1
|
de São José VS, Vieira BM, Neto VM, Lima LM. Repurposing Osimertinib and Gedatolisib for Glioblastoma Treatment: Evidence of Synergistic Effects in an In Vitro Phenotypic Study. Pharmaceuticals (Basel) 2024; 17:1623. [PMID: 39770465 PMCID: PMC11678499 DOI: 10.3390/ph17121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Glioblastoma is a malignant tumor with a poor prognosis for the patient due to its high lethality and limited chemotherapy available. Therefore, from the point of view of chemotherapy treatment, glioblastoma can be considered an unmet medical need. This has led to the investigation of new drugs for monotherapy or associations, acting by synergistic pharmacological mechanisms. Methods: Here, we propose the combination of Osimertinib (a potent EGFR inhibitor) and Gedatolisib (a potent PI3K/mTOR dual inhibitor) through an in vitro phenotypic study using five human GB lines and establish the cytotoxic potency, selectivity, and effect on proliferation, apoptosis, and cell cycle by simultaneously inhibiting EGFR, PI3K, and mTOR. Results: Cytotoxic potency of Gedatolisib and Osimertinib in the selected GB cell lines was determined, which highlighted the synergistic response from their combination and its impact on migration reduction, G0/G1 cell cycle arrest, GB cytotoxicity, and apoptosis-inducing effects for different GB cell lines. Conclusions: From the drug combination studies in phenotypic in vitro models, it was possible to suggest a new potential treatment for glioblastoma that justifies further safe in vivo phases of preclinical trials with the combination.
Collapse
Affiliation(s)
- Vitória Santório de São José
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro 20231-092, Brazil; (B.M.V.); (V.M.N.)
| | - Bruno Marques Vieira
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro 20231-092, Brazil; (B.M.V.); (V.M.N.)
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Vivaldo Moura Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro 20231-092, Brazil; (B.M.V.); (V.M.N.)
| | - Lidia M. Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
2
|
Dual Targeting of EGFR and MTOR Pathways Inhibits Glioblastoma Growth by Modulating the Tumor Microenvironment. Cells 2023; 12:cells12040547. [PMID: 36831214 PMCID: PMC9954001 DOI: 10.3390/cells12040547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Glioblastoma's (GBM) aggressive growth is driven by redundant activation of a myriad of signaling pathways and genomic alterations in tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), which is altered in over 50% of cases. Single agents targeting EGFR have not proven effective against GBM. In this study, we aimed to identify an effective anti-tumor regimen using pharmacogenomic testing of patient-derived GBM samples, in culture and in vivo. High-throughput pharmacological screens of ten EGFR-driven GBM samples identified the combination of erlotinib (EGFRi) and MLN0128 (a mammalian target of rapamycin inhibitor, or MTORi) as the most effective at inhibiting tumor cell viability. The anti-tumor activity of erlonitib+MLN0128 was synergistic and produced inhibition of the p-EGFR, mitogen-activated protein kinase (MAPK), and Phosphoinositide 3-kinase (PI3K) pathways in culture. Using an orthotopic murine model of GBM, we show that erlotinib+MLN0128 inhibited tumor growth in vivo and significantly prolonged the survival of tumor-bearing mice. Expression profiling of tumor tissues from treated mice revealed a unique gene signature induced by erlotinib+MLN0128, consisting of downregulation of immunosuppressive chemokines in the tumor microenvironment, including C-C motif chemokine ligand 2 (CCL2) and periostin. Lower periostin levels resulted in the inhibition of Iba1+ (tumor-promoting) macrophage infiltration of GBM xenografts. Taken together, our results demonstrate that pharmacological co-targeting of EGFR and MTOR using clinically available drugs represents an effective treatment paradigm for EGFR-driven GBMs, acting both by inhibiting tumor cell growth and modulating the immune tumor microenvironment.
Collapse
|
3
|
Shao W, Azam Z, Guo J, To SST. Oncogenic potential of PIK3CD in glioblastoma is exerted through cytoskeletal proteins PAK3 and PLEK2. J Transl Med 2022; 102:1314-1322. [PMID: 35851857 DOI: 10.1038/s41374-022-00821-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
The Class IA phosphoinositide-3-kinase catalytic isoforms p110α, p110β, and p110δ have been implicated to play vital but overlapping roles in various cancers, including glioblastoma (GBM). We have previously shown that PIK3CD, encoding p110δ, is highly expressed in multiple glioma cell lines and involved in glioma cell migration and invasion. Based on the RNA sequencing data from The Cancer Genome Atlas (TCGA) database, we found the level of PIK3CD expression is significantly higher in GBM than WHO grade II and III gliomas and is closely related to poor survival. To further dissect the oncogenic roles of PIK3CD in glioma progression, we employed CRISPR/Cas9 to completely abrogate its expression in the GBM cell line U87-MG and have successfully isolated two knockout clones with different gene modifications. As expected, the knockout clones exhibited significantly lower migration and invasion capabilities when compared with their parental cells. Interestingly, knockout of PIK3CD also dramatically reduced the colony formation ability of the knockout cells. Further study revealed that PIK3CD deficiency could negate tumorigenesis in nude mice. To determine the downstream effect of PIK3CD depletion, we performed RT2 profiler PCR array of selected gene sets and found that knockout of PIK3CD impaired the activity of p-21 activated kinase 3 (PAK3) and pleckstrin 2 (PLEK2), molecules involved in cancer cell migration and proliferation. This explains why the glioma cells without the PIK3CD expression exhibited weaker oncogenic features. Further, RNAseq analysis of parent and knockout clones revealed that this interaction might happen through axonogenesis signaling pathway. Taken together, we demonstrated that PIK3CD could be a potential prognostic factor and therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Wei Shao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Zulfikar Azam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Jintao Guo
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102, China
| | - Shing Shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China.
| |
Collapse
|
4
|
Powe E, Parschauer D, Istifan J, Lin S, Duan H, Gryka R, Jean-Louis D, Tiwari AK, Amos S. Luteolin enhances erlotinib’s cell proliferation inhibitory and apoptotic effects in glioblastoma cell lines. Front Pharmacol 2022; 13:952169. [PMID: 36199696 PMCID: PMC9527275 DOI: 10.3389/fphar.2022.952169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The epidermal growth factor (EGFR) receptor is frequently overexpressed in glioblastoma multiforme IV (GBM). Increased expression of EGFR leads to increased proliferation, decreased apoptosis, and increased resistance to chemotherapeutic agents. A small molecule called erlotinib inhibits EGFR receptors by binding to their adenosine triphosphate (ATP) binding sites. It is FDA approved to treat a variety of EGFR-mediated cancers. Several clinical trials have explored a combination of erlotinib with other agents to treat glioblastoma since it is believed that erlotinib would benefit patients with GBM with EGFR mutations or expression. Luteolin, a natural flavonoid, inhibits cell growth and induces apoptosis in cancer cells. We investigated the combined effects of erlotinib and luteolin on proliferation and apoptosis on glioblastoma cell lines overexpressing EGFR or glioma cells expressing truncated EGFR (ΔEGFR). In a concentration-dependent fashion, the combination of luteolin and erlotinib reduced cell proliferation (p < 0.05) and induced apoptosis by cleaving PARP and increasing caspase expression. In addition, the combination of luteolin and erlotinib reduced the phosphorylation of downstream EGFR cell signaling molecules such as Akt, NF kappa B, and STAT3 in a concentration-dependent manner. These findings suggest that combining luteolin with erlotinib offers a potential treatment strategy for glioblastoma multiforme IV.
Collapse
Affiliation(s)
- Erika Powe
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, OH, United States
| | - Daniel Parschauer
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, OH, United States
| | - Jessica Istifan
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, OH, United States
| | - Stacy Lin
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, OH, United States
| | - Huanyun Duan
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, OH, United States
| | - Rebecca Gryka
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, OH, United States
| | - Denise Jean-Louis
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, OH, United States
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, Toledo, OH, United States
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, United States
- Center of Medical Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Samson Amos
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, OH, United States
- *Correspondence: Samson Amos,
| |
Collapse
|
5
|
Vaquero J, Pavy A, Gonzalez-Sanchez E, Meredith M, Arbelaiz A, Fouassier L. Genetic alterations shaping tumor response to anti-EGFR therapies. Drug Resist Updat 2022; 64:100863. [DOI: 10.1016/j.drup.2022.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Franco C, Kausar S, Silva MFB, Guedes RC, Falcao AO, Brito MA. Multi-Targeting Approach in Glioblastoma Using Computer-Assisted Drug Discovery Tools to Overcome the Blood–Brain Barrier and Target EGFR/PI3Kp110β Signaling. Cancers (Basel) 2022; 14:cancers14143506. [PMID: 35884571 PMCID: PMC9317902 DOI: 10.3390/cancers14143506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Treatment of glioblastoma is hampered by the activation of compensatory survival mechanisms by malignant cells that lead to drug resistance. Moreover, the blood–brain barrier (BBB) precludes the brain entrance of most drugs. We hypothesized that computer-assisted drug discovery tools would reveal novel multi-targeting drug candidates with BBB-permeant and favorable ADMET properties. We aimed to discover molecules with predicted ability to inhibit the EGFR/PI3Kp110β pathway and to validate their efficacy and safety in biological assays. We used quantitative structure–activity relationship models and structure-based virtual screening, and assessed ADMET properties, to identify BBB-permeant drug candidates. Moreover, we tested their anti-tumor efficacy and BBB safety and permeation in cell models. We found two EGFR, two PI3Kp110β, and, mostly, two dual inhibitors with anti-tumor effects. Among them, one EGFR and two PI3Kp110β inhibitors were able to cross the BBB endothelium without compromising it. These studies revealed novel drug candidates for glioblastoma treatment. Abstract The epidermal growth factor receptor (EGFR) is upregulated in glioblastoma, becoming an attractive therapeutic target. However, activation of compensatory pathways generates inputs to downstream PI3Kp110β signaling, leading to anti-EGFR therapeutic resistance. Moreover, the blood–brain barrier (BBB) limits drugs’ brain penetration. We aimed to discover EGFR/PI3Kp110β pathway inhibitors for a multi-targeting approach, with favorable ADMET and BBB-permeant properties. We used quantitative structure–activity relationship models and structure-based virtual screening, and assessed ADMET properties, to identify BBB-permeant drug candidates. Predictions were validated in in vitro models of the human BBB and BBB-glioma co-cultures. The results disclosed 27 molecules (18 EGFR, 6 PI3Kp110β, and 3 dual inhibitors) for biological validation, performed in two glioblastoma cell lines (U87MG and U87MG overexpressing EGFR). Six molecules (two EGFR, two PI3Kp110β, and two dual inhibitors) decreased cell viability by 40–99%, with the greatest effect observed for the dual inhibitors. The glioma cytotoxicity was confirmed by analysis of targets’ downregulation and increased apoptosis (15–85%). Safety to BBB endothelial cells was confirmed for three of those molecules (one EGFR and two PI3Kp110β inhibitors). These molecules crossed the endothelial monolayer in the BBB in vitro model and in the BBB-glioblastoma co-culture system. These results revealed novel drug candidates for glioblastoma treatment.
