1
|
O’Donohue AK, Ginn SL, Burgio G, Berman Y, Dabscheck G, Schindeler A. The evolving landscape of NF gene therapy: Hurdles and opportunities. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102475. [PMID: 40034205 PMCID: PMC11872496 DOI: 10.1016/j.omtn.2025.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neurofibromatosis type 1 (NF1)- and NF2-related schwannomatosis are rare autosomal dominant monogenic disorders characterized by a predisposition for nerve-associated tumors. Current treatments focus on symptomatic management, but advancements in the gene therapy field present unique opportunities to treat the genetic underpinnings and develop curative therapies for NF. Approaches such as nonsense suppression agents and oligonucleotide therapies are becoming more mature and have emerging preclinical data in the context of NF. Furthermore, there has been progress in developing gene therapy vectors that can be delivered locally into tumors to ablate or shrink their size. While still a nascent research area, gene addition and gene repair strategies hold tremendous promise for the prevention and treatment of NF-related tumors. These technologies will also require parallel development of delivery vectors able to target the Schwann cells from which tumors most commonly arise. This review seeks to contextualize these advancements and which hurdles remain for their clinical adoption.
Collapse
Affiliation(s)
- Alexandra K. O’Donohue
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Gaetan Burgio
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Yemima Berman
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gabriel Dabscheck
- Department of Neurology, Royal Children’s Hospital and Murdoch Children’s Research Institute, Melbourne, VIC 3050, Australia
| | - Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
2
|
Odhiambo DA, Fan S, Hirbe AC. UBR5 in Tumor Biology: Exploring Mechanisms of Immune Regulation and Possible Therapeutic Implications in MPNST. Cancers (Basel) 2025; 17:161. [PMID: 39857943 PMCID: PMC11764400 DOI: 10.3390/cancers17020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/09/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare but aggressive soft-tissue sarcoma characterized by poor response to therapy. The primary treatment remains surgical resection with negative margins. Nonetheless, in the setting of neurofibromatosis type 1 (NF1), the five-year survival rate is at 20-50%, with recurrence occurring in up to 50% of individuals. For patients with metastatic and unresectable disease, current treatment options include cytotoxic chemotherapy, which offers minimal benefit, and most patients die within five years of diagnosis. Despite advances in targeted therapy focusing on inhibiting Ras signaling and its downstream effectors, clinical trials report minimal clinical benefit, highlighting the need to explore alternative pathways in MPNST pathogenesis. Here, we discuss the role of the E3 ubiquitin ligase, UBR5, in cancer progression and immune modulation across various malignancies, including breast, lung, and ovarian cancer. We focus on mechanisms by which UBR5 contributes to tumorigenesis, focusing on its influence on tumor microenvironment and immune modulation. Additionally, we explore UBR5's roles in normal tissue function, DNA damage response, metastasis, and therapeutic resistance, illustrating its multifaceted contribution to cancer biology. We discuss evidence implicating UBR5 in immune evasion and highlight its potential as a therapeutic target to enhance the efficacy of immune checkpoint blockade (ICB) therapy in MPNST, a tumor typically characterized by an immune cold microenvironment. We outline current immune-based strategies and challenges in MPNST management, ongoing efforts to shift the immune landscape in MPNST, and ultimately, we suggest that targeting UBR5 could be a novel strategy to potentiate ICB therapy-mediated anti-tumor immune response and clinical outcomes, particularly in MPNST patients with inoperable or metastatic disease.
Collapse
Affiliation(s)
| | | | - Angela C. Hirbe
- Division of Oncology, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; (D.A.O.); (S.F.)
| |
Collapse
|
3
|
Dong C, Tan D, Sun H, Li Z, Zhang L, Zheng Y, Liu S, Zhang Y, He Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Curr Issues Mol Biol 2024; 46:11548-11579. [PMID: 39451566 PMCID: PMC11506767 DOI: 10.3390/cimb46100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-12 (IL-12) is considered to be a promising cytokine for enhancing an antitumor immune response; however, recombinant IL-12 has shown significant toxicity and limited efficacy in early clinical trials. Recently, many strategies for delivering IL-12 to tumor tissues have been developed, such as modifying IL-12, utilizing viral vectors, non-viral vectors, and cellular vectors. Previous studies have found that the fusion of IL-12 with extracellular matrix proteins, collagen, and immune factors is a way to enhance its therapeutic potential. In addition, studies have demonstrated that viral vectors are a good platform, and a variety of viruses such as oncolytic viruses, adenoviruses, and poxviruses have been used to deliver IL-12-with testing previously conducted in various cancer models. The local expression of IL-12 in tumors based on viral delivery avoids systemic toxicity while inducing effective antitumor immunity and acting synergistically with other therapies without compromising safety. In addition, lipid nanoparticles are currently considered to be the most mature drug delivery system. Moreover, cells are also considered to be drug carriers because they can effectively deliver therapeutic substances to tumors. In this article, we will systematically discuss the anti-tumor effects of IL-12 on its own or in combination with other therapies based on different delivery strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing He
- State Key Laboratory of Drug Regulatory Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (C.D.); (D.T.); (H.S.); (Z.L.); (L.Z.); (Y.Z.); (S.L.); (Y.Z.)
| |
Collapse
|
4
|
Epstein AL, Rabkin SD. Safety of non-replicative and oncolytic replication-selective HSV vectors. Trends Mol Med 2024; 30:781-794. [PMID: 38886138 PMCID: PMC11329358 DOI: 10.1016/j.molmed.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a DNA virus and human pathogen used to construct promising therapeutic vectors. HSV-1 vectors fall into two classes: replication-selective oncolytic vectors for cancer therapy and defective non-replicative vectors for gene therapy. Vectors from each class can accommodate ≥30 kb of inserts, have been approved clinically, and demonstrate a relatively benign safety profile. Despite oncolytic HSV (oHSV) replication in tumors and elicited immune responses, the virus is well tolerated in cancer patients. Current non-replicative vectors elicit only limited immune responses. Seropositivity and immune responses against HSV-1 do not eliminate either the vector or infected cells, and the vectors can therefore be re-administered. In this review we highlight vectors that have been translated to the clinic and host-virus immune interactions that impact on the safety and efficacy of HSVs.
