1
|
Bao J, Pan Z, Wei S. Unlocking new horizons: advances in treating IDH-mutant, 1p/19q-codeleted oligodendrogliomas. Discov Oncol 2025; 16:971. [PMID: 40448901 DOI: 10.1007/s12672-025-02815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025] Open
Abstract
Oligodendrogliomas are a distinct subtype of diffuse gliomas characterized by IDH mutations and 1p/19q codeletion, classified as grade 2 or 3 based on histological features. This review examines current advancements in the diagnosis, treatment, and prognosis of oligodendrogliomas, with an emphasis on personalized approaches driven by molecular insights. Surgery remains the cornerstone of treatment, aiming for maximal safe resection to obtain tissue for diagnosis and alleviate symptoms. For grade 2 tumors with residual disease but no symptomatic progression, the IDH inhibitor vorasidenib has emerged as a promising option to delay the need for radiation therapy (RT) and chemotherapy. For grade III oligodendrogliomas, postoperative combined-modality therapy with RT and chemotherapy, such as the PCV regimen, demonstrates significant survival benefits, while temozolomide is an alternative due to its ease of administration and reduced toxicity. Recurrent oligodendrogliomas present therapeutic challenges, necessitating tailored strategies based on prior treatments and the interval since initial therapy. Options include repeat surgery, reirradiation, or novel targeted therapies. Advances in molecular diagnostics, such as homozygous CDKN2A/B deletion as a prognostic marker, have refined risk stratification and informed treatment decisions. Despite these strides, further research is needed to optimize long-term outcomes and address resistance mechanisms. This review underscores the importance of integrating molecular diagnostics with clinical management to achieve personalized, evidence-based care for patients with oligodendrogliomas.
Collapse
Affiliation(s)
- Jing Bao
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Zhenjiang Pan
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Shepeng Wei
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
2
|
Dantio CD, Fasoranti DO, Teng C, Li X. Seizures in brain tumors: pathogenesis, risk factors and management (Review). Int J Mol Med 2025; 55:82. [PMID: 40116082 PMCID: PMC11964414 DOI: 10.3892/ijmm.2025.5523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
Seizures in the context of brain tumors are a relatively common symptom, with higher occurrence rates observed in glioneuronal tumors and gliomas. It is a serious burden that can have a significant impact on the quality of life (QoL) of patients and influence the disease's prognosis. Brain tumor‑related epilepsy (BTRE) is a challenging entity because the pathophysiological mechanisms are not fully understood yet. Nonetheless, neuroinflammation is considered to play a pivotal role. Next to neuroinflammation, findings on the pathogenesis of BTRE have established that certain genetic mutations are involved, of which the most known would be IDH mutations in gliomas. Others discussed more thoroughly in the present review include genes such as PTEN, TP53, IGSF3, and these findings all provide fresh and fascinating insights into the pathogenesis of BTRE. Treatment for BTRE presents unique challenges, mainly related to burdens of polytherapy, debated necessity of anti‑epileptic prophylaxis, and overall impact on the QoL. In fact, there are no established anti‑seizure medications (ASMs) of choice for BTRE, nor is there any protocol to guide the use of these medications at every step of disease progression. Treatment strategies aimed at the tumor, that is surgical procedures, radio‑ and chemotherapy appear to influence seizure control. Conversely, some ASMs have also shown antitumor properties. The present review summarizes and retrospectively analyzes the literature on the pathogenesis and management of BTRE to provide an updated comprehensive understanding. Furthermore, the challenges and opportunities for developing future therapies aimed at BTRE are discussed.
