1
|
Nakhate V, Lasica AB, Wen PY. The Role of Mutant IDH Inhibitors in the Treatment of Glioma. Curr Neurol Neurosci Rep 2024; 24:631-643. [PMID: 39302605 DOI: 10.1007/s11910-024-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF REVIEW The identification of isocitrate dehydrogenase (IDH) mutations has led to a transformation in our understanding of gliomas and has paved the way to a new era of targeted therapy. In this article, we review the classification of IDH-mutant glioma, standard of care treatment options, clinical evidence for mutant IDH (mIDH) inhibitors, and practical implications of the recent landmark INDIGO trial. RECENT FINDINGS In the phase 3 randomized placebo-controlled INDIGO trial, mIDH1/2 inhibitor vorasidenib increased progression-free survival among non-enhancing grade 2 IDH-mutant gliomas following surgery. This marks the first positive randomized trial of targeted therapy in IDH-mutant glioma, and led to the US Food and Drug Administration's approval of vorasidenib in August 2024 for grade 2 IDH-mutant glioma. Vorasidenib is a well-tolerated treatment that can benefit a subset of patients with IDH-mutant glioma. Targeting mIDH also remains a promising strategy for select groups of patients excluded from the INDIGO trial. Ongoing and future studies, including with new agents and with combination therapy approaches, may expand the benefit and unlock the potential of mIDH inhibitors.
Collapse
Affiliation(s)
- Vihang Nakhate
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA.
| | - Aleksandra B Lasica
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Gonnet P, Marinari E, Achard V, Schaffar R, Neyroud-Caspar I, May A, Goga C, Dietrich PY, Schaller K, Patrikidou A. Brain Metastases from Genito-Urinary Cancers in the Canton of Geneva (Switzerland): Study of Incidence, Management and Outcomes. Cancers (Basel) 2024; 16:3437. [PMID: 39456532 PMCID: PMC11506659 DOI: 10.3390/cancers16203437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Incidence of brain metastases is precisely unknown and there is no clear consensus on their management. We aimed to determine the incidence of brain metastases among patients with genito-urinary primaries, present patients' characteristics and identify prognostic factors. METHOD We identified 51 patients treated in Geneva University Hospitals between January 1992 and December 2019. We retrospectively correlated their overall survival with 23 variables. We repeated a multivariate analysis with significant variables. RESULTS Overall incidence of Brain Metastases (BMs) among Genito-Urinary (GU) patients is estimated to be 1.76% (range per primary GU tumour type: 0.00-6.65%). BMs originate from germ cell tumours in two cases (3.92%), from urothelial cell carcinoma in 15 cases (29.41%), from prostate cancer in 13 cases (25.49%), and from renal cell carcinoma in 21 cases (41.18%); there are no BMs from penile cancer in our cohort. The median age at BM diagnosis is 67 years old (range: 25-92). Most patients (54%) have a stage IV disease at initial diagnosis and 11 patients (22%) have BM at initial diagnosis. Only six patients (12%) are asymptomatic at BM diagnosis. The median Overall Survival (OS) from BM diagnosis is 3 months (range: 0-127). Five patients (10%) are long survivors (OS > 24 months). OS is significantly influenced by patient performance status and administration of systemic treatment. In the absence of meningeal carcinomatosis, OS is influenced by systemic treatment and stereotactic radiosurgery. We also apply the Graded Prognostic Assessment (GPA) score to our cohort and note significant differences between groups. CONCLUSION Brain metastases from solid tumours is not a uniform disease, with a prognosis varying a lot among patients. The optimal management for patients with genito-urinary malignancies with brain metastases remain unclear and further research is needed.
Collapse
Affiliation(s)
- Philippe Gonnet
- Department of Internal Medicine, Hôpital de la Tour, 1217 Meyrin, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Eliana Marinari
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Vérane Achard
- Department of Radiation Oncology, HFR Fribourg, 1700 Fribourg, Switzerland;
| | - Robin Schaffar
- Geneva Cancer Registry, Global Health Institute, University of Geneva, 1206 Geneva, Switzerland; (R.S.); (I.N.-C.)
| | - Isabelle Neyroud-Caspar
- Geneva Cancer Registry, Global Health Institute, University of Geneva, 1206 Geneva, Switzerland; (R.S.); (I.N.-C.)
| | - Adrien May
- Division of Neurosurgery, Department of Clinical Neuroscience, Geneva University Hospitals, 1205 Geneva, Switzerland; (A.M.); (K.S.)