Collapse
Affiliation(s)
- Catarina Franco
- LASIGE, Department of Informatics, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (C.F.); (S.K.)
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.F.B.S.); (R.C.G.)
| | - Samina Kausar
- LASIGE, Department of Informatics, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (C.F.); (S.K.)
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.F.B.S.); (R.C.G.)
| | - Margarida F. B. Silva
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.F.B.S.); (R.C.G.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.F.B.S.); (R.C.G.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Andre O. Falcao
- LASIGE, Department of Informatics, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (C.F.); (S.K.)
- Correspondence: (A.O.F.); (M.A.B.); Tel.: +351-217500239 (A.O.F.); +351-217946449 (M.A.B.)
| | - Maria Alexandra Brito
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.F.B.S.); (R.C.G.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (A.O.F.); (M.A.B.); Tel.: +351-217500239 (A.O.F.); +351-217946449 (M.A.B.)
| |
Collapse
|
7
|
Cardona AF, Jaramillo-Velásquez D, Ruiz-Patiño A, Polo C, Jiménez E, Hakim F, Gómez D, Ramón JF, Cifuentes H, Mejía JA, Salguero F, Ordoñez C, Muñoz Á, Bermúdez S, Useche N, Pineda D, Ricaurte L, Zatarain-Barrón ZL, Rodríguez J, Avila J, Rojas L, Jaller E, Sotelo C, Garcia-Robledo JE, Santoyo N, Rolfo C, Rosell R, Arrieta O. Efficacy of osimertinib plus bevacizumab in glioblastoma patients with simultaneous EGFR amplification and EGFRvIII mutation. J Neurooncol 2021; 154:353-364. [PMID: 34498213 DOI: 10.1007/s11060-021-03834-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Amplification of EGFR and its active mutant EGFRvIII are common in glioblastoma (GB). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors or antibodies has shown limited efficacy. To improve the likelihood of effectiveness, we targeted adult patients with recurrent GB enriched for simultaneous EGFR amplification and EGFRvIII mutation, with osimertinib/bevacizumab at doses described for non-small cell lung cancer. METHODS We retrospectively explored whether previously described EGFRvIII mutation in association with EGFR gene amplification could predict response to osimertinib/bevacizumab combination in a subset of 15 patients treated at recurrence. The resistance pattern in a subgroup of subjects is described using a commercial next-generation sequencing panel in liquid biopsy. RESULTS There were ten males (66.7%), and the median patient's age was 56 years (range 38-70 years). After their initial diagnosis, 12 patients underwent partial (26.7%) or total resection (53.3%). Subsequently, all cases received IMRT and concurrent and adjuvant temozolomide (TMZ; the median number of cycles 9, range 6-12). The median follow-up after recurrence was 17.1 months (95% CI 12.3-22.6). All patients received osimertinib/bevacizumab as a second-line intervention with a median progression-free survival (PFS) of 5.1 months (95% CI 2.8-7.3) and overall survival of 9.0 months (95% CI 3.9-14.0). The PFS6 was 46.7%, and the overall response rate was 13.3%. After exposure to the osimertinib/bevacizumab combination, the main secondary alterations were MET amplification, STAT3, IGF1R, PTEN, and PDGFR. CONCLUSIONS While the osimertinib/bevacizumab combination was marginally effective in most GB patients with simultaneous EGFR amplification plus EGFRvIII mutation, a subgroup experienced a long-lasting meaningful benefit. The findings of this brief cohort justify the continuation of the research in a clinical trial. The pattern of resistance after exposure to osimertinib/bevacizumab includes known mechanisms in the regulation of EGFR, findings that contribute to the understanding and targeting in a stepwise rational this pathway.
Collapse
Affiliation(s)
- Andrés F Cardona
- Clinical and Translational Oncology Group, Brain Tumor Unit, Clínica del Country, Calle 116 No. 9 - 72, c. 318, Bogotá, Colombia. .,Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia. .,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia. .,Thoracic Oncology Unit, Clínica del Country, Bogotá, Colombia.
| | | | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carolina Polo
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Enrique Jiménez
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Fernando Hakim
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Diego Gómez
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | | | | | - Fernando Salguero
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Camila Ordoñez
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Álvaro Muñoz
- Radio-Oncology Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Sonia Bermúdez
- Neuroradiology Section, Radiology Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Nicolas Useche
- Neuroradiology Section, Radiology Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Diego Pineda
- Neuroradiology Section, Radiology Department, Clínica del Country, Bogotá, Colombia
| | | | | | - July Rodríguez
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Jenny Avila
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Clinical and Translational Oncology Group, Brain Tumor Unit, Clínica del Country, Calle 116 No. 9 - 72, c. 318, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia.,Clinical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Elvira Jaller
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | | | - Nicolas Santoyo
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cáncer Center, Mount Sinai Hospital System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Oscar Arrieta
- Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
8
|
pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111664. [DOI: 10.1016/j.msec.2020.111664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023]
|
9
|
Pan PC, Magge RS. Mechanisms of EGFR Resistance in Glioblastoma. Int J Mol Sci 2020; 21:E8471. [PMID: 33187135 PMCID: PMC7696540 DOI: 10.3390/ijms21228471] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Despite numerous efforts to target epidermal growth factor receptor (EGFR), commonly dysregulated in GBM, approaches directed against EGFR have not achieved the same degree of success as seen in other tumor types, particularly as compared to non-small cell lung cancer (NSCLC). EGFR alterations in glioblastoma lie primarily in the extracellular domain, unlike the kinase domain alterations seen in NSCLC. Small molecule inhibitors are difficult to develop for the extracellular domain. Monoclonal antibodies can be developed to target the extracellular domain but must contend with the blood brain barrier (BBB). We review the role of EGFR in GBM, the history of trialed treatments, and the potential paths forward to target the pathway that may have greater success.
Collapse
Affiliation(s)
- Peter C. Pan
- Division of Neuro-Oncology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rajiv S. Magge
- Division of Neuro-Oncology, NewYork-Presbyterian/Weill Cornell Medicine, New York, NY 10021, USA;
| |
Collapse
|
10
|
Daisy Precilla S, Kuduvalli SS, Thirugnanasambandhar Sivasubramanian A. Disentangling the therapeutic tactics in GBM: From bench to bedside and beyond. Cell Biol Int 2020; 45:18-53. [PMID: 33049091 DOI: 10.1002/cbin.11484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant form of adult brain tumor with a high mortality rate and dismal prognosis. The present standard treatment comprising surgical resection followed by radiation and chemotherapy using temozolomide can broaden patient's survival to some extent. However, the advantages are not palliative due to the development of resistance to the drug and tumor recurrence following the multimodal treatment approaches due to both intra- and intertumoral heterogeneity of GBM. One of the major contributors to temozolomide resistance is O6 -methylguanine-DNA methyltransferase. Furthermore, deficiency of mismatch repair, base excision repair, and cytoprotective autophagy adds to temozolomide obstruction. Rising proof additionally showed that a small population of cells displaying certain stem cell markers, known as glioma stem cells, adds on to the resistance and tumor progression. Collectively, these findings necessitate the discovery of novel therapeutic avenues for treating glioblastoma. As of late, after understanding the pathophysiology and biology of GBM, some novel therapeutic discoveries, such as drug repurposing, targeted molecules, immunotherapies, antimitotic therapies, and microRNAs, have been developed as new potential treatments for glioblastoma. To help illustrate, "what are the mechanisms of resistance to temozolomide" and "what kind of alternative therapeutics can be suggested" with this fatal disease, a detailed history of these has been discussed in this review article, all with a hope to develop an effective treatment strategy for GBM.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | |
Collapse
|
11
|
Sivakumar H, Devarasetty M, Kram DE, Strowd RE, Skardal A. Multi-Cell Type Glioblastoma Tumor Spheroids for Evaluating Sub-Population-Specific Drug Response. Front Bioeng Biotechnol 2020; 8:538663. [PMID: 33042963 PMCID: PMC7523412 DOI: 10.3389/fbioe.2020.538663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is a lethal, incurable form of cancer in the brain. Even with maximally aggressive surgery and chemoradiotherapy, median patient survival is 14.5 months. These tumors infiltrate normal brain tissue, are surgically incurable, and universally recur. GBMs are characterized by genetic, epigenetic, and microenvironmental heterogeneity, and they evolve spontaneously over time and as a result of treatment. However, tracking such heterogeneity in real time in response to drug treatments has been impossible. Here we describe the development of an in vitro GBM tumor organoid model that is comprised of five distinct cellular subpopulations (4 GBM cell lines that represent GBM subpopulations and 1 astrocyte line), each fluorescently labeled with a different color. These multi-cell type GBM organoids are then embedded in a brain-like hyaluronic acid hydrogel for subsequent studies involving drug treatments and tracking of changes in relative numbers of each fluorescently unique subpopulation. This approach allows for the visual assessment of drug influence on individual subpopulations within GBM, and in future work can be expanded to supporting studies using patient tumor biospecimen-derived cells for personalized diagnostics.