Collapse
Affiliation(s)
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Nasar RT, Uche IK, Kousoulas KG. Targeting Cancers with oHSV-Based Oncolytic Viral Immunotherapy. Curr Issues Mol Biol 2024; 46:5582-5594. [PMID: 38921005 PMCID: PMC11201976 DOI: 10.3390/cimb46060334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The recent success of cancer immunotherapies, such as immune checkpoint inhibitor (ICIs), monoclonal antibodies (mAbs), cancer vaccines, and adoptive cellular therapies (ACTs), has revolutionized traditional cancer treatment. However, these immunotherapeutic modalities have variable efficacies, and many of them exhibit adverse effects. Oncolytic viral Immunotherapy (OViT), whereby viruses are used to directly or indirectly induce anti-cancer immune responses, is emerging as a novel immunotherapy for treating patients with different types of cancer. The herpes simplex virus type-1 (HSV-1) possesses many characteristics that inform its use as an effective OViT agents and remains a leading candidate. Its recent clinical success resulted in the Food and Drug Administration (FDA) approval of Talimogene laherparevec (T-VEC or Imlygic) in 2015 for the treatment of advanced melanoma. In this review, we discuss recent advances in the development of oncolytic HSV-1-based OViTs, their anti-tumor mechanism of action, and efficacy data from recent clinical trials. We envision this knowledge may be used to inform the rational design and application of future oHSV in cancer treatment.
Collapse
Affiliation(s)
- Rakin Tammam Nasar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Ifeanyi Kingsley Uche
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Wang H, Borlongan M, Kaufman HL, Le U, Nauwynck HJ, Rabkin SD, Saha D. Cytokine-armed oncolytic herpes simplex viruses: a game-changer in cancer immunotherapy? J Immunother Cancer 2024; 12:e008025. [PMID: 38821716 PMCID: PMC11149157 DOI: 10.1136/jitc-2023-008025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Cytokines are small proteins that regulate the growth and functional activity of immune cells, and several have been approved for cancer therapy. Oncolytic viruses are agents that mediate antitumor activity by directly killing tumor cells and inducing immune responses. Talimogene laherparepvec is an oncolytic herpes simplex virus type 1 (oHSV), approved for the treatment of recurrent melanoma, and the virus encodes the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). A significant advantage of oncolytic viruses is the ability to deliver therapeutic payloads to the tumor site that can help drive antitumor immunity. While cytokines are especially interesting as payloads, the optimal cytokine(s) used in oncolytic viruses remains controversial. In this review, we highlight preliminary data with several cytokines and chemokines, including GM-CSF, interleukin 12, FMS-like tyrosine kinase 3 ligand, tumor necrosis factor α, interleukin 2, interleukin 15, interleukin 18, chemokine (C-C motif) ligand 2, chemokine (C-C motif) ligand 5, chemokine (C-X-C motif) ligand 4, or their combinations, and show how these payloads can further enhance the antitumor immunity of oHSV. A better understanding of cytokine delivery by oHSV can help improve clinical benefit from oncolytic virus immunotherapy in patients with cancer.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
- College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Mia Borlongan
- College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Ankyra Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Uyen Le
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
| |
Collapse
|
7
|
Paudel SN, Hutzen B, Cripe TP. The quest for effective immunotherapies against malignant peripheral nerve sheath tumors: Is there hope? Mol Ther Oncolytics 2023; 30:227-237. [PMID: 37680255 PMCID: PMC10480481 DOI: 10.1016/j.omto.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Immune-based therapies represent a new paradigm in the treatment of multiple cancers, where they have helped achieve durable and safe clinical responses in a growing subset of patients. While a wealth of information is available concerning the use of these agents in treating the more common malignancies, little has been reported about the use of immunotherapies against malignant peripheral nerve sheath tumors (MPNSTs), a rare form of soft tissue sarcoma that arises from the myelin sheaths that protect peripheral nerves. Surgical resection has been the mainstay of therapy in MPNSTs, but the recurrence rate is as high as 65%, and chemotherapy is generally ineffective. The immune contexture of MPNSTs, replete with macrophages and a varying degree of T cell infiltration, presents multiple opportunities to design meaningful therapeutic interventions. While preliminary results with macrophage-targeting strategies and oncolytic viruses are promising, identifying the subset of patients that respond to immune-based strategies will be a milestone. As part of our effort to help advance the use of immunotherapy for MPNSTs, here we describe recent insights regarding the immune contexture of MPNSTs, discuss emerging immune-based strategies, and provide a brief overview of potential biomarkers of response.
Collapse
Affiliation(s)
- Siddhi N. Paudel
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Childhood Cancer Research, Columbus, OH, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Brian Hutzen
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Childhood Cancer Research, Columbus, OH, USA
| | - Timothy P. Cripe
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Childhood Cancer Research, Columbus, OH, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
- Ohio State University Wexner College of Medicine, Columbus, OH, USA
| |
Collapse
|
8
|
Bryant JP, Lu VM, Govindarajan V, Perez-Roman RJ, Levi AD. Immunotherapeutic treatments for spinal and peripheral nerve tumors: a primer. Neurosurg Focus 2022; 52:E8. [PMID: 35104797 DOI: 10.3171/2021.11.focus21590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Spinal and peripheral nerve tumors are a heterogeneous group of neoplasms that can be associated with significant morbidity and mortality despite the current standard of care. Immunotherapy is an emerging therapeutic option to improve the prognoses of these tumors. Therefore, the authors sought to present an updated and unifying review on the use of immunotherapy in treating tumors of the spinal cord and peripheral nerves, including a discussion on mechanism of action, drug delivery, current treatment techniques, and preclinical and clinical studies. METHODS Current data in the literature regarding immunotherapy were collated and summarized. Targeted tumors included primary and secondary spinal tumors, as well as peripheral nerve tumors. RESULTS Four primary modalities of immunotherapy (CAR T cell, monoclonal antibody, viral, and cytokine) have been reported to target spine and peripheral nerve tumors. Of the primary spinal tumors, spinal cord astrocytomas had the most preclinical evidence supporting immunotherapy success with CAR T-cell therapy targeting the H3K27M mutation, whereas spinal schwannomas and ependymomas had the most evidence reported for monoclonal antibody therapy preclinically. Of the secondary spinal tumors, primary CNS lymphomas demonstrated some clinical response to immunotherapy, whereas multiple myeloma and bone tumor experiences with immunotherapy were largely limited to concept only. Within peripheral nerve tumors, the use of immunotherapy to treat neurofibromas in the setting of syndromes has been suggested in theory, and possible immunotherapeutic targets have been identified in malignant peripheral nerve tumors. To date, there have been 2 clinical trials involving spine tumors and 2 clinical trials involving peripheral nerve tumors that have reported results, all of which are promising but require validation. CONCLUSIONS Immunotherapy to treat spinal and peripheral nerve tumors has become an emerging area of research and interest. A large amount of preclinical data supporting the translation of this therapy into practice, aimed at ameliorating the poor prognoses of specific tumors, have been reported. Future clinical studies for translation will focus on the optimal therapy type and administration route to best target these tumors, which often preclude total surgical resection given their proximity to the neural and vascular elements of the spine.
