade 3 that developed tumor progression. We performed a comprehensive genomic and epigenomic analysis for primary and recurrent tumors and found that both tumors harbored recurrent IDH2R172K and TP53R248W mutation with CDKN2A/B hemizygous deletion. We also found amplifications of CDK4 and MDM2 with PDGFRA gain in the recurrent tumor and upregulated protein expressions of these genes. We further developed, for the first time, a xenograft mouse model of IDH2R172K and TP53R248W mutant astrocytoma from the recurrent tumor, but not from the primary tumor. Consistent with parent recurrent tumor cells, amplifications of CDK4 and MDM2 and PDGFRA gain were found, while CDKN2A/B was identified as homozygous deletion in the xenografts, qualifying for integrated diagnosis of astrocytoma, IDH2-mutant, CNS WHO grade 4. Cell viability assay found that CDK4/6 inhibitor and PDGFR inhibitor potently decreased cell viability in recurrent tumor cells, as compared to primary tumor cells. These findings suggest that gene alterations that activate retinoblastoma (RB) signaling pathways and PDGFR may drive tumor progression and xenograft formation in IDH2-mutant astrocytoma, which is equivalent to progressive IDH1-mutant astrocytoma. Also, our findings suggest that these genomic alterations may represent therapeutic targets in IDH2-mutant astrocytoma.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan.
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan.
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan.
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Akito Oshima
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hirokuni Honma
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiroaki Hayashi
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kyoka Sugino
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Miyui Kato
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoshi Fujii
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Yokoda RT, Cobb WS, Yong RL, Crary JF, Viapiano MS, Walker JM, Umphlett M, Tsankova NM, Richardson TE. CDKN2A mutations have equivalent prognostic significance to homozygous deletion in IDH-mutant astrocytoma. J Neuropathol Exp Neurol 2023; 82:845-852. [PMID: 37550258 DOI: 10.1093/jnen/nlad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Homozygous deletion of CDKN2A/B is currently considered a molecular signature for grade 4 in IDH-mutant astrocytomas, irrespective of tumor histomorphology. The 2021 WHO Classification of CNS Tumors does not currently include grading recommendations for histologically lower-grade (grade 2-3) IDH-mutant astrocytoma with CDKN2A mutation or other CDKN2A alterations, and little is currently known about the prognostic implications of these alternative CDKN2A inactivating mechanisms. To address this, we evaluated a cohort of institutional and publicly available IDH-mutant astrocytomas, 15 with pathogenic mutations in CDKN2A, 47 with homozygous CDKN2A deletion, and 401 with retained/wildtype CDKN2A. The IDH-mutant astrocytomas with mutant and deleted CDKN2A had significantly higher overall copy number variation compared to those with retained/wildtype CDKN2A, consistent with more aggressive behavior. Astrocytoma patients with CDKN2A mutation had significantly worse progression-free (p = 0.0025) and overall survival (p < 0.0001) compared to grade-matched patients with wildtype CDKN2A, but statistically equivalent progression-free survival and overall survival outcomes to patients with CDKN2A deletion. No significant survival difference was identified between CDKN2A mutant cases with or without loss of the second allele. These findings suggest that CDKN2A mutation has a detrimental effect on survival in otherwise lower-grade IDH-mutant astrocytomas, similar to homozygous CDKN2A deletion, and should be considered for future grading schemes.
Collapse
Affiliation(s)
- Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Raymund L Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|