Collapse
Affiliation(s)
- Cyrille D. Dantio
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Deborah Oluwatosin Fasoranti
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
3
|
Ollila L, Roivainen R. Antiseizure medication choice in diffuse glioma: A single-center population-based experience. Epilepsia Open 2025. [PMID: 40308033 DOI: 10.1002/epi4.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/04/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVE Several antiseizure medications (ASMs) can be considered as first-line treatment for glioma-associated epilepsy (GAE). We aimed to find out, if there are subgroups of glioma patients which may benefit from different first-line ASMs. METHODS All diffuse glioma (grade 2-4) patients, who were in contact with Helsinki University Hospital Neurology or Oncology Departments during 2013-2015, were recognized from medical records. Follow-up data was retrospectively collected of all GAE patients living in Helsinki for 5 years from diagnosis of glioma, or until death. RESULTS A total of 121 patients with GAE fulfilling inclusion criteria were identified. Forty-nine (40.5%) had grade 2 glioma, 18 (14.9%) had grade 3 glioma, and 54 (44.6%) had grade 4 glioma. The most common first ASM was oxcarbazepine (39.2%), followed by levetiracetam (22.5%), carbamazepine (19.3%), phenytoin (10.8%) and valproic acid (8.3%). The first ASM was retained in use in 70 (57.9%) patients until the end of follow-up. Among patients with low-grade glioma, oxcarbazepine was favored, whereas grade 4 glioma patients more often received levetiracetam as first ASM. At the end of follow-up, the retention rate of levetiracetam as first ASM was higher than retention rate of other ASMs in grade 4 glioma patients (p 0.002). Patients who initiated valproic acid as first ASM underwent more ASM changes than patients who initiated other first-line ASM (p 0.005). SIGNIFICANCE Levetiracetam seems to be a favorable first-line treatment for GAE, especially for patients with grade 4 glioma. For grade 2-3 glioma patients, oxcarbazepine may be a reasonable option. PLAIN LANGUAGE SUMMARY Grade 2-4 gliomas are central nervous system tumors originating from glial cells, and epilepsy is common in glioma patients. We found that levetiracetam was favored as first antiseizure medication for patients with malignant, grade 4, glioma. For patients with slower-growing tumors, grade 2-3 gliomas, oxcarbazepine may be a reasonable choice for first antiseizure medication. The findings highlight the need for individual assessment in the use of antiseizure medications in glioma patients.
Collapse
Affiliation(s)
- Leena Ollila
- Department of Neurology, Epilepsia Helsinki, Member of ERN EpiCare, Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Reina Roivainen
- Department of Neurology, Epilepsia Helsinki, Member of ERN EpiCare, Neurocenter, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Phabphal K, Kaewborisutsakul A, Leetanaporn K, Choochuen P, Tunthanathip T, Navakanitworakul R, Sangkhathat S. Gene mutations linked to drug-resistant epilepsy in astrocytoma. Front Neurol 2025; 16:1523468. [PMID: 40103938 PMCID: PMC11913685 DOI: 10.3389/fneur.2025.1523468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction Epilepsy is common in gliomas, particularly astrocytomas, even in patients who have undergone total tumor resection. Resistance to antiseizure drugs presents a significant challenge in managing epilepsy. Seizure outcomes after brain surgery for drug-resistant epilepsy (DRE) are heterogeneous and difficult to predict using models that evaluate current clinical, imaging, and electrophysiological variables. This study aimed to investigate possible correlations between genetic mutations and antiseizure resistance using whole-exome sequencing. Methods Tumor samples from a medical biobank were subjected to whole-exome sequencing, and the contribution of 64 genes from a previous report was analyzed. Results Fifteen patients had DRE. Compared to the patients who showed drug responsiveness, patients in the DRE group exhibited mutations in glutamate receptor genes (GRIA1, GRIK5, GRIN2B, or GRIN2C), ATRX, and the glutamate-S-transferase gene. No significant differences were found between the groups in terms of mutations in BRAF, Olig2, Ki-67, IDH, PIK3CA, p53, GRM, or BCL2A. Discussion These findings suggest that somatic gene mutations are closely linked to DRE. Identifying the molecular basis of antiseizure drug resistance is crucial for improving the management of DRE.