Collapse
Affiliation(s)
- Hemamylammal Sivakumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David E. Kram
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, United States
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, United States
| | - Roy E. Strowd
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, United States
- Department of Neurology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, United States
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Molecular Medicine and Translational Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
12
|
p110δ PI3K as a therapeutic target of solid tumours. Clin Sci (Lond) 2020; 134:1377-1397. [DOI: 10.1042/cs20190772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
AbstractFrom the time of first characterization of PI3K as a heterodimer made up of a p110 catalytic subunit and a regulatory subunit, a wealth of evidence have placed the class IA PI3Ks at the forefront of drug development for the treatment of various diseases including cancer. The p110α isoform was quickly brought at the centre of attention in the field of cancer research by the discovery of cancer-specific gain-of-function mutations in PIK3CA gene in a range of human solid tumours. In contrast, p110δ PI3K was placed into the spotlight of immunity, inflammation and haematologic malignancies because of the preferential expression of this isoform in leucocytes and the rare mutations in PIK3CD gene. The last decade, however, several studies have provided evidence showing that the correlation between the PIK3CA mutations and the response to PI3K inhibition is less clear than originally considered, whereas concurrently an unexpected role of p110δ PI3K in solid tumours has being emerging. While PIK3CD is mostly non-mutated in cancer, the expression levels of p110δ protein seem to act as an intrinsic cancer-causing driver in various solid tumours including breast, prostate, colorectal and liver cancer, Merkel-Cell carcinoma, glioblastoma and neurobalstoma. Furthermore, p110δ selective inhibitors are being studied as potential single agent treatments or as combination partners in attempt to improve cancer immunotherapy, with both strategies to shown great promise for the treatment of several solid tumours. In this review, we discuss the evidence implicating the p110δ PI3K in human solid tumours, their impact on the current state of the field and the potential of using p110δ-selective inhibitors as monotherapy or combined therapy in different cancer contexts.
Collapse
|
13
|
To SS, Azam Z, Shao W, Ng HK, Wang J, Chen ZP. Comprehensive RNAseq analysis reveals PIK3CD promotes glioblastoma tumorigenesis by mediating PI3K-Akt signaling pathway. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_23_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Dong Z, Zou J, Li J, Pang Y, Liu Y, Deng C, Chen F, Cui H. MYST1/KAT8 contributes to tumor progression by activating EGFR signaling in glioblastoma cells. Cancer Med 2019; 8:7793-7808. [PMID: 31691527 PMCID: PMC6912028 DOI: 10.1002/cam4.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
With short survival time, glioblastoma (GBM) is the most malignant tumor in the central nervous system. Recently, epigenetic enzymes play essential roles in the regulation of tumorigenesis and cancer development of GBM. However, little is known about MYST1/KAT8/MOF, a histone acetylation enzyme, in GBM. The present study shows that MYST1 promotes GBM progression through activating epidermal growth factor receptor (EGFR) signaling. MYST1 expression was increased in GBM and was negatively correlated with prognosis in patients with glioma and GBM. Knockdown of MYST1 reduced cell proliferation and BrdU incorporation in LN229, U87, and A172 GBM cells. Besides, MYST1 downregulation also induced cell cycle arrest at G2M phase, as well as the reduced expression of CDK1, Cyclin A, Cyclin B1, and increased expression of p21CIP1/Waf1. Meanwhile, Self‐renewal capability in vitro and tumorigenecity in vivo were also impaired after MYST1 knockdown. Importantly, MYST1 expression was lowly expressed in mesenchymal subtype of GBM and was positively correlated with EGFR expression in a cohort from The Cancer Genome Atlas. Western blot subsequently confirmed that phosphorylation and activation of p‐Try1068 of EGFR, p‐Ser473 of AKT and p‐Thr202/Tyr204 of Erk1/2 were also decreased by MYST1 knockdown. Consistent with the results above, overexpression of MYST1 promoted GBM growth and activated EGFR signaling in vitro and in vivo. In addition, erlotinib, a US Food and Drug Administration approved cancer drug which targets EGFR, was able to rescue MYST1‐promoted cell proliferation and EGFR signaling pathway. Furthermore, the transcription of EGF, an EFGR ligand, was shown to be positively regulated by MYST1 possibly via H4K16 acetylation. Our findings elucidate MYST1 as a tumor promoter in GBM and an EGFR activator, and may be a potential drug target for GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Jiahua Zou
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Jifu Li
- College of Biotechnology, Southwest University, Chongqing, China
| | - Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Li Y, Zhang HB, Chen X, Yang X, Ye Y, Bekaii-Saab T, Zheng Y, Zhang Y. A Rare EGFR-SEPT14 Fusion in a Patient with Colorectal Adenocarcinoma Responding to Erlotinib. Oncologist 2019; 25:203-207. [PMID: 32162810 DOI: 10.1634/theoncologist.2019-0405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Growing evidence supports gene fusions as good candidates for molecularly targeted therapy in CRC. Here we describe a case of a 63-year-old man who had a radical right hemicolectomy procedure 24 months ago. Pathological diagnosis indicated colorectal adenocarcinoma with stage pT4N2bMx. During re-examination in December 2016, positron emission tomography/computed tomography scans indicated relapse with multiple lymph nodes metastasis. Then the patient received a nine-cycle combination treatment of XELOX and bevacizumab and showed progressive disease (PD). Subsequently, the patient was treated with bevacizumab plus FOLFIRI for 2 months before discontinuation because of adverse events. Paraffin sections of postoperative colorectal tissue were subjected to next-generation sequencing, and epidermal growth factor receptor (EGFR) amplification and rare EGFR-SEPT14 fusion were identified. The patient then received erlotinib, an EGFR tyrosine kinase inhibitor (TKI), and achieved a partial response. However, the patient subsequently showed PD, and a new variant, EGFRvIII, appeared in metastasis, which may be involved in erlotinib resistance. We suggest that there is value in treating patients harboring EGFR fusions with EGFR TKI therapy, and EGFR-SEPT14 fusion may be used as a therapeutic target for CRC. KEY POINTS: To the authors' knowledge, this is the first report of EGFR-SEPT14 fusion in colorectal cancer. The patient achieved a partial response after treatment with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib. This report expands the list of gene fusions in colorectal cancer and highlights new targets for the therapeutic intervention. EGFRvIII may be involved in erlotinib resistance, which is rare in colorectal cancer.
Collapse
Affiliation(s)
- Yong Li
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Hai-Bo Zhang
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Xian Chen
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Xiaobing Yang
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yongsong Ye
- Department of Image, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Neirinckx V, Hau AC, Schuster A, Fritah S, Tiemann K, Klein E, Nazarov PV, Matagne A, Szpakowska M, Meyrath M, Chevigné A, Schmidt MHH, Niclou SP. The soluble form of pan-RTK inhibitor and tumor suppressor LRIG1 mediates downregulation of AXL through direct protein-protein interaction in glioblastoma. Neurooncol Adv 2019; 1:vdz024. [PMID: 32642659 PMCID: PMC7212925 DOI: 10.1093/noajnl/vdz024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Targeted approaches for inhibiting epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases (RTKs) in glioblastoma (GBM) have led to therapeutic resistance and little clinical benefit, raising the need for the development of alternative strategies. Endogenous LRIG1 (Leucine-rich Repeats and ImmunoGlobulin-like domains protein 1) is an RTK inhibitory protein required for stem cell maintenance, and we previously demonstrated the soluble ectodomain of LRIG1 (sLRIG1) to potently inhibit GBM growth in vitro and in vivo. Methods Here, we generated a recombinant protein of the ectodomain of LRIG1 (sLRIG1) and determined its activity in various cellular GBM models including patient-derived stem-like cells and patient organoids. We used proliferation, adhesion, and invasion assays, and performed gene and protein expression studies. Proximity ligation assay and NanoBiT complementation technology were applied to assess protein-protein interactions. Results We show that recombinant sLRIG1 downregulates EGFRvIII but not EGFR, and reduces proliferation in GBM cells, irrespective of their EGFR expression status. We find that sLRIG1 targets and downregulates a wide range of RTKs, including AXL, and alters GBM cell adhesion. Mechanistically, we demonstrate that LRIG1 interferes with AXL but not with EGFR dimerization. Conclusions These results identify AXL as a novel sLRIG1 target and show that LRIG1-mediated RTK downregulation depends on direct protein interaction. The pan-RTK inhibitory activity of sLRIG1 warrants further investigation for new GBM treatment approaches.
Collapse
Affiliation(s)
- Virginie Neirinckx
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Ann-Christin Hau
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Anne Schuster
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Katja Tiemann
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Eliane Klein
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Petr V Nazarov
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - André Matagne
- Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg, Germany
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg, Germany
| | - Mirko H H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| |
Collapse
|
17
|
Saleem H, Kulsoom Abdul U, Küçükosmanoglu A, Houweling M, Cornelissen FMG, Heiland DH, Hegi ME, Kouwenhoven MCM, Bailey D, Würdinger T, Westerman BA. The TICking clock of EGFR therapy resistance in glioblastoma: Target Independence or target Compensation. Drug Resist Updat 2019; 43:29-37. [PMID: 31054489 DOI: 10.1016/j.drup.2019.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Targeted therapy against driver mutations responsible for cancer progression has been shown to be effective in many tumor types. For glioblastoma (GBM), the epidermal growth factor receptor (EGFR) gene is the most frequently mutated oncogenic driver and has therefore been considered an attractive target for therapy. However, so far responses to EGFR-pathway inhibitors have been disappointing. We performed an exhaustive analysis of the mechanisms that might account for therapy resistance against EGFR inhibition. We define two major mechanisms of resistance and propose modalities to overcome them. The first resistance mechanism concerns target independence. In this case, cells have lost expression of the EGFR protein and experience no negative impact of EGFR targeting. Loss of extrachromosomally encoded EGFR as present in double minute DNA is a frequent mechanism for this type of drug resistance. The second mechanism concerns target compensation. In this case, cells will counteract EGFR inhibition by activation of compensatory pathways that render them independent of EGFR signaling. Compensatory pathway candidates are platelet-derived growth factor β (PDGFβ), Insulin-like growth factor 1 (IGFR1) and cMET and their downstream targets, all not commonly mutated at the time of diagnosis alongside EGFR mutation. Given that both mechanisms make cells independent of EGFR expression, other means have to be found to eradicate drug resistant cells. To this end we suggest rational strategies which include the use of multi-target therapies that hit truncation mutations (mechanism 1) or multi-target therapies to co-inhibit compensatory proteins (mechanism 2).