Collapse
|
9
|
Rabab’h O, Gharaibeh A, Al-Ramadan A, Ismail M, Shah J. Pharmacological Approaches in Neurofibromatosis Type 1-Associated Nervous System Tumors. Cancers (Basel) 2021; 13:cancers13153880. [PMID: 34359780 PMCID: PMC8345673 DOI: 10.3390/cancers13153880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Neurofibromatosis type 1 (NF1) is a common cancer predisposition genetic disease that is associated with significant morbidity and mortality. In this literature review, we discuss the major pathways in the nervous system that are affected by NF1, tumors that are associated with NF1, drugs that target these pathways, and genetic models of NF1. We also summarize the latest updates from clinical trials that are evaluating pharmacological agents to treat these tumors and discuss the efforts that are being made to cure the disease in the future Abstract Neurofibromatosis type 1 is an autosomal dominant genetic disease and a common tumor predisposition syndrome that affects 1 in 3000 to 4000 patients in the USA. Although studies have been conducted to better understand and manage this disease, the underlying pathogenesis of neurofibromatosis type 1 has not been completely elucidated, and this disease is still associated with significant morbidity and mortality. Treatment options are limited to surgery with chemotherapy for tumors in cases of malignant transformation. In this review, we summarize the advances in the development of targeted pharmacological interventions for neurofibromatosis type 1 and related conditions.
Collapse
Affiliation(s)
- Omar Rabab’h
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
| | - Ali Al-Ramadan
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Manar Ismail
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
| | - Jawad Shah
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
10
|
Williams KB, Largaespada DA. New Model Systems and the Development of Targeted Therapies for the Treatment of Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Genes (Basel) 2020; 11:E477. [PMID: 32353955 PMCID: PMC7290716 DOI: 10.3390/genes11050477] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic disorder and cancer predisposition syndrome (1:3000 births) caused by mutations in the tumor suppressor gene NF1. NF1 encodes neurofibromin, a negative regulator of the Ras signaling pathway. Individuals with NF1 often develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage, some of which progress further to malignant peripheral nerve sheath tumors (MPNSTs). Treatment options for neurofibromas and MPNSTs are extremely limited, relying largely on surgical resection and cytotoxic chemotherapy. Identification of novel therapeutic targets in both benign neurofibromas and MPNSTs is critical for improved patient outcomes and quality of life. Recent clinical trials conducted in patients with NF1 for the treatment of symptomatic plexiform neurofibromas using inhibitors of the mitogen-activated protein kinase (MEK) have shown very promising results. However, MEK inhibitors do not work in all patients and have significant side effects. In addition, preliminary evidence suggests single agent use of MEK inhibitors for MPNST treatment will fail. Here, we describe the preclinical efforts that led to the identification of MEK inhibitors as promising therapeutics for the treatment of NF1-related neoplasia and possible reasons they lack single agent efficacy in the treatment of MPNSTs. In addition, we describe work to find targets other than MEK for treatment of MPNST. These have come from studies of RAS biochemistry, in vitro drug screening, forward genetic screens for Schwann cell tumors, and synthetic lethal screens in cells with oncogenic RAS gene mutations. Lastly, we discuss new approaches to exploit drug screening and synthetic lethality with NF1 loss of function mutations in human Schwann cells using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Kyle B. Williams
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Ghouse SM, Nguyen HM, Bommareddy PK, Guz-Montgomery K, Saha D. Oncolytic Herpes Simplex Virus Encoding IL12 Controls Triple-Negative Breast Cancer Growth and Metastasis. Front Oncol 2020; 10:384. [PMID: 32266155 PMCID: PMC7105799 DOI: 10.3389/fonc.2020.00384] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a difficult-to-treat disease with high rates of local recurrence, distant metastasis, and poor overall survival with existing therapies. Thus, there is an unmet medical need to develop new treatment regimen(s) for TNBC patients. An oncolytic herpes simplex virus encoding a master anti-tumor cytokine, interleukin 12, (designated G47Δ-mIL12) selectively kills cancer cells while inducing anti-tumor immunity. G47Δ-mIL12 efficiently infected and killed murine (4T1 and EMT6) and human (HCC1806 and MDA-MB-468) mammary tumor cells in vitro. In vivo in the 4T1 syngeneic TNBC model, it significantly reduced primary tumor burden and metastasis, both at early and late stages of tumor development. The virus-induced local and abscopal effects were confirmed by significantly increased infiltration of CD45+ leukocytes and CD8+ T cells, and reduction of granulocytic and monocytic MDSCs in tumors, both treated and untreated contralateral, and in the spleen. Significant trafficking of dendritic cells (DCs) were only observed in spleens of virus-treatment group, indicating that DCs are primed and activated in the tumor-microenvironment following virotherapy, and trafficked to lymphoid organs for activation of immune cells, such as CD8+ T cells. DC priming/activation could be associated with virally enhanced expression of several antigen processing/presentation genes in the tumor microenvironment, as confirmed by NanoString gene expression analysis. Besides DC activation/priming, G47Δ-mIL12 treatment led to up-regulation of CD8+ T cell activation markers in the tumor microenvironment and inhibition of tumor angiogenesis. The anti-tumor effects of G47Δ-mIL12 treatment were CD8-dependent. These studies illustrate the ability of G47Δ-mIL12 to immunotherapeutically treat TNBC.