| | - Cristina Goga
- Department of Neurosurgery, HFR Fribourg, 1700 Fribourg, Switzerland;
| | - Pierre-Yves Dietrich
- Division of Medical Oncology, Hirslanden Clinique des Grangettes, 1224 Chêne-Bougeries, Switzerland;
| | - Karl Schaller
- Division of Neurosurgery, Department of Clinical Neuroscience, Geneva University Hospitals, 1205 Geneva, Switzerland; (A.M.); (K.S.)
| | - Anna Patrikidou
- Department of Medical Oncology, Gustave Roussy Cancer Campus, 94805 Villejuif, France;
| |
Collapse
|
3
|
Cuccia F, Franzese C, Badellino S, Borghetti P, Federico M, Marvaso G, Montesi G, Pontoriero A, Ferrera G, Alongi F, Scorsetti M. Stereotactic body radiotherapy for spinal oligometastases: a survey on patterns of practice on behalf of the Italian Association of Clinical Oncology and Radiotherapy (AIRO). Clin Exp Metastasis 2024; 41:679-685. [PMID: 39088084 DOI: 10.1007/s10585-024-10304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The Study Group for the Biology and Treatment of the OligoMetastatic Disease on behalf of the Italian Association of Radiotherapy and Clinical Oncology (AIRO) has conducted a national survey with the aim to depict the current patterns of practice of stereotactic body radiotherapy (SBRT) for spinal oligometastases. METHODS The Surveymonkey platform was used to send a 28-items questionnaire focused on demographic, clinical and technical aspects related to SBRT for spinal oligometastases. All the AIRO members were invited to fill the questionnaire. Data were then centralized to a single center for analysis and interpretation. RESULTS 53 radiation oncologists from 47 centers fulfilled the survey. A complete agreement was observed in proposing SBRT for spinal oligometastases, with the majority considering up to 3 concurrent spine oligometastases feasible for SBRT (73.5%), regardless of spine site (70%), vertebral segment (85%) and morphological features of the lesion (71.7%). Regarding dose prescription, fractionated regimens resulted as the preferred option, either in 3 (58.4%) or five sessions (34%), with a substantial agreement in applying a PTV-margin larger than 1 mm (almost 90% of participants), and ideally using both MRI and PET imaging to improve target volume and organs-at-risk delineation (67.9%). CONCLUSIONS This national italian survey illustrates the patterns of practice and the main issues for the indication of SBRT for spinal oligometastases. A substantial agreement in the numerical cut-off and vertebral segment involved for SBRT indication was reported, with a slight heterogeneity in terms of dose prescription and fractionation schemes.
Collapse
Affiliation(s)
- Francesco Cuccia
- Radiotherapy Unit, ARNAS Civico Hospital, Palermo, 90145, Italy.
| | - Ciro Franzese
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Paolo Borghetti
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | | | - Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giampaolo Montesi
- Radiation Oncology Unit, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Antonio Pontoriero
- Radiation Oncology Unit, Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | | | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
- University of Brescia, Brescia, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, ARNAS Civico Hospital, Milan, Italy
| |
Collapse
|
4
|
Pang B, An S, Liu Y, Jiang T, Jia W, Chai R, Wang Y. Understanding spinal cord astrocytoma: Molecular mechanism, therapy, and comprehensive management. Cancer Lett 2024; 601:217154. [PMID: 39121902 DOI: 10.1016/j.canlet.2024.217154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord astrocytoma is a rare and highly debilitating tumor, yet our knowledge of its clinical characteristics, molecular features, and pathogenesis remains limited compared to that of its counterparts in the brain. Current diagnostic and therapeutic approaches for spinal cord astrocytomas are primarily based on established guidelines for brain astrocytomas. However, recent studies have revealed unique clinical and pathological attributes that distinguish spinal cord astrocytomas from their corresponding brain counterparts. These findings underscore the inadequacy of directly applying the clinical guidelines developed for brain astrocytomas to spinal astrocytomas. In this review, we provided an up-to-date overview of the advancements in understanding spinal cord astrocytomas. We also discussed the challenges and future research prospects in this field with the aim of improving the precision of diagnosis and therapy for these tumors. Specifically, we emphasized the importance of enhancing our understanding of the molecular heterogeneity, immune characteristics, and clinical trials of spinal cord astrocytomas.