Collapse
Affiliation(s)
- Hamza Saleem
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - U Kulsoom Abdul
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Asli Küçükosmanoglu
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Megan Houweling
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Fleur M G Cornelissen
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands; Division of Biology, Nature Science Building, 9500 Gilman Drive, CA, 92093-0377, United States
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Baden-Württemberg, Germany
| | - Monika E Hegi
- Department of Clinical Neurosciences, Lausanne University Hospital, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Mathilde C M Kouwenhoven
- Department of Neurology, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - David Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Tom Würdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Ye Y, Hu Q, Chen H, Liang K, Yuan Y, Xiang Y, Ruan H, Zhang Z, Song A, Zhang H, Liu L, Diao L, Lou Y, Zhou B, Wang L, Zhou S, Gao J, Jonasch E, Lin SH, Xia Y, Lin C, Yang L, Mills GB, Liang H, Han L. Characterization of Hypoxia-associated Molecular Features to Aid Hypoxia-Targeted Therapy. Nat Metab 2019; 1:431-444. [PMID: 31984309 PMCID: PMC6980239 DOI: 10.1038/s42255-019-0045-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Tumor hypoxia is a major contributor to resistance to anti-cancer therapies. Given that the results of hypoxia-targeted therapy trials have been disappointing, a more personalized approach may be needed. Here we characterize multi-OMIC molecular features associated with tumor hypoxia and identify molecular alterations that correlate with both drug-resistant and drug-sensitive responses to anti-cancer drugs. Based on a well-established hypoxia gene expression signature, we classify about 10,000 tumor samples into hypoxia score-high and score-low groups across different cancer types from The Cancer Genome Atlas and demonstrate their prognostic associations. We then identify various types of molecular features associated with hypoxia status that correlate with drug resistance but, in some cases, also with drug sensitivity, contrasting the conventional view that hypoxia confers drug resistance. We further show that 110 out of 121 (90.9%) clinically actionable genes can be affected by hypoxia status and experimentally validate the predicted effects of hypoxia on the response to several drugs in cultured cells. Our study provides a comprehensive molecular-level understanding of tumor hypoxia and may have practical implications for clinical cancer therapy.
Collapse
Affiliation(s)
- Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hu Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Yuan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX, USA
| | - Hang Ruan
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX, USA
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX, USA
| | - Huiwen Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX, USA
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston-McGovern Medical School, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center for Precision Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
19
|
Synergistic Action of Gefitinib and GSK41364A Simultaneously Loaded in Ratiometrically-Engineered Polymeric Nanoparticles for Glioblastoma Multiforme. J Clin Med 2019; 8:jcm8030367. [PMID: 30875975 PMCID: PMC6462915 DOI: 10.3390/jcm8030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma Multiforme is a deadly cancer of glial cells with very low survival rates. Current treatment options are invasive and have serious side effects. Single drug treatments make the tumor refractory after a certain period. Combination therapies have shown improvements in treatment responses against aggressive forms of cancer and are becoming a mainstay in the management of cancer. The purpose of this study is to design a combinatorial treatment regimen by engineering desired ratios of two different small molecule drugs (gefitinib and GSK461364A) in a single carrier that can reduce off-target effects and increase their bioavailability. Synergistic effects were observed with our formulation when optimal ratios of gefitinib and GSK461364A were loaded in poly (lactic-co-glycolic) acid and polyethylene glycol (PLGA-PEG) nanoparticles and tested for efficacy in U87-malignant glioma (U87-MG) cells. Combination nanoparticles proved to be more effective compared to single drug encapsulated nanoparticles, free drug combinations, and the mixture of two single loaded nanoparticles, with statistically significant values at certain ratios and drug concentrations. We also observed drastically reduced clonogenic potential of the cells that were treated with free drugs and nanoparticle combinations in a colony forming assay. From our findings, we conclude that the combination of GSK461364A and higher concentrations of gefitinib when encapsulated in nanoparticles yield synergistic killing of glioma cells. This study could form the basis for designing new combination treatments using nanoparticles to deliver multiple drugs to cancer cells for synergistic effects.
Collapse
|
20
|
Sepúlveda JM, Sánchez-Gómez P, Vaz Salgado MÁ, Gargini R, Balañá C. Dacomitinib: an investigational drug for the treatment of glioblastoma. Expert Opin Investig Drugs 2018; 27:823-829. [PMID: 30247945 DOI: 10.1080/13543784.2018.1528225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Standard treatment of newly diagnosed glioblastoma (GB) is surgery with radiotherapy and temozolomide, but tumors will recur with a median overall survival of only 15 months. It seems imperative to explore new possibilities of treatment based on targetable alterations known to be present in GB. Among others, Epidermal Growth Factor Receptor or EGFR (HER1) mutations or amplifications are the most prevalent alterations in GB. In fact, around 40% of GB cases show amplification of EGFR gene, and half of these patients carry the EGFRvIII mutation, a deletion that generates a continuous activation of the tyrosine kinase domain of the receptor. Areas covered: We review the current knowledge about Dacomitinib, an oral, irreversible, second-generation, pan-HER tyrosine kinase inhibitor, in the treatment of glioblastoma. Dacomitinib has noteworthy antiglioma activity in preclinical models and has been tested in one phase II trial in patients with recurrent GB with EGFR amplification. Expert opinion: Despite the poor global results of Dacomitinib in recurrent GB shown in a phase II trial, some patients had a significant benefit. Therefore, it is necessary to improve the knowledge about the mechanisms of failure or resistance to EGFR inhibitors in GB.
Collapse
Affiliation(s)
| | - Pilar Sánchez-Gómez
- b Neurooncology Unit , Instituto de Salud Carlos III, UFIEC , Madrid , Spain
| | | | - Ricardo Gargini
- d Molecular neuropathology , Centro de Biología Molecular, CSIC , Madrid , Spain
| | - Carmen Balañá
- e Neurooncology and Sarcomas , Catalan Institute of Oncology (ICO) Badalona , Barcelona , Spain
| |
Collapse
|
21
|
Young JS, Prados MD, Butowski N. Using genomics to guide treatment for glioblastoma. Pharmacogenomics 2018; 19:1217-1229. [PMID: 30203716 DOI: 10.2217/pgs-2018-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma has been shown to have many different genetic mutations found both within and between tumor samples. Molecular testing and genomic sequencing has helped to classify diagnoses and clarify difficult to interpret histopathological specimens. Genomic information also plays a critical role in prognostication for patients, with IDH mutations and MGMT methylation having significant impact of the response to chemotherapy and overall survival of patients. Unfortunately, personalized medicine and targeted therapy against specific mutations have not been shown to improve patient outcomes. As technology continues to improve, exome and RNA sequencing will play a role in the design of clinical trials, classification of patient subgroups and identification of rare mutations that can be targeted by small-molecule inhibitors and biologic agents.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Michael D Prados
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Mesbahi Y, Zekri A, Ahmadian S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Targeting of EGFR increase anti-cancer effects of arsenic trioxide: Promising treatment for glioblastoma multiform. Eur J Pharmacol 2018; 820:274-285. [DOI: 10.1016/j.ejphar.2017.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
23
|
Pridham KJ, Varghese RT, Sheng Z. The Role of Class IA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunits in Glioblastoma. Front Oncol 2017; 7:312. [PMID: 29326882 PMCID: PMC5736525 DOI: 10.3389/fonc.2017.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) plays a critical role in the pathogenesis of cancer including glioblastoma, the most common and aggressive form of brain cancer. Targeting the PI3K pathway to treat glioblastoma has been tested in the clinic with modest effect. In light of the recent finding that PI3K catalytic subunits (PIK3CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, and PIK3CG/p110γ) are not functionally redundant, it is imperative to determine whether these subunits play divergent roles in glioblastoma and whether selectively targeting PI3K catalytic subunits represents a novel and effective strategy to tackle PI3K signaling. This article summarizes recent advances in understanding the role of PI3K catalytic subunits in glioblastoma and discusses the possibility of selective blockade of one PI3K catalytic subunit as a treatment option for glioblastoma.
Collapse
Affiliation(s)
- Kevin J Pridham
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, United States.,Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Faculty of Health Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
24
|
Pedron S, Polishetty H, Pritchard AM, Mahadik BP, Sarkaria JN, Harley BAC. Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS COMMUNICATIONS 2017; 7:442-449. [PMID: 29230350 PMCID: PMC5721678 DOI: 10.1557/mrc.2017.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While preclinical models such as orthotopic tumors generated in mice from patient-derived specimens are widely used to predict sensitivity or therapeutic interventions for cancer, such xenografts can be slow, require extensive infrastructure, and can make in situ assessment difficult. Such concerns are heightened in highly aggressive cancers, such as glioblastoma (GBM), that display genetic diversity and short mean survival. Biomimetic biomaterial technologies offer an approach to create ex vivo models that reflect biophysical features of the tumor microenvironment (TME). We describe a microfluidic templating approach to generate spatially graded hydrogels containing patient-derived GBM cells to explore drug efficacy and resistance mechanisms.