Collapse
Affiliation(s)
- Shanawaz M Ghouse
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Praveen K Bommareddy
- School of Graduate Studies, Rutgers University, New Brunswick, NJ, United States
| | - Kirsten Guz-Montgomery
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
12
|
Combined Targeting of AKT and mTOR Inhibits Proliferation of Human NF1-Associated Malignant Peripheral Nerve Sheath Tumour Cells In Vitro but not in a Xenograft Mouse Model In Vivo. Int J Mol Sci 2020; 21:ijms21041548. [PMID: 32102484 PMCID: PMC7073166 DOI: 10.3390/ijms21041548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
Persistent signalling via the PI3K/AKT/mTOR pathway is a major driver of malignancy in NF1-associated malignant peripheral nerve sheath tumours (MPNST). Nevertheless, single targeting of this pathway is not sufficient to inhibit MPNST growth. In this report, we demonstrate that combined treatment with the allosteric pan-AKT inhibitor MK-2206 and the mTORC1/mTORC2 inhibitor AZD8055 has synergistic effects on the viability of MPNST cell lines in comparison to the treatment with each compound alone. However, when treating animals bearing experimental MPNST with the combined AKT/mTOR regime, no influence on tumour growth was observed. Further analysis of the MPNST xenograft tumours resistant to AKT/mTOR treatment revealed a reactivation of both AKT and mTOR in several tumour samples. Additional targeting of the RAS/RAF/MEK/MAPK pathway with the allosteric MEK1/2 inhibitor AZD6244 showed synergistic effects on the viability of MPNST cell lines in vitro in comparison to the dual AKT/mTOR inhibition. In summary, these data indicate that combined treatment with AKT and mTOR inhibitors is effective on MPNST cells in vitro but tumour resistance can occur rapidly in vivo by restoration of AKT/mTOR signalling. Our data further suggest that a triple treatment with inhibitors against AKT, mTORC1/2 and MEK1/2 may be a promising treatment option that should be further analysed in an experimental MPNST mouse model in vivo.
Collapse
|
13
|
Oncolytic Virus Encoding a Master Pro-Inflammatory Cytokine Interleukin 12 in Cancer Immunotherapy. Cells 2020; 9:cells9020400. [PMID: 32050597 PMCID: PMC7072539 DOI: 10.3390/cells9020400] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are genetically modified or naturally occurring viruses, which preferentially replicate in and kill cancer cells while sparing healthy cells, and induce anti-tumor immunity. OV-induced tumor immunity can be enhanced through viral expression of anti-tumor cytokines such as interleukin 12 (IL-12). IL-12 is a potent anti-cancer agent that promotes T-helper 1 (Th1) differentiation, facilitates T-cell-mediated killing of cancer cells, and inhibits tumor angiogenesis. Despite success in preclinical models, systemic IL-12 therapy is associated with significant toxicity in humans. Therefore, to utilize the therapeutic potential of IL-12 in OV-based cancer therapy, 25 different IL-12 expressing OVs (OV-IL12s) have been genetically engineered for local IL-12 production and tested preclinically in various cancer models. Among OV-IL12s, oncolytic herpes simplex virus encoding IL-12 (OHSV-IL12) is the furthest along in the clinic. IL-12 expression locally in the tumors avoids systemic toxicity while inducing an efficient anti-tumor immunity and synergizes with anti-angiogenic drugs or immunomodulators without compromising safety. Despite the rapidly rising interest, there are no current reviews on OV-IL12s that exploit their potential efficacy and safety to translate into human subjects. In this article, we will discuss safety, tumor-specificity, and anti-tumor immune/anti-angiogenic effects of OHSV-IL12 as mono- and combination-therapies. In addition to OHSV-IL12 viruses, we will also review other IL-12-expressing OVs and their application in cancer therapy.
Collapse
|
14
|
Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn J Clin Oncol 2019; 49:201-209. [PMID: 30462296 DOI: 10.1093/jjco/hyy170] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/21/2018] [Indexed: 01/28/2023] Open
Abstract
Oncolytic virus therapy is a promising new option for cancer. It utilizes genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming normal cells. T-VEC (talimogene laherparepvec), a second-generation oncolytic herpes simplex virus type 1, was approved by the US Food and Drug Administration for the treatment of inoperable melanoma in 2015 and subsequently approved in Europe in 2016. Other oncolytic viruses using different parental viruses have also been tested in Phase III clinical trials and are ready for drug approval: Pexa-Vec (pexastimogene devacirepvec), an oncolytic vaccinia virus, CG0070, an oncolytic adenovirus, and REOLYSIN (pelareorep), an oncolytic reovirus. In Japan, as of May 2018, several oncolytic viruses have been developed, and some have already proceeded to clinical trials. In this review, we summarize clinical trials assessing oncolytic virus therapy that were conducted or are currently ongoing in Japan, specifically, T-VEC, the abovementioned oncolytic herpes simplex virus type 1, G47Δ, a third-generation oncolytic herpes simplex virus type 1, HF10, a naturally attenuated oncolytic herpes simplex virus type 1, Telomelysin, an oncolytic adenovirus, Surv.m-CRA, another oncolytic adenovirus, and Sendai virus particle. In the near future, oncolytic virus therapy may become an important and major treatment option for cancer in Japan.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Urology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Abstract
Gene therapy is emerging as a viable option for clinical therapy of monogenic disorders and other genetically defined diseases, with approved gene therapies available in Europe and newly approved gene therapies in the United States. In the past 10 years, gene therapy has moved from a distant possibility, even in the minds of much of the scientific community, to being widely realized as a valuable therapeutic tool with wide-ranging potential. The U.S. Food and Drug Administration has recently approved Luxturna (Spark Therapeutics Inc, Philadelphia, PA, USA), a recombinant adeno-associated virus (rAAV) 2 gene therapy for one type of Leber congenital amaurosis 2 ( 1 , 2 ). The European Medicines Agency (EMA) has approved 3 recombinant viral vector products: Glybera (UniQure, Amsterdam, The Netherlands), an rAAV vector for lipoprotein lipase deficiency; Strimvelis (Glaxo Smith-Kline, Brentford, United Kingdom), an ex vivo gammaretrovirus-based therapy for patients with adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID); and Kymriah (Novartis, Basel, Switzerland), an ex vivo lentivirus-based therapy to engineer autologous chimeric antigen-receptor T (CAR-T) cells targeting CD19-positive cells in acute lymphoblastic leukemia. These examples will be followed by the clinical approval of other gene therapy products as this field matures. In this review we provide an overview of the state of gene therapy by discussing where the field stands with respect to the different gene therapy vector platforms and the types of therapies that are available.-Gruntman, A. M., Flotte, T. R. The rapidly evolving state of gene therapy.