Collapse
Affiliation(s)
- Bo Pang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Songyuan An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Ruichao Chai
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Yongzhi Wang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| |
Collapse
|
5
|
Fernández C, Zafra-Martín J, Couñago F. Current challenges in the treatment of gliomas: The molecular era. World J Clin Oncol 2024; 15:982-986. [PMID: 39193161 PMCID: PMC11346069 DOI: 10.5306/wjco.v15.i8.982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Gliomas originate from glial cells in the central nervous system. Approximately 80%-85% of malignant brain tumors in adults are gliomas. The most common central nervous system tumor in children is low-grade pediatric glioma. Diagnosis was determined by histological features until 2016 when the World Health Organization classification integrated molecular data with anatomopathological information to achieve a more integral diagnosis. Molecular characterization has led to better diagnostic and prognostic staging, which in turn has increased the precision of treatment. Current efforts are focused on more effective therapies to prolong survival and improve the quality of life of adult and pediatric patients with glioma. However, improvements in survival have been modest. Currently, clinical guidelines, as well as the article by Mohamed et al accompanying this editorial piece, are adapting treatment recommendations (surgery, chemotherapy, and radiotherapy) according to diagnosis and prognosis guided by molecular biomarkers. Furthermore, this paves the way for the design of clinical trials with new therapies, which is especially important in pediatric gliomas.
Collapse
Affiliation(s)
- Castalia Fernández
- Department of Radiation Oncology, GenesisCare Madrid, Madrid 28043, Spain
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, Madrid 28010, Spain
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, Madrid 28002, Spain
| | - Juan Zafra-Martín
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, GenesisCare Madrid, Madrid 28043, Spain
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, Madrid 28010, Spain
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, Madrid 28002, Spain
| |
Collapse
|
6
|
Zhang J, Qiu X, Feng J, Liu Y. MGMT promoter methylation is a strong prognostic factor for survival after progression in high-grade gliomas. Chin Neurosurg J 2024; 10:24. [PMID: 39049072 PMCID: PMC11267829 DOI: 10.1186/s41016-024-00375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND High-grade gliomas (HGGs) have a rapid relapse and short survival. Studies have identified many clinical characteristics and biomarkers associated with progression-free survival (PFS) and over-survival (OS). However, there has not yet a comprehensive study on survival after the first progression (SAP). METHODS From CGGA and TCGA, 319 and 308 HGGs were confirmed as the first progression. The data on clinical characteristics and biomarkers were analyzed in accordance with OS, PFS, and SAP. RESULTS Analysis of 319 patients from CGGA, significant predictors of improved OS/PFS/SAP were WHO grade, MGMT promoter methylation, and Ki-67 expression in univariate analysis. Further multivariate analysis showed MGMT promoter methylation and Ki-67 expression were independent predictors. However, an analysis of 308 patients from TCGA found MGMT promoter methylation is the only prognostic marker. A longer SAP was observed in patients with methylated MGMT promoter after standard chemoradiotherapy. In our data, HGGs could be divided into low, intermediate, and high-risk groups for SAP by MGMT methylation and Ki-67 expression. CONCLUSIONS Patients with MGMT promoter methylation have a prolonger SAP after standard chemoradiotherapy. HGGs could be divided into low, intermediate, and high-risk groups for SAP according to MGMT status and Ki-67 expression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaoguang Qiu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jin Feng
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanwei Liu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
7
|
Lin MD, Tsai ACY, Abdullah KG, McBrayer SK, Shi DD. Treatment of IDH-mutant glioma in the INDIGO era. NPJ Precis Oncol 2024; 8:149. [PMID: 39025958 PMCID: PMC11258219 DOI: 10.1038/s41698-024-00646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Gliomas are the most common primary brain tumor and are uniformly lethal. Despite significant advancements in understanding the genetic landscape of gliomas, standard-of-care has remained largely unchanged. Subsets of gliomas are defined by gain-of-function mutations in the metabolic genes encoding isocitrate dehydrogenase (IDH). Efforts to exploit mutant IDH activity and/or directly inhibit it with mutant IDH inhibitors have been the focus of over a decade of research. The recently published INDIGO trial, demonstrating the benefit of the mutant IDH inhibitor vorasidenib in patients with low-grade IDH-mutant gliomas, introduces a new era of precision medicine in brain tumors that is poised to change standard-of-care. In this review, we highlight and contextualize the results of the INDIGO trial and introduce key questions whose answers will guide how mutant IDH inhibitors may be used in the clinic. We discuss possible combination therapies with mutant IDH inhibition and future directions for clinical and translational research.