Collapse
Affiliation(s)
- S Pedron
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - H Polishetty
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - A M Pritchard
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - B P Mahadik
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - J N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - B A C Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Lab., 600 S. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Sivakumar H, Strowd R, Skardal A. Exploration of Dynamic Elastic Modulus Changes on Glioblastoma Cell Populations with Aberrant EGFR Expression as a Potential Therapeutic Intervention Using a Tunable Hyaluronic Acid Hydrogel Platform. Gels 2017; 3:gels3030028. [PMID: 30920523 PMCID: PMC6318698 DOI: 10.3390/gels3030028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/21/2017] [Accepted: 07/07/2017] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is one of most aggressive forms of brain cancer, with a median survival time of 14.6 months following diagnosis. This low survival rate could in part be attributed to the lack of model systems of this type of cancer that faithfully recapitulate the tumor architecture and microenvironment seen in vivo in humans. Therapeutic studies would provide results that could be translated to the clinic efficiently. Here, we assess the role of the tumor microenvironment physical parameters on the tumor, and its potential use as a biomarker using a hyaluronic acid hydrogel system capable of elastic modulus tuning and dynamic elastic moduli changes. Experiments were conducted to assess the sensitivity of glioblastoma cell populations with different mutations to varying elastic moduli. Cells with aberrant epithelial growth factor receptor (EGFR) expression have a predilection for a stiffer environment, sensing these parameters through focal adhesion kinase (FAK). Importantly, the inhibition of FAK or EGFR generally resulted in reversed elastic modulus preference. Lastly, we explore the concept of therapeutically targeting the elastic modulus and dynamically reducing it via chemical or enzymatic degradation, both showing the capability to reduce or stunt proliferation rates of these GBM populations.
Collapse
Affiliation(s)
- Hemamylammal Sivakumar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Roy Strowd
- Department of Neurology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Comprehensive Cancer Center at Wake Forest Baptist, Wake Forest Baptist Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Comprehensive Cancer Center at Wake Forest Baptist, Wake Forest Baptist Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
26
|
Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma. Cancers (Basel) 2017; 9:cancers9070087. [PMID: 28696366 PMCID: PMC5532623 DOI: 10.3390/cancers9070087] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) is a lethal brain tumor with dismal prognosis. Current therapeutic options, consisting of surgery, chemotherapy and radiation, have only served to marginally increase patient survival. Receptor tyrosine kinases (RTKs) are dysregulated in approximately 90% of GBM; attributed to this, research has focused on inhibiting RTKs as a novel and effective therapy for GBM. Overexpression of RTK mesenchymal epithelial transition (MET), and its ligand, hepatocyte growth factor (HGF), in GBM highlights a promising new therapeutic target. This review will discuss the role of MET in cell cycle regulation, cell proliferation, evasion of apoptosis, cell migration and invasion, angiogenesis and therapeutic resistance in GBM. It will also discuss the modes of deregulation of HGF/MET and their regulation by microRNAs. As the HGF/MET pathway is a vital regulator of multiple pro-survival pathways, efforts and strategies for its exploitation for GBM therapy are also described.
Collapse
|
27
|
Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 2017; 28:1457-1472. [PMID: 28863449 PMCID: PMC5834086 DOI: 10.1093/annonc/mdx106] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (WHO grade IV astrocytoma) is the most frequent primary brain tumor in adults, representing a highly heterogeneous group of neoplasms that are among the most aggressive and challenging cancers to treat. An improved understanding of the molecular pathways that drive malignancy in glioblastoma has led to the development of various biomarkers and the evaluation of several agents specifically targeting tumor cells and the tumor microenvironment. A number of rational approaches are being investigated, including therapies targeting tumor growth factor receptors and downstream pathways, cell cycle and epigenetic regulation, angiogenesis and antitumor immune response. Moreover, recent identification and validation of prognostic and predictive biomarkers have allowed implementation of modern trial designs based on matching molecular features of tumors to targeted therapeutics. However, while occasional targeted therapy responses have been documented in patients, to date no targeted therapy has been formally validated as effective in clinical trials. The lack of knowledge about relevant molecular drivers in vivo combined with a lack of highly bioactive and brain penetrant-targeted therapies remain significant challenges. In this article, we review the most promising biological insights that have opened the way for the development of targeted therapies in glioblastoma, and examine recent data from clinical trials evaluating targeted therapies and immunotherapies. We discuss challenges and opportunities for the development of these agents in glioblastoma.
Collapse
Affiliation(s)
- M. Touat
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris
- Gustave Roussy, Université Paris-Saclay, Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Villejuif
| | - A. Idbaih
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - M. Sanson
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - K. L. Ligon
- Department of Oncologic Pathology, Dana-Farber/Brigham and Women's Cancer Center, Boston, USA
| |
Collapse
|
28
|
Yang C, Li YS, Wang QX, Huang K, Wei JW, Wang YF, Zhou JH, Yi KK, Zhang KL, Zhou BC, Liu C, Zeng L, Kang CS. EGFR/EGFRvIII remodels the cytoskeleton via epigenetic silencing of AJAP1 in glioma cells. Cancer Lett 2017. [PMID: 28634045 DOI: 10.1016/j.canlet.2017.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
EGFR amplification and mutations are the most common oncogenic events in GBM. EGFR overexpression correlates with GBM invasion, but the underlying mechanisms are poorly understood. In a previous study, we showed that AJAP1 is involved in regulating F-actin to inhibit the invasive ability of GBM. In addition, in a GBM cell line, the AJAP1 promoter was highly bound by H3K27me3 and, through bioinformatics analysis, we found that AJAP1 expression was negatively correlated with EGFR. In this study, we found that the pathway downstream of EGFR had a higher activation level in GBM cell lines, which led to excessive tumor suppressor silencing. Therefore, we deduced that in glioma cells, the pathway downstream of EGFR remodels the cytoskeleton via AJAP1 epigenetic silencing to enhance invasion. Furthermore, MK2206 reversed AJAP1 downregulation by inhibiting the EGFR pathway. In vivo, MK2206 also inhibited the proliferation and local invasion of 87-EGFRvIII. These data suggest that activation of the EGFR signal transduction pathway genetically silences anti-oncogenes to enhance GBM malignancy. MK2206 might be a promising therapeutic for EGFR/EGFRvIII-positive GBMs.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yan-Sheng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Qi-Xue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Kai Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jian-Wei Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yun-Fei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jun-Hu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Kai-Kai Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Kai-Liang Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Shandong University, China
| | - Bing-Cong Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Cong Liu
- Department of Neurosurgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Liang Zeng
- Department of Neurosurgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chun-Sheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| |
Collapse
|
29
|
A brief perspective of drug resistance toward EGFR inhibitors: the crystal structures of EGFRs and their variants. Future Med Chem 2017; 9:693-704. [DOI: 10.4155/fmc-2016-0222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The EGFR is one of the most popular targets for anticancer therapies and many drugs, such as erlotinib and gefitinib, have got enormous success in clinical treatments of cancer in past decade. However, the efficacy of these agents is often limited because of the quick emergence of drug resistance. Fundamental structure researches of EGFR in recent years have generally elucidated the mechanism of drug resistance. In this review, based on systematic resolution of full structures of EGFR and their variants via single crystal x-ray crystallography, the working and drug resistance mechanism of EGFR-targeted drugs are fully illustrated. Moreover, new strategies for avoiding EGFR drug resistance in cancer treatments are also discussed.
Collapse
|
30
|
Ulasov IV, Foster H, Butters M, Yoon JG, Ozawa T, Nicolaides T, Figueroa X, Hothi P, Prados M, Butters J, Cobbs C. Precision knockdown of EGFR gene expression using radio frequency electromagnetic energy. J Neurooncol 2017; 133:257-264. [PMID: 28434113 DOI: 10.1007/s11060-017-2440-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
Abstract
Electromagnetic fields (EMF) in the radio frequency energy (RFE) range can affect cells at the molecular level. Here we report a technology that can record the specific RFE signal of a given molecule, in this case the siRNA of epidermal growth factor receptor (EGFR). We demonstrate that cells exposed to this EGFR siRNA RFE signal have a 30-70% reduction of EGFR mRNA expression and ~60% reduction in EGFR protein expression vs. control treated cells. Specificity for EGFR siRNA effect was confirmed via RNA microarray and antibody dot blot array. The EGFR siRNA RFE decreased cell viability, as measured by Calcein-AM measures, LDH release and Caspase 3 cleavage, and increased orthotopic xenograft survival. The outcomes of this study demonstrate that an RFE signal can induce a specific siRNA-like effect on cells. This technology opens vast possibilities of targeting a broader range of molecules with applications in medicine, agriculture and other areas.
Collapse
Affiliation(s)
- Ilya V Ulasov
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA.
| | - Haidn Foster
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Mike Butters
- Nativis Inc., 219 Terry Avenue North, Seattle, WA, 98109, USA
| | - Jae-Geun Yoon
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Tomoko Ozawa
- Department of Neurosurgery, Brain Tumor Research Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Theodore Nicolaides
- Department of Neurosurgery, Brain Tumor Research Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xavier Figueroa
- Nativis Inc., 219 Terry Avenue North, Seattle, WA, 98109, USA
| | - Parvinder Hothi
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA
| | - Michael Prados
- Department of Neurosurgery, Brain Tumor Research Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - John Butters
- Nativis Inc., 219 Terry Avenue North, Seattle, WA, 98109, USA
| | - Charles Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, Seattle, WA, 98122, USA.
| |
Collapse
|
31
|
Kaya B, Goceri E, Becker A, Elder B, Puduvalli V, Winter J, Gurcan M, Otero JJ. Automated fluorescent miscroscopic image analysis of PTBP1 expression in glioma. PLoS One 2017; 12:e0170991. [PMID: 28282372 PMCID: PMC5345755 DOI: 10.1371/journal.pone.0170991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/13/2017] [Indexed: 11/18/2022] Open
Abstract
Multiplexed immunofluorescent testing has not entered into diagnostic neuropathology due to the presence of several technical barriers, amongst which includes autofluorescence. This study presents the implementation of a methodology capable of overcoming the visual challenges of fluorescent microscopy for diagnostic neuropathology by using automated digital image analysis, with long term goal of providing unbiased quantitative analyses of multiplexed biomarkers for solid tissue neuropathology. In this study, we validated PTBP1, a putative biomarker for glioma, and tested the extent to which immunofluorescent microscopy combined with automated and unbiased image analysis would permit the utility of PTBP1 as a biomarker to distinguish diagnostically challenging surgical biopsies. As a paradigm, we utilized second resections from patients diagnosed either with reactive brain changes (pseudoprogression) and recurrent glioblastoma (true progression). Our image analysis workflow was capable of removing background autofluorescence and permitted quantification of DAPI-PTBP1 positive cells. PTBP1-positive nuclei, and the mean intensity value of PTBP1 signal in cells. Traditional pathological interpretation was unable to distinguish between groups due to unacceptably high discordance rates amongst expert neuropathologists. Our data demonstrated that recurrent glioblastoma showed more DAPI-PTBP1 positive cells and a higher mean intensity value of PTBP1 signal compared to resections from second surgeries that showed only reactive gliosis. Our work demonstrates the potential of utilizing automated image analysis to overcome the challenges of implementing fluorescent microscopy in diagnostic neuropathology.