Collapse
Affiliation(s)
- Alisha M Gruntman
- Horae Gene Therapy Center, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Non-cytotoxic systemic treatment in malignant peripheral nerve sheath tumors (MPNST): A systematic review from bench to bedside. Crit Rev Oncol Hematol 2019; 138:223-232. [DOI: 10.1016/j.critrevonc.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
|
17
|
Martinez-Quintanilla J, Seah I, Chua M, Shah K. Oncolytic viruses: overcoming translational challenges. J Clin Invest 2019; 129:1407-1418. [PMID: 30829653 DOI: 10.1172/jci122287] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in which WT or engineered viruses selectively replicate and destroy tumor cells while sparing normal ones. In the last two decades, different oncolytic viruses (OVs) have been modified and tested in a number of preclinical studies, some of which have led to clinical trials in cancer patients. These clinical trials have revealed several critical limitations with regard to viral delivery, spread, resistance, and antiviral immunity. Here, we focus on promising research strategies that have been developed to overcome the aforementioned obstacles. Such strategies include engineering OVs to target a broad spectrum of tumor cells while evading the immune system, developing unique delivery mechanisms, combining other immunotherapeutic agents with OVT, and using clinically translatable mouse tumor models to potentially translate OVT more readily into clinical settings.
Collapse
Affiliation(s)
| | - Ivan Seah
- Center for Stem Cell Therapeutics and Imaging and
| | - Melissa Chua
- Center for Stem Cell Therapeutics and Imaging and.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging and.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are rare and aggressive soft-tissue sarcomas with dismal prognosis. Complete resection, which is the only known definitive therapy, is not feasible with every tumor, and local recurrence after surgery is another challenge to successful treatment. Treatments used with other sarcoma types have not proven beneficial to MPNST patients. Targeted therapies blocking several signaling pathways known to drive MPNST pathogenesis have also not improved patient outcomes in clinical trials. This review discusses existing therapies and targeted chemotherapeutic options currently being tested clinically, and potential therapeutic avenues identified in preclinical studies that include targeting signaling pathways such as the HIPPO-YAP pathway and epigenetic mechanisms as well as multi-agent strategies.
Collapse
Affiliation(s)
- Lai Man Natalie Wu
- Division of Experimental Hematology & Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Qing Richard Lu
- Division of Experimental Hematology & Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Payne R, Mrowczynski OD, Slagle-Webb B, Bourcier A, Mau C, Aregawi D, Madhankumar AB, Lee SY, Harbaugh K, Connor J, Rizk EB. MLN8237 treatment in an orthoxenograft murine model for malignant peripheral nerve sheath tumors. J Neurosurg 2019; 130:465-475. [PMID: 29473773 DOI: 10.3171/2017.8.jns17765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas arising from peripheral nerves. MPNSTs have increased expression of the oncogene aurora kinase A, leading to enhanced cellular proliferation. This makes them extremely aggressive with high potential for metastasis and a devastating prognosis; 5-year survival estimates range from a dismal 15% to 60%. MPNSTs are currently treated with resection (sometimes requiring limb amputation) in combination with chemoradiation, both of which demonstrate limited effectiveness. The authors present the results of immunohistochemical, in vitro, and in vivo analyses of MLN8237 for the treatment of MPNSTs in an orthoxenograft murine model. METHODS Immunohistochemistry was performed on tumor sections to confirm the increased expression of aurora kinase A. Cytotoxicity analysis was then performed on an MPNST cell line (STS26T) to assess the efficacy of MLN8237 in vitro. A murine orthoxenograft MPNST model transfected to express luciferase was then developed to assess the efficacy of aurora kinase A inhibition in the treatment of MPNSTs in vivo. Mice with confirmed tumor on in vivo imaging were divided into 3 groups: 1) controls, 2) mice treated with MLN8237, and 3) mice treated with doxorubicin/ifosfamide. Treatment was carried out for 32 days, with imaging performed at weekly intervals until postinjection day 42. Average bioluminescence among groups was compared at weekly intervals using 1-way ANOVA. A survival analysis was performed using Kaplan-Meier curves. RESULTS Immunohistochemical analysis showed robust expression of aurora kinase A in tumor cells. Cytotoxicity analysis revealed STS26T susceptibility to MLN8237 in vitro. The group receiving treatment with MLN8237 showed a statistically significant difference in tumor size compared with the control group starting at postinjection day 21 and persisting until the end of the study. The MLN8237 group also showed decreased tumor size compared with the doxorubicin/ifosfamide group at the conclusion of the study (p = 0.036). Survival analysis revealed a significantly increased median survival in the MLN8237 group (83 days) compared with both the control (64 days) and doxorubicin/ifosfamide (67 days) groups. A hazard ratio comparing the 2 treatment groups showed a decreased hazard rate in the MLN8237 group compared with the doxorubicin/ifosfamide group (HR 2.945; p = 0.0134). CONCLUSIONS The results of this study demonstrate that MLN8237 is superior to combination treatment with doxorubicin/ifosfamide in a preclinical orthoxenograft murine model. These data have major implications for the future of MPNST research by providing a robust murine model as well as providing evidence that MLN8237 may be an effective treatment for MPNSTs.