Collapse
Affiliation(s)
- Mathew D Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Alexander C-Y Tsai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Diana D Shi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Schaff LR, Ioannou M, Geurts M, van den Bent MJ, Mellinghoff IK, Schreck KC. State of the Art in Low-Grade Glioma Management: Insights From Isocitrate Dehydrogenase and Beyond. Am Soc Clin Oncol Educ Book 2024; 44:e431450. [PMID: 38723228 PMCID: PMC11651235 DOI: 10.1200/edbk_431450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Low-grade gliomas present a formidable challenge in neuro-oncology because of the challenges imposed by the blood-brain barrier, predilection for the young adult population, and propensity for recurrence. In the past two decades, the systematic examination of genomic alterations in adults and children with primary brain tumors has uncovered profound new insights into the pathogenesis of these tumors, resulting in more accurate tumor classification and prognostication. It also identified several common recurrent genomic alterations that now define specific brain tumor subtypes and have provided a new opportunity for molecularly targeted therapeutic intervention. Adult-type diffuse low-grade gliomas are frequently associated with mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), resulting in production of 2-hydroxyglutarate, an oncometabolite important for tumorigenesis. Recent studies of IDH inhibitors have yielded promising results in patients at early stages of disease with prolonged progression-free survival (PFS) and delayed time to radiation and chemotherapy. Pediatric-type gliomas have high rates of alterations in BRAF, including BRAF V600E point mutations or BRAF-KIAA1549 rearrangements. BRAF inhibitors, often combined with MEK inhibitors, have resulted in radiographic response and improved PFS in these patients. This article reviews emerging approaches to the treatment of low-grade gliomas, including a discussion of targeted therapies and how they integrate with the current treatment modalities of surgical resection, chemotherapy, and radiation.
Collapse
Affiliation(s)
- Lauren R. Schaff
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College
| | - Maria Ioannou
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marjolein Geurts
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Karisa C. Schreck
- Johns Hopkins University School of Medicine Departments of Neurology and Oncology
| |
Collapse
|
9
|
Roda D, Veiga P, Melo JB, Carreira IM, Ribeiro IP. Principles in the Management of Glioblastoma. Genes (Basel) 2024; 15:501. [PMID: 38674436 PMCID: PMC11050118 DOI: 10.3390/genes15040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma, the most aggressive and common malignant primary brain tumour, is characterized by infiltrative growth, abundant vascularization, and aggressive clinical evolution. Patients with glioblastoma often face poor prognoses, with a median survival of approximately 15 months. Technological progress and the subsequent improvement in understanding the pathophysiology of these tumours have not translated into significant achievements in therapies or survival outcomes for patients. Progress in molecular profiling has yielded new omics data for a more refined classification of glioblastoma. Several typical genetic and epigenetic alterations in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signalling, as well as mutation of isocitrate dehydrogenase (IDH), methylation of O6-methylguanine-DNA methyltransferase (MGMT), amplification of epidermal growth factor receptor vIII, and codeletion of 1p/19q. Certain microRNAs, such as miR-10b and miR-21, have also been identified as prognostic biomarkers. Effective treatment options for glioblastoma are limited. Surgery, radiotherapy, and alkylating agent chemotherapy remain the primary pillars of treatment. Only promoter methylation of the gene MGMT predicts the benefit from alkylating chemotherapy with temozolomide and it guides the choice of first-line treatment in elderly patients. Several targeted strategies based on tumour-intrinsic dominant signalling pathways and antigenic tumour profiles are under investigation in clinical trials. This review explores the potential genetic and epigenetic biomarkers that could be deployed as analytical tools in the diagnosis and prognostication of glioblastoma. Recent clinical advancements in treating glioblastoma are also discussed, along with the potential of liquid biopsies to advance personalized medicine in the field of glioblastoma, highlighting the challenges and promises for the future.
Collapse
Affiliation(s)
- Domingos Roda
- Algarve Radiation Oncology Unit—Joaquim Chaves Saúde (JCS), 8000-316 Faro, Portugal;
| | - Pedro Veiga
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
| | - Joana Barbosa Melo
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Marques Carreira
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Institute of Cellular and Molecular Biology, Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (J.B.M.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Li X, Sun S, Zhang W, Liang Z, Fang Y, Sun T, Wan Y, Ma X, Zhang S, Xu Y, Tian R. Identification of genetic modifiers enhancing B7-H3-targeting CAR T cell therapy against glioblastoma through large-scale CRISPRi screening. J Exp Clin Cancer Res 2024; 43:95. [PMID: 38561797 PMCID: PMC10986136 DOI: 10.1186/s13046-024-03027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.
Collapse
Affiliation(s)
- Xing Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Shiyu Sun
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Wansong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Ziwei Liang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Yitong Fang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Tianhu Sun
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Yong Wan
- Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, China
| | - Xingcong Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China.
| | - Yang Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China.
| | - Ruilin Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China.
| |
Collapse
|