Collapse
Affiliation(s)
- Behiye Kaya
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Evgin Goceri
- Akdeniz University, Engineering Faculty, Computer Engineering Department, Antalya, Turkey
| | - Aline Becker
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio, United States of America
| | - Brad Elder
- Department of Neurological Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Vinay Puduvalli
- Division of Neuro-oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jessica Winter
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- William G. Lowie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Metin Gurcan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - José Javier Otero
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
32
|
The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells. Cancer Lett 2016; 388:269-280. [PMID: 27998759 DOI: 10.1016/j.canlet.2016.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/21/2022]
Abstract
Worldwide, glioblastoma (GBM) is the most lethal and frequent intracranial tumor. Despite decades of study, the overall survival of GBM patients remains unchanged. epidermal growth factor receptor (EGFR) amplification and gene mutation are thought to be negatively correlated with prognosis. In this study, we used proteomics to determine that UBXN1 is a negative downstream regulator of the EGFR mutation vIII (EGFRvIII). Via bioinformatics analysis, we found that UBXN1 is a factor that can improve glioma patients' overall survival time. We also determined that the down-regulation of UBXN1 is mediated by the upregulation of H3K27me3 in the presence of EGFRvIII. Because NF-κB can be negatively regulated by UBXN1, we believe that EGFRwt/vIII activates NF-κB by suppressing UBXN1 expression. Importantly, we used the latest genomic editing tool, CRISPR/Cas9, to knockout EGFRwt/vIII on exon 17 and further proved that UBXN1 is negatively regulated by EGFRwt/vIII. Furthermore, knockout of EGFR/EGFRvIII could benefit GBM in vitro and in vivo, indicating that CRISPR/Cas9 is a promising therapeutic strategy for both EGFR amplification and EGFR mutation-bearing patients.
Collapse
|
33
|
Engineering NK Cells Modified With an EGFRvIII-specific Chimeric Antigen Receptor to Overexpress CXCR4 Improves Immunotherapy of CXCL12/SDF-1α-secreting Glioblastoma. J Immunother 2016; 38:197-210. [PMID: 25962108 DOI: 10.1097/cji.0000000000000082] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are promising effector cells for adjuvant immunotherapy of cancer. So far, several preclinical studies have shown the feasibility of gene-engineered NK cells, which upon expression of chimeric antigen receptors (CARs) are redirected to otherwise NK cell-resistant tumors. Yet, we reasoned that the efficiency of an immunotherapy using CAR-modified NK cells critically relies on efficient migration to the tumor site and might be improved by the engraftment of a receptor specific for a chemokine released by the tumor. On the basis of the DNAX-activation protein 12 (DAP12), a signaling adapter molecule involved in signal transduction of activating NK cell receptors, we constructed an epidermal growth factor variant III (EGFRvIII)-CAR, designated MR1.1-DAP12 which confers specific cytotoxicity of NK cell towards EGFRvIII glioblastoma cells in vitro and to established subcutaneous U87-MG tumor xenografts. So far, infusion of NK cells with expression of MR1.1-DAP12 caused a moderate but significantly delayed tumor growth and increased median survival time when compared with NK cells transduced with an ITAM-defective CAR. Notably, the further genetic engineering of these EGFRvIII-specific NK cells with the chemokine receptor CXCR4 conferred a specific chemotaxis to CXCL12/SDF-1α secreting U87-MG glioblastoma cells. Moreover, the administration of such NK cells resulted in complete tumor remission in a number of mice and a significantly increased survival when compared with the treatment of xenografts with NK cells expressing only the EGFRvIII-specific CAR or mock control. We conclude that chemokine receptor-engineered NK cells with concomitant expression of a tumor-specific CAR are a promising tool to improve adoptive tumor immunotherapy.
Collapse
|
34
|
Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells. Sci Rep 2016; 6:32505. [PMID: 27581736 PMCID: PMC5007481 DOI: 10.1038/srep32505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular heterogeneity in function and response to therapeutics has been a major challenge in cancer treatment. The complex nature of tumor systems calls for the development of advanced multiplexed single-cell tools that can address the heterogeneity issue. However, to date such tools are only available in a laboratory setting and don’t have the portability to meet the needs in point-of-care cancer diagnostics. Towards that application, we have developed a portable single-cell system that is comprised of a microchip and an adjustable clamp, so on-chip operation only needs pipetting and adjusting of clamping force. Up to 10 proteins can be quantitated from each cell with hundreds of single-cell assays performed in parallel from one chip operation. We validated the technology and analyzed the oncogenic signatures of cancer stem cells by quantitating both aldehyde dehydrogenase (ALDH) activities and 5 signaling proteins in single MDA-MB-231 breast cancer cells. The technology has also been used to investigate the PI3K pathway activities of brain cancer cells expressing mutant epidermal growth factor receptor (EGFR) after drug intervention targeting EGFR signaling. Our portable single-cell system will potentially have broad application in the preclinical and clinical settings for cancer diagnosis in the future.
Collapse
|
35
|
Struve N, Riedel M, Schulte A, Rieckmann T, Grob TJ, Gal A, Rothkamm K, Lamszus K, Petersen C, Dikomey E, Kriegs M. EGFRvIII does not affect radiosensitivity with or without gefitinib treatment in glioblastoma cells. Oncotarget 2016; 6:33867-77. [PMID: 26418954 PMCID: PMC4741808 DOI: 10.18632/oncotarget.5293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Glioblastomas (GBM) are often characterized by an elevated expression of the epidermal growth factor receptor variant III (EGFRvIII). We used GBM cell lines with native EGFRvIII expression to determine whether this EGFR variant affects radiosensitivity with or without EGFR targeting. METHODS Experiments were performed with GBM cell lines lacking (LN229, U87MG, U251, CAS-1) or endogenously expressing EGFRvIII (BS153, DKMG). The two latter cell lines were also used to establish sublines with a low (-) or a high proportion (+) of cells expressing EGFRvIII. EGFR signaling and the cell cycle were analyzed using Western blot and flow cytometry; cell survival was assessed by colony forming assay and double-strand break repair capacity by immunofluorescence. RESULTS DKMG and BS153 parental cells with heterogeneous EGFRvIII expression were clearly more radiosensitive compared to other GBM cell lines without EGFRvIII expression. However, no significant difference was observed in cell proliferation, clonogenicity or radiosensitivity between the EGFRvIII- and + sublines derived from DKMG and BS153 parental cells. Expression of EGFRvIII was associated with decreased DSB repair capacity for BS153 but not for DKMG cells. The effects of EGFR targeting by gefitinib alone or in combination with irradiation were also found not to depend on EGFRvIII expression. Gefitinib was only observed to influence the proliferation of EGFRvIII- BS153 cells. CONCLUSION The data indicate that EGFRvIII does not alter radiosensitivity with or without anti-EGFR treatment.
Collapse
Affiliation(s)
- Nina Struve
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Matthias Riedel
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Tobias J Grob
- Department of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas Gal
- Department of Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Venkatesan S, Lamfers MLM, Dirven CMF, Leenstra S. Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncol 2016; 5:77-90. [PMID: 26986934 DOI: 10.2217/cns-2015-0005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma is the most deadly and frequently occurring primary malignant tumor of the central nervous system. Genomic studies have shown that mutated oncogenes and tumor suppressor genes in glioblastoma mainly occur in three pathways: the RTK/Ras/PI3K signaling, the p53 and the Rb pathways. In this review, we summarize the modulatory effects of genetic aberrations in these three pathways to drugs targeting these specific pathways. We also provide an overview of the preclinical efforts made to identify genetic biomarkers of response and resistance. Knowledge of biomarkers will finally promote patient stratification in clinical trials, a prerequisite for trial design in the era of precision medicine.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center of the Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Neurosurgery, Elisabeth Hospital, Tilburg, The Netherlands
| |
Collapse
|
37
|
Genßler S, Burger MC, Zhang C, Oelsner S, Mildenberger I, Wagner M, Steinbach JP, Wels WS. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology 2015; 5:e1119354. [PMID: 27141401 DOI: 10.1080/2162402x.2015.1119354] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and its mutant form EGFRvIII are overexpressed in a large proportion of glioblastomas (GBM). Immunotherapy with an EGFRvIII-specific vaccine has shown efficacy against GBM in clinical studies. However, immune escape by antigen-loss variants and lack of control of EGFR wild-type positive clones limit the usefulness of this approach. Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells may represent an alternative immunotherapeutic strategy. For targeting to GBM, we generated variants of the clinically applicable human NK cell line NK-92 that express CARs carrying a composite CD28-CD3ζ domain for signaling, and scFv antibody fragments for cell binding either recognizing EGFR, EGFRvIII, or an epitope common to both antigens. In vitro analysis revealed high and specific cytotoxicity of EGFR-targeted NK-92 against established and primary human GBM cells, which was dependent on EGFR expression and CAR signaling. EGFRvIII-targeted NK-92 only lysed EGFRvIII-positive GBM cells, while dual-specific NK cells expressing a cetuximab-based CAR were active against both types of tumor cells. In immunodeficient mice carrying intracranial GBM xenografts either expressing EGFR, EGFRvIII or both receptors, local treatment with dual-specific NK cells was superior to treatment with the corresponding monospecific CAR NK cells. This resulted in a marked extension of survival without inducing rapid immune escape as observed upon therapy with monospecific effectors. Our results demonstrate that dual targeting of CAR NK cells reduces the risk of immune escape and suggest that EGFR/EGFRvIII-targeted dual-specific CAR NK cells may have potential for adoptive immunotherapy of glioblastoma.