Collapse
|
20
|
Ma W, He H, Wang H. Oncolytic herpes simplex virus and immunotherapy. BMC Immunol 2018; 19:40. [PMID: 30563466 PMCID: PMC6299639 DOI: 10.1186/s12865-018-0281-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Oncolytic viruses have been proposed to be employed as a potential treatment of cancer. Well targeted, they will serve the purpose of cracking tumor cells without causing damage to normal cells. In this category of oncolytic viral drugs human pathogens herpes simplex virus (HSV) is especially suitable for the cause. Although most viral infection causes antiviral reaction in the host, HSV has multiple mechanisms to evade those responses. Powerful anti-tumor effect can thus be achieved via genetic manipulation of the HSV genes involved in this evading mechanism, namely deletions or mutations that adapt its function towards a tumor microenvironment. Currently, oncolytic HSV (oHSV) is widely use in clinical; moreover, there's hope that its curative effect will be further enhanced through the combination of oHSV with both traditional and emerging therapeutics. RESULTS In this review, we provide a summary of the HSV host antiviral response evasion mechanism, HSV expresses immune evasion genes such as ICP34.5, ICP0, Us3, which are involved in inducing and activating host responses, so that the virus can evade the immune system and establish effective long-term latent infection; we outlined details of the oHSV strains generated by removing genes critical to viral replication such as ICP34.5, ICP0, and inserting therapeutic genes such as LacZ, granulocyte macrophage colony-stimulating factor (GM-CSF); security and limitation of some oHSV such G207, 1716, OncoVEX, NV1020, HF10, G47 in clinical application; and the achievements of oHSV combined with immunotherapy and chemotherapy. CONCLUSION We reviewed the immunotherapy mechanism of the oHSV and provided a series of cases. We also pointed out that an in-depth study of the application of oHSV in cancer treatment will potentially benefits cancer patients more.
Collapse
Affiliation(s)
- Wenqing Ma
- Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hongbin He
- Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Hongmei Wang
- Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
21
|
NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses-Therapeutic Perspectives. Cancers (Basel) 2018; 10:cancers10110426. [PMID: 30413032 PMCID: PMC6265863 DOI: 10.3390/cancers10110426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, oncolytic virotherapy became a promising therapeutic approach, leading to the introduction of a novel generation of anticancer drugs. However, despite evoking an antitumor response, introducing an oncolytic virus (OV) to the patient is still inefficient to overcome both tumor protective mechanisms and the limitation of viral replication by the host. In cancer treatment, nuclear factor (NF)-κB has been extensively studied among important therapeutic targets. The pleiotropic nature of NF-κB transcription factor includes its involvement in immunity and tumorigenesis. Therefore, in many types of cancer, aberrant activation of NF-κB can be observed. At the same time, the activity of NF-κB can be modified by OVs, which trigger an immune response and modulate NF-κB signaling. Due to the limitation of a monotherapy exploiting OVs only, the antitumor effect can be enhanced by combining OV with NF-κB-modulating drugs. This review describes the influence of OVs on NF-κB activation in tumor cells showing NF-κB signaling as an important aspect, which should be taken into consideration when targeting tumor cells by OVs.
Collapse
|
22
|
Fischer-Huchzermeyer S, Chikobava L, Stahn V, Zangarini M, Berry P, Veal GJ, Senner V, Mautner VF, Harder A. Testing ATRA and MEK inhibitor PD0325901 effectiveness in a nude mouse model for human MPNST xenografts. BMC Res Notes 2018; 11:520. [PMID: 30055648 PMCID: PMC6064132 DOI: 10.1186/s13104-018-3630-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 01/29/2023] Open
Abstract
Objective Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas characterized by high recurrence rates and early metastases. These tumors arise more frequently within neurofibromatosis type 1 (NF1) and present with resistance during standard chemotherapy leading to increased mortality and morbidity in those patients. In vitro all-trans retinoic acid (ATRA) and MEK inhibitors (MEKi) were shown to inhibit tumor proliferation, especially when applied in combination. Therefore, we established a nude mouse model to investigate if treatment of xenografts derived from NF1 associated S462 and T265 MPNST cells respond to ATRA and the MEKi PD0325901. Results We demonstrated that human NF1 associated MPNST derived from S462 but not T265 cells form solid subcutaneous tumors in Foxn1 nude mice but not in Balb/c, SHO or Shorn mice. We verified a characteristic staining pattern of human MPNST xenografts by immunohistochemistry. Therapeutic effects of ATRA and/or MEKi PD0325901 on growth of S462 MPNST xenografts in Foxn1 nude mice were not demonstrated in vitro, as we did not observe significant suppression of MPNST growth compared with placebo treatment. Electronic supplementary material The online version of this article (10.1186/s13104-018-3630-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Levan Chikobava
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Verena Stahn
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Monique Zangarini
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Philip Berry
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Gareth J Veal
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Victor F Mautner
- Clinics and Polyclinics of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Harder
- Institute of Neuropathology, University Hospital Münster, Münster, Germany. .,Institute of Pathology, Health Care Center, Brandenburg Hospital, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany.
| |
Collapse
|
23
|
Currier MA, Sprague L, Rizvi TA, Nartker B, Chen CY, Wang PY, Hutzen BJ, Franczek MR, Patel AV, Chaney KE, Streby KA, Ecsedy JA, Conner J, Ratner N, Cripe TP. Aurora A kinase inhibition enhances oncolytic herpes virotherapy through cytotoxic synergy and innate cellular immune modulation. Oncotarget 2017; 8:17412-17427. [PMID: 28147331 PMCID: PMC5392259 DOI: 10.18632/oncotarget.14885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) and neuroblastoma models respond to the investigational small molecule Aurora A kinase inhibitor, alisertib. We previously reported that MPNST and neuroblastomas are also susceptible to oncolytic herpes virus (oHSV) therapy. Herein, we show that combination of alisertib and HSV1716, a virus derived from HSV-1 and attenuated by deletion of RL1, exhibits significantly increased antitumor efficacy compared to either monotherapy. Alisertib and HSV1716 reduced tumor growth and increased survival in two xenograft models of MPNST and neuroblastoma. We found the enhanced antitumor effect was due to multiple mechanisms that likely each contribute to the combination effect. First, oncolytic herpes virus increased the sensitivity of uninfected cells to alisertib cytotoxicity, a process we term virus-induced therapeutic adjuvant (VITA). Second, alisertib increased peak virus production and slowed virus clearance from tumors, both likely a consequence of it preventing virus-mediated increase of intratumoral NK cells. We also found that alisertib inhibited virus-induced accumulation of intratumoral myeloid derived suppressor cells, which normally are protumorigenic. Our data suggest that clinical trials of the combination of oHSV and alisertib are warranted in patients with neuroblastoma or MPNST.