Collapse
Affiliation(s)
- Sabrina Genßler
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy , Frankfurt am Main, Germany
| | - Michael C Burger
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy , Frankfurt am Main, Germany
| | - Iris Mildenberger
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University , Frankfurt am Main, Germany
| | - Joachim P Steinbach
- Institute for Neurooncology, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Germany
| |
Collapse
|
38
|
Gatson NTN, Weathers SPS, de Groot JF. ReACT Phase II trial: a critical evaluation of the use of rindopepimut plus bevacizumab to treat EGFRvIII-positive recurrent glioblastoma. CNS Oncol 2015; 5:11-26. [PMID: 26670466 DOI: 10.2217/cns.15.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is the most deadly primary brain tumor in adults and has long represented a therapeutic challenge. Disease recurrence is inevitable, and the management of recurrent disease is complicated by spontaneous or induced tumor heterogeneity which confers resistance to therapy and increased oncogenicity. EGFR and the tumor-specific mutation EGFRvIII is commonly altered in glioblastoma making it an appealing therapeutic target. Immunotherapy is an emerging and promising therapeutic approach to glioma and the EGFRvIII vaccine, rindopepimut, is the first immunotherapeutic drug to enter Phase III clinical trials for glioblastoma. Rindopepimut activates a specific immune response against tumor cells harboring the EGFRvIII protein. This review evaluates the recently completed ReACT Phase II trial using rindopepimut plus bevacizumab in the setting of EGFRvIII-positive recurrent glioblastoma (Clinical Trials identifier: NCT01498328).
Collapse
Affiliation(s)
- Na Tosha N Gatson
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX 77054, USA
| | - Shiao-Pei S Weathers
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX 77054, USA
| | - John F de Groot
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX 77054, USA
| |
Collapse
|
39
|
Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma. J Transl Med 2015; 13:306. [PMID: 26381735 PMCID: PMC4574608 DOI: 10.1186/s12967-015-0667-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Constitutive MET signaling promotes invasiveness in most primary and recurrent GBM. However, deployment of available MET-targeting agents is confounded by lack of effective biomarkers for selecting suitable patients for treatment. Because endogenous HGF overexpression often causes autocrine MET activation, and also indicates sensitivity to MET inhibitors, we investigated whether it drives the expression of distinct genes which could serve as a signature indicating vulnerability to MET-targeted therapy in GBM. Methods Interrogation of genomic data from TCGA GBM (Student’s t test, GBM patients with high and low HGF expression, p ≤ 0.00001) referenced against patient-derived xenograft (PDX) models (Student’s t test, sensitive vs. insensitive models, p ≤ 0.005) was used to identify the HGF-dependent signature. Genomic analysis of GBM xenograft models using both human and mouse gene expression microarrays (Student’s t test, treated vs. vehicle tumors, p ≤ 0.01) were performed to elucidate the tumor and microenvironment cross talk. A PDX model with EGFRamp was tested for MET activation as a mechanism of erlotinib resistance. Results We identified a group of 20 genes highly associated with HGF overexpression in GBM and were up- or down-regulated only in tumors sensitive to MET inhibitor. The MET inhibitors regulate tumor (human) and host (mouse) cells within the tumor via distinct molecular processes, but overall impede tumor growth by inhibiting cell cycle progression. EGFRamp tumors undergo erlotinib resistance responded to a combination of MET and EGFR inhibitors. Conclusions Combining TCGA primary tumor datasets (human) and xenograft tumor model datasets (human tumor grown in mice) using therapeutic efficacy as an endpoint may serve as a useful approach to discover and develop molecular signatures as therapeutic biomarkers for targeted therapy. The HGF dependent signature may serve as a candidate predictive signature for patient enrollment in clinical trials using MET inhibitors. Human and mouse microarrays maybe used to dissect the tumor-host interactions. Targeting MET in EGFRamp GBM may delay the acquired resistance developed during treatment with erlotinib. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0667-x) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Roth P, Weller M. Challenges to targeting epidermal growth factor receptor in glioblastoma: escape mechanisms and combinatorial treatment strategies. Neuro Oncol 2015; 16 Suppl 8:viii14-9. [PMID: 25342600 DOI: 10.1093/neuonc/nou222] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) gene amplification and activating mutations are common findings in glioblastomas. EGFR is at the top of a downstream signaling cascade that regulates important characteristics of glioblastoma cells, including cellular proliferation, migration, and survival. Targeting EGFR has therefore been regarded as a promising therapeutic strategy in glioblastoma for decades. However, although various pharmacological inhibitors and anti-EGFR antibodies are available, the antiglioma activity of these agents has been largely limited to preclinical models, whereas their administration to glioblastoma patients was characterized by lack of clinical benefit. Comprehensive efforts have been made within the last years to understand the underlying mechanisms that confer resistance to EGFR inhibition in glioma cells. The absence of well-known mutations that predict response to EGFR tyrosine kinase inhibitors (TKIs) in gliomas as well as the presence of redundant and alternative compensatory pathways are among the most important escape mechanisms that prevent potent antiglioma effects of EGFR-targeting drugs. Accordingly, an increasing number of in vitro and in vivo studies are aimed at overcoming this resistance by combinatorial approaches using anti-EGFR treatment together with one or more additional drugs. Novel insights into the molecular mechanisms mediating resistance to anti-EGFR treatment and promising combinatorial approaches may help to better define a future role for EGFR inhibition in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Patrick Roth
- Department of Neurology and Brain Tumor Center Zurich, University Hospital Zurich, Zurich, Switzerland (P.R., M.W.)
| | - Michael Weller
- Department of Neurology and Brain Tumor Center Zurich, University Hospital Zurich, Zurich, Switzerland (P.R., M.W.)
| |
Collapse
|
41
|
Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2015; 6:1359-70. [PMID: 25312641 PMCID: PMC4237465 DOI: 10.15252/emmm.201302627] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain tumor with a more than 90% 5-year mortality. GBM has a paltry median survival of 12.6 months attributed to the unique treatment limitations such as the high average age of onset, tumor location, and poor current understandings of the tumor pathophysiology. The resection techniques, chemotherapic strategies, and radiation therapy currently used to treat GBM have slowly evolved, but the improvements have not translated to marked increases in patient survival. Here, we will discuss the recent progress in our understanding of GBM pathophysiology, and the diagnostic techniques and treatment options. The discussion will include biomarkers, tumor imaging, novel therapies such as monoclonal antibodies and small-molecule inhibitors, and the heterogeneity resulting from the GBM cancer stem cell population.
Collapse
Affiliation(s)
- Steven K Carlsson
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaun P Brothers
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
42
|
Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition. Target Oncol 2015; 11:29-40. [DOI: 10.1007/s11523-015-0372-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
EGFR Amplification and Glioblastoma Stem-Like Cells. Stem Cells Int 2015; 2015:427518. [PMID: 26136784 PMCID: PMC4468289 DOI: 10.1155/2015/427518] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells). GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR) gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM.
Collapse
|
44
|
Prados MD, Byron SA, Tran NL, Phillips JJ, Molinaro AM, Ligon KL, Wen PY, Kuhn JG, Mellinghoff IK, de Groot JF, Colman H, Cloughesy TF, Chang SM, Ryken TC, Tembe WD, Kiefer JA, Berens ME, Craig DW, Carpten JD, Trent JM. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro Oncol 2015; 17:1051-63. [PMID: 25934816 DOI: 10.1093/neuonc/nov031] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/15/2015] [Indexed: 12/17/2022] Open
Abstract
Integrated sequencing strategies have provided a broader understanding of the genomic landscape and molecular classifications of multiple cancer types and have identified various therapeutic opportunities across cancer subsets. Despite pivotal advances in the characterization of genomic alterations in glioblastoma, targeted agents have shown minimal efficacy in clinical trials to date, and patient survival remains poor. In this review, we highlight potential reasons why targeting single alterations has yielded limited clinical efficacy in glioblastoma, focusing on issues of tumor heterogeneity and pharmacokinetic failure. We outline strategies to address these challenges in applying precision medicine to glioblastoma and the rationale for applying targeted combination therapy approaches that match genomic alterations with compounds accessible to the central nervous system.
Collapse
Affiliation(s)
- Michael D Prados
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Sara A Byron
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Nhan L Tran
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Joanna J Phillips
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Annette M Molinaro
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Keith L Ligon
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Patrick Y Wen
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - John G Kuhn
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Ingo K Mellinghoff
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - John F de Groot
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Howard Colman
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Timothy F Cloughesy
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Susan M Chang
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Timothy C Ryken
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Waibhav D Tembe
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Jeffrey A Kiefer
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Michael E Berens
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - David W Craig
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - John D Carpten
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Jeffrey M Trent
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| |
Collapse
|
45
|
Lin DC, Xu L, Chen Y, Yan H, Hazawa M, Doan N, Said JW, Ding LW, Liu LZ, Yang H, Yu S, Kahn M, Yin D, Koeffler HP. Genomic and Functional Analysis of the E3 Ligase PARK2 in Glioma. Cancer Res 2015; 75:1815-1827. [PMID: 25877876 PMCID: PMC4417379 DOI: 10.1158/0008-5472.can-14-1433] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 11/13/2014] [Indexed: 11/16/2022]
Abstract
PARK2 (PARKIN) is an E3 ubiquitin ligase whose dysfunction has been associated with the progression of Parkinsonism and human malignancies, and its role in cancer remains to be explored. In this study, we report that PARK2 is frequently deleted and underexpressed in human glioma, and low PARK2 expression is associated with poor survival. Restoration of PARK2 significantly inhibited glioma cell growth both in vitro and in vivo, whereas depletion of PARK2 promoted cell proliferation. PARK2 attenuated both Wnt- and EGF-stimulated pathways through downregulating the intracellular level of β-catenin and EGFR. Notably, PARK2 physically interacted with both β-catenin and EGFR. We further found that PARK2 promoted the ubiquitination of these two proteins in an E3 ligase activity-dependent manner. Finally, inspired by these newly identified tumor-suppressive functions of PARK2, we tested and proved that combination of small-molecule inhibitors targeting both Wnt-β-catenin and EGFR-AKT pathways synergistically impaired glioma cell viability. Together, our findings uncover novel cancer-associated functions of PARK2 and provide a potential therapeutic approach to treat glioma.
Collapse
Affiliation(s)
- De-Chen Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Haiyan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Masaharu Hazawa
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ngan Doan
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li-Zhen Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China. Key Laboratory of Neurotrauma, Variation and Regeneration of Education Ministry and Tianjin Municipality, Tianjin, China
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California. Department of Molecular Pharmacology and Toxicology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. National University Cancer Institute, National University Health System and National University of Singapore, Singapore, Singapore. Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, California
| |
Collapse
|
46
|
Cimino PJ, Bredemeyer A, Abel HJ, Duncavage EJ. A wide spectrum of EGFR mutations in glioblastoma is detected by a single clinical oncology targeted next-generation sequencing panel. Exp Mol Pathol 2015; 98:568-73. [PMID: 25910966 DOI: 10.1016/j.yexmp.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/18/2015] [Indexed: 01/07/2023]
Abstract
With the advent of large-scale genomic analysis, the genetic landscape of glioblastoma (GBM) has become more clear, including characteristic genetic alterations in EGFR. In routine clinical practice, genetic alterations in GBMs are identified using several disparate techniques that consume already limited amounts of tissue and add to overall testing costs. In this study, we sought to determine if the full spectrum of EGFR mutations in GBMs could be detected using a single next generation sequencing (NGS) based oncology assay in 34 consecutive cases. Using a battery of informatics tools to identify single nucleotide variants, insertions and deletions, and amplification (including variants EGFRvIII and EGFRvV), twenty-one of the 34 (62%) individuals had at least one alteration in EGFR by sequencing, consistent with published datasets. Mutations detected include several single nucleotide variants, amplification (confirmed by fluorescence in situ hybridization), and the variants EGFRvIII and EGFRvV (confirmed by multiplex ligation-dependent probe amplification). Here we show that a single NGS assay can identify the full spectrum of relevant EGFR mutations. Overall, sequencing based diagnostics have the potential to maximize the amount of genetic information obtained from GBMs and simultaneously reduce the total time, required specimen material, and costs associated with current multimodality studies.
Collapse
Affiliation(s)
- Patrick J Cimino
- Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Andy Bredemeyer
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Haley J Abel
- Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, United States
| | - Eric J Duncavage
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
47
|
Zhao Q, Kretschmer N, Bauer R, Efferth T. Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically kill glioblastoma cells in combination with erlotinib. Int J Cancer 2015; 137:1446-56. [PMID: 25688715 DOI: 10.1002/ijc.29483] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 02/04/2015] [Indexed: 01/26/2023]
Abstract
Overexpression and mutation of the epidermal growth factor receptor (EGFR) gene play a causal role in tumorigenesis and resistance to treatment of glioblastoma (GBM). EGFR inhibitors such as erlotinib are currently used for the treatment of GBM; however, their efficacy has been limited due to drug resistance. New treatment strategies are therefore urgently needed. Shikonin, a natural naphthoquinone, induces both apoptosis and necroptosis in human glioma cells, but the effectiveness of erlotinib-shikonin combination treatment as well as the underlying molecular mechanisms is unknown yet. In this study, we investigated erlotinib in combination with shikonin and 14 shikonin derivatives in parental U87MG and transfected U87MG.ΔEGFR GBM cells. Most of the shikonin derivatives revealed strong cytotoxicity. Shikonin together with five other derivatives, namely deoxyshikonin, isobutyrylshikonin, acetylshikonin, β,β-dimethylacrylshikonin and acetylalkannin showed synergistic cytotoxicity toward U87MG.ΔEGFR in combination with erlotinib. Moreover, the combined cytotoxic effect of shikonin and erlotinib was further confirmed with another three EGFR-expressing cell lines, BS153, A431 and DK-MG. Shikonin not only dose-dependently inhibited EGFR phosphorylation and decreased phosphorylation of EGFR downstream molecules, including AKT, P44/42MAPK and PLCγ1, but also together with erlotinib synergistically inhibited ΔEGFR phosphorylation in U87MG.ΔEGFR cells as determined by Loewe additivity and Bliss independence drug interaction models. These results suggest that the combination of erlotinib with shikonin or its derivatives might be a potential strategy to overcome drug resistance to erlotinib.
Collapse
Affiliation(s)
- Qiaoli Zhao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
48
|
Li J, Zhu S, Kozono D, Ng K, Futalan D, Shen Y, Akers JC, Steed T, Kushwaha D, Schlabach M, Carter BS, Kwon CH, Furnari F, Cavenee W, Elledge S, Chen CC. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget 2015; 5:882-93. [PMID: 24658464 PMCID: PMC4011590 DOI: 10.18632/oncotarget.1801] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma remains one of the deadliest of human cancers, with most patients succumbing to the disease within two years of diagnosis. The available data suggest that simultaneous inactivation of critical nodes within the glioblastoma molecular circuitry will be required for meaningful clinical efficacy. We conducted parallel genome-wide shRNA screens to identify such nodes and uncovered a number of G-Protein Coupled Receptor (GPCR) neurotransmitter pathways, including the Dopamine Receptor D2 (DRD2) signaling pathway. Supporting the importance of DRD2 in glioblastoma, DRD2 mRNA and protein expression were elevated in clinical glioblastoma specimens relative to matched non-neoplastic cerebrum. Treatment with independent si-/shRNAs against DRD2 or with DRD2 antagonists suppressed the growth of patient-derived glioblastoma lines both in vitro and in vivo. Importantly, glioblastoma lines derived from independent genetically engineered mouse models (GEMMs) were more sensitive to haloperidol, an FDA approved DRD2 antagonist, than the premalignant astrocyte lines by approximately an order of magnitude. The pro-proliferative effect of DRD2 was, in part, mediated through a GNAI2/Rap1/Ras/ERK signaling axis. Combined inhibition of DRD2 and Epidermal Growth Factor Receptor (EGFR) led to synergistic tumoricidal activity as well as ERK suppression in independent in vivo and in vitro glioblastoma models. Our results suggest combined EGFR and DRD2 inhibition as a promising strategy for glioblastoma treatment.
Collapse
|
49
|
Wichmann H, Güttler A, Bache M, Taubert H, Rot S, Kessler J, Eckert AW, Kappler M, Vordermark D. Targeting of EGFR and HER2 with therapeutic antibodies and siRNA: a comparative study in glioblastoma cells. Strahlenther Onkol 2014; 191:180-91. [PMID: 25159136 DOI: 10.1007/s00066-014-0743-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND The epidermal growth factor receptors, EGFR (HER1) and HER2, have proven prognostic relevance in a variety of human malignancies and both are functionally involved in the molecular pathogenesis of malignant gliomas. MATERIAL AND METHODS We selectively inhibited EGFR and HER2 in glioblastoma cell lines via EGFR- and HER2-specific siRNAs and through the binding of the therapeutic antibodies cetuximab and trastuzumab. The expression of EGFR and HER2 was verified by real-time PCR and western blot analyses. We examined the growth rate, cell cycle distribution, cell migration, clonogenic survival, and radiosensitivity of U251MG and LN-229 glioblastoma cell lines to determine the physiological and cell biological effects of EGFR and HER2 targeting. RESULTS EGFR and HER2 targeting using the therapeutic antibodies cetuximab and trastuzumab had no effect on cellular growth rate, cell cycle distribution, cell migration, clonogenic survival, and radiosensitivity in the cell lines U251 and LN-229. In contrast, siRNA knock-down of EGFR and HER2, reduced the growth rate by 40-65 %. The knock-down of EGFR did not change the cell migration rate in the cell lines U251 and LN-229. However, knock-down of HER2 reduced the cell migration rate by 50 %. Radiobiological analysis revealed that EGFR knock-down induced no radiosensitization in U251MG and LN-229 cells. However, the knock-down of HER2 induced radiosensitization in U251MG cells. CONCLUSION The epidermal growth factor receptor HER2 is a promising anti-tumor target for the therapy of glioblastoma. HER2 targeting may represent a promising strategy to induce cell physiological and radiobiological anti-tumor effects in glioblastoma.
Collapse
Affiliation(s)
- Henri Wichmann
- Department of Radiotherapy, Martin-Luther-University Halle-Wittenberg, Halle, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Foo J, Michor F. Evolution of acquired resistance to anti-cancer therapy. J Theor Biol 2014; 355:10-20. [PMID: 24681298 PMCID: PMC4058397 DOI: 10.1016/j.jtbi.2014.02.025] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/21/2022]
Abstract
Acquired drug resistance is a major limitation for the successful treatment of cancer. Resistance can emerge due to a variety of reasons including host environmental factors as well as genetic or epigenetic alterations in the cancer cells. Evolutionary theory has contributed to the understanding of the dynamics of resistance mutations in a cancer cell population, the risk of resistance pre-existing before the initiation of therapy, the composition of drug cocktails necessary to prevent the emergence of resistance, and optimum drug administration schedules for patient populations at risk of evolving acquired resistance. Here we review recent advances towards elucidating the evolutionary dynamics of acquired drug resistance and outline how evolutionary thinking can contribute to outstanding questions in the field.
Collapse
Affiliation(s)
- Jasmine Foo
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA.
| |
Collapse
|