Collapse
Affiliation(s)
- Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Les Sprague
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Brooke Nartker
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Brian J Hutzen
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Meghan R Franczek
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Ami V Patel
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Keri A Streby
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | | | - Joe Conner
- Virttu Biologics, Ltd, Biocity, Scotland, Newhouse, United Kingdom
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Cincinnati, Ohio, USA
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Division of Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
24
|
Karmakar S, Reilly KM. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2016; 6:45-60. [PMID: 28001089 DOI: 10.2217/cns-2016-0024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.
Collapse
Affiliation(s)
- Souvik Karmakar
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Karlyne M Reilly
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| |
Collapse
|
25
|
Photothermal therapy improves the efficacy of a MEK inhibitor in neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Sci Rep 2016; 6:37035. [PMID: 27833160 PMCID: PMC5105126 DOI: 10.1038/srep37035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of function, necessitating the development of novel treatment methods for this patient population. Here, we describe a novel combination therapy comprising MEK inhibition and nanoparticle-based photothermal therapy (PTT) for MPNSTs. MEK inhibitors block activity driven by Ras, an oncogene constitutively activated in NF1-associated MPNSTs, while PTT serves as a minimally invasive method to ablate cancer cells. Our rationale for combining these seemingly disparate techniques for MPNSTs is based on several reports demonstrating the efficacy of systemic chemotherapy with local PTT. We combine the MEK inhibitor, PD-0325901 (PD901), with Prussian blue nanoparticles (PBNPs) as PTT agents, to block MEK activity and simultaneously ablate MPNSTs. Our data demonstrate the synergistic effect of combining PD901 with PBNP-based PTT, which converge through the Ras pathway to generate apoptosis, necrosis, and decreased proliferation, thereby mitigating tumor growth and increasing survival of MPNST-bearing animals. Our results suggest the potential of this novel local-systemic combination “nanochemotherapy” for treating patients with MPNSTs.
Collapse
|
26
|
Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci 2016; 107:1373-1379. [PMID: 27486853 PMCID: PMC5084676 DOI: 10.1111/cas.13027] [Citation(s) in RCA: 499] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virus therapy is perhaps the next major breakthrough in cancer treatment following the success in immunotherapy using immune checkpoint inhibitors. Oncolytic viruses are defined as genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming the normal tissues. T‐Vec (talimogene laherparepvec), a second‐generation oncolytic herpes simplex virus type 1 (HSV‐1) armed with GM‐CSF, was recently approved as the first oncolytic virus drug in the USA and Europe. The phase III trial proved that local intralesional injections with T‐Vec in advanced malignant melanoma patients can not only suppress the growth of injected tumors but also act systemically and prolong overall survival. Other oncolytic viruses that are closing in on drug approval in North America and Europe include vaccinia virus JX‐594 (pexastimogene devacirepvec) for hepatocellular carcinoma, GM‐CSF‐expressing adenovirus CG0070 for bladder cancer, and Reolysin (pelareorep), a wild‐type variant of reovirus, for head and neck cancer. In Japan, a phase II clinical trial of G47∆, a third‐generation oncolytic HSV‐1, is ongoing in glioblastoma patients. G47∆ was recently designated as a “Sakigake” breakthrough therapy drug in Japan. This new system by the Japanese government should provide G47∆ with priority reviews and a fast‐track drug approval by the regulatory authorities. Whereas numerous oncolytic viruses have been subjected to clinical trials, the common feature that is expected to play a major role in prolonging the survival of cancer patients is an induction of specific antitumor immunity in the course of tumor‐specific viral replication. It appears that it will not be long before oncolytic virus therapy becomes a standard therapeutic option for all cancer patients.
Collapse
Affiliation(s)
- Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Oncolytic viruses-immunotherapeutics on the rise. J Mol Med (Berl) 2016; 94:979-91. [PMID: 27492706 DOI: 10.1007/s00109-016-1453-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/07/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022]
Abstract
The oncolytic virus (OV) field has entered an exciting period in its evolution in which our basic understanding of viral biology and anti-cancer potential are being actively translated into viable therapeutic options for aggressive malignancies. OVs are naturally occurring or engineered viruses that are able to exploit cancer-specific changes in cellular signaling to specifically target cancers and their microenvironment. The direct cytolytic effect of OVs on cancer cells is known to release antigens, which can begin a cascade of events that results in the induction of anti-cancer adaptive immunity. This response is now regarded as the most critical mechanism of OV action and harnessing it can lead to the elimination of distant micrometastases as well as provide long-term anti-cancer immune surveillance. In this review, we highlight the development of the OV field, why OVs are gaining an increasingly elevated standing as members of the cancer immunotherapy armamentarium, and finally, ongoing clinical studies that are aimed at translating unique OV therapies into approved therapies for aggressive cancers.
Collapse
|
28
|
Nigim F, Esaki SI, Hood M, Lelic N, James MF, Ramesh V, Stemmer-Rachamimov A, Cahill DP, Brastianos PK, Rabkin SD, Martuza RL, Wakimoto H. A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro Oncol 2016; 18:1278-87. [PMID: 26951380 DOI: 10.1093/neuonc/now031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/06/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Higher-grade meningiomas (HGMs; World Health Organization grades II and III) pose a clinical problem due to high recurrence rates and the absence of effective therapy. Preclinical development of novel therapeutics requires a disease model that recapitulates the genotype and phenotype of patient HGM. Oncolytic herpes simplex virus (oHSV) has shown efficacy and safety in cancers in preclinical and clinical studies, but its utility for HGM has not been well characterized. METHODS Tumorsphere cultures and serial orthotopic xenografting in immunodeficient mice were used to establish a patient-derived HGM model. The model was pathologically and molecularly characterized by immunohistochemistry, western blot, and genomic DNA sequencing and compared with the patient tumor. Anti-HGM effects of oHSV G47Δ were assessed using cell viability and virus replication assays in vitro and animal survival analysis following intralesional injections of G47Δ. RESULTS We established a serially transplantable orthotopic malignant meningioma model, MN3, which was lethal within 3 months after tumorsphere implantation. MN3 xenografts exhibited the pathological hallmarks of malignant meningioma such as high Ki67 and vimentin expression. Both the patient tumor and xenografts were negative for neurofibromin 2 (merlin) and had the identical NF2 mutation. Oncolytic HSV G47Δ efficiently spread and killed MN3 cells, as well as other patient-derived HGM lines in vitro. Treatment with G47Δ significantly extended the survival of mice bearing subdural MN3 tumors. CONCLUSIONS We established a new patient-derived meningioma model that will enable the study of targeted therapeutic approaches for HGM. Based on these studies, it is reasonable to consider a clinical trial of G47Δ for HGM.
Collapse
Affiliation(s)
- Fares Nigim
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shin-Ichi Esaki
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael Hood
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nina Lelic
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marianne F James
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vijaya Ramesh
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anat Stemmer-Rachamimov
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Priscilla K Brastianos
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel D Rabkin
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert L Martuza
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Hernandez-Alcoceba R, Poutou J, Ballesteros-Briones MC, Smerdou C. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12. Immunotherapy 2016; 8:179-98. [PMID: 26786809 DOI: 10.2217/imt.15.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IL-12 is an immunostimulatory cytokine with strong antitumor properties. Systemic administration of IL-12 in cancer patients led to severe toxic effects, prompting the development of gene therapy vectors able to express this cytokine locally in tumors. Both nonviral and viral vectors have demonstrated a high antitumor efficacy in preclinical tumor models. Some of these vectors, including DNA electroporation, adenovirus and ex vivo transduced dendritic cells, were tested in patients, showing low toxicity and moderate antitumor efficacy. IL-12 activity can be potentiated by molecules with immunostimulatory, antiangiogenic or cytotoxic activity. These combination therapies are of clinical interest because they could lower the threshold for IL-12 efficacy, increasing the therapeutic potential of gene therapy and preventing the toxicity mediated by this cytokine.
Collapse
Affiliation(s)
- Ruben Hernandez-Alcoceba
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Joanna Poutou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - María Cristina Ballesteros-Briones
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Cristian Smerdou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| |
Collapse
|
30
|
Antoszczyk S, Rabkin SD. Prospect and progress of oncolytic viruses for treating peripheral nerve sheath tumors. Expert Opin Orphan Drugs 2015; 4:129-138. [PMID: 27867771 PMCID: PMC5111812 DOI: 10.1517/21678707.2016.1128322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Peripheral nerve sheath tumors (PNSTs) are an assorted group of neoplasms originating from neuroectoderm and growing in peripheral nerves. Malignant transformation leads to a poor prognosis and is often lethal. Current treatment of PNSTs is predominantly surgical, which is often incomplete or accompanied by significant loss of function, in conjunction with radiotherapy and/or chemotherapy, for which the benefits are inconclusive. Oncolytic viruses (OVs) efficiently kill tumor cells while remaining safe for normal tissues, and are a novel antitumor therapy for patients with PNSTs. AREAS COVERED Because of the low efficacy of current treatments, new therapies for PNSTs are needed. Pre-clinically, OVs have demonstrated efficacy in treating PNSTs and perineural tumor invasion, as well as safety. We will discuss the various PNSTs and their preclinical models, and the OVs being tested for their treatment, including oncolytic herpes simplex virus (HSV), adenovirus (Ad), and measles virus (MV). OVs can be 'armed' to express therapeutic transgenes or combined with other therapeutics to enhance their activity. EXPERT OPINION Preclinical testing of OVs in PNST models has demonstrated their therapeutic potential and provided support for clinical translation. Clinical studies with other solid tumors have provided evidence that OVs are safe in patients and efficacious. The recent successful completion of a phase III clinical trial of oncolytic HSV paves the way for oncolytic virotherapy to enter clinical practice.
Collapse
Affiliation(s)
- Slawomir Antoszczyk
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital
- Department of Neurosurgery, Harvard Medical School, Boston MA
| | - Samuel D. Rabkin
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital
- Department of Neurosurgery, Harvard Medical School, Boston MA
| |
Collapse
|
31
|
Sokolowski NA, Rizos H, Diefenbach RJ. Oncolytic virotherapy using herpes simplex virus: how far have we come? Oncolytic Virother 2015; 4:207-19. [PMID: 27512683 PMCID: PMC4918397 DOI: 10.2147/ov.s66086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oncolytic virotherapy exploits the properties of human viruses to naturally cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV) has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future.
Collapse
Affiliation(s)
- Nicolas As Sokolowski
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| |
Collapse
|
32
|
Friedman GK, Beierle EA, Gillespie GY, Markert JM, Waters AM, Chen CY, Denton NL, Haworth KB, Hutzen B, Leddon JL, Streby KA, Wang PY, Cripe TP. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30018-3. [PMID: 26436134 PMCID: PMC4589754 DOI: 10.1038/mto.2015.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oncolytic engineered herpes simplex viruses (HSVs) possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.
Collapse
Affiliation(s)
- Gregory K Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth A Beierle
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alicia M Waters
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chun-Yu Chen
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Nicholas L Denton
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Kellie B Haworth
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Brian Hutzen
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer L Leddon
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Keri A Streby
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Pin-Yi Wang
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Timothy P Cripe
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
33
|
Peters C, Rabkin SD. Designing Herpes Viruses as Oncolytics. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30012-2. [PMID: 26462293 PMCID: PMC4599707 DOI: 10.1038/mto.2015.10] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because herpes simplex virus (HSV) is a natural human pathogen that can cause serious disease, it is incumbent that it be genetically-engineered or significantly attenuated for safety. Here we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are non-essential for growth in tissue culture cells but are important for growth in post-mitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be 'armed' with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate anti-tumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.
Collapse
Affiliation(s)
- Cole Peters
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| | - Samuel D Rabkin
- Program in Virology, Harvard Medical School, Boston, MA, and Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston MA
| |
Collapse
|
34
|
Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 2015; 26:311-27. [DOI: 10.1016/j.cytogfr.2014.11.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
|