Collapse
Affiliation(s)
- Kanitpong Phabphal
- Unit of Neurology, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Anukoon Kaewborisutsakul
- Unit of Neurological Surgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Prince of Songkla University, Songkhla, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thara Tunthanathip
- Unit of Neurological Surgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
5
|
Vacher E, Rodriguez Ruiz M, Rees JH. Management of brain tumour related epilepsy (BTRE): a narrative review and therapy recommendations. Br J Neurosurg 2025; 39:4-11. [PMID: 36694327 DOI: 10.1080/02688697.2023.2170326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Brain Tumour Related Epilepsy (BTRE) has a significant impact on Quality of Life with implications for driving, employment, and social activities. Management of BTRE is complex due to the higher incidence of drug resistance and the potential for interaction between anti-cancer therapy and anti-seizure medications (ASMs). Neurologists, neurosurgeons, oncologists, palliative care physicians and clinical nurse specialists treating these patients would benefit from up-to-date clinical guidelines. We aim to review the current literature and to outline specific recommendations for the optimal treatment of BTRE, encompassing both Primary Brain Tumours (PBT) and Brain Metastases (BM). A comprehensive search of the literature since 1995 on BTRE was carried out in PubMed, MEDLINE and EMCARE. A broad search strategy was used, and the evidence evaluated and graded based on the Oxford Centre for Evidence-Based Medicine Levels of Evidence. Seizure frequency varies between 10 and 40% in patients with Brain Metastases (BM) and from 30% (high-grade gliomas) to 90% (low-grade gliomas) in patients with PBT. In patients with BM, risk factors include number of BM and melanoma histology. In patients with PBT, BTRE is more common in patients with lower grade histology, frontal and temporal tumours, presence of an IDH mutation and cortical infiltration. All patients with BTRE should be treated with ASMs. Non-enzyme inducing ASMs are recommended as first line treatment for BTRE, but up to 50% of patients with BTRE due to PBT remain resistant. There is no proven benefit for the use of prophylactic ASMs, although there are no randomised trials testing newer agents. Surgical and oncological treatments i.e. radiotherapy and chemotherapy improve BTRE. Vagus Nerve Stimulation has been used with partial success. The review highlights the relative dearth of high-quality evidence for the management of BTRE and provides a framework for further studies aiming to improve seizure control, quality of life, and indications for ASMs.
Collapse
Affiliation(s)
- Elizabeth Vacher
- UCL Medical School, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | | | - Jeremy H Rees
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
6
|
Ospina JP, Wen PY. Medical and neurologic management of brain tumor patients. Curr Opin Neurol 2024; 37:657-665. [PMID: 39221926 DOI: 10.1097/wco.0000000000001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW This article discusses commonly encountered medical and neurological complications in patients with brain tumors and highlights recommendations for their management based on updated evidence. RECENT FINDINGS Use of dexamethasone is correlated with worse prognosis in patients with glioblastoma, and in brain metastases, high doses may lead to increased side effects without additional clinical benefit. There are multiple antiseizure medications (ASM) to choose from and possible interactions and toxicity must be considered when choosing an agent. Additionally, there is growing interest in the use of AMPA receptor blockers as ASM in patients with brain tumors. Nonpharmacological strategies for the management of fatigue remain paramount. Cognitive decline is common after whole brain radiation (WBRT) and hippocampal-sparing WBRT results in superior cognitive outcomes. Venous thromboembolism is a common complication and there is growing evidence on the use of direct oral anticoagulants (DOACs) in this population. SUMMARY There is evolving evidence on the management of medical and neurological complications in patients with brain tumors. These complications, require early identification and multidisciplinary collaboration and expertise.
Collapse
Affiliation(s)
- Juan Pablo Ospina
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
- Department of Neurology, Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
7
|
Seyringer S, Pilz MJ, Bottomley A, King MT, Norman R, Gamper EM. Cancer-specific utility: clinical validation of the EORTC QLU-C10D in patients with glioblastoma. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2024:10.1007/s10198-024-01729-4. [PMID: 39565523 DOI: 10.1007/s10198-024-01729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024]
Abstract
INTRODUCTION Many health economic evaluations rely on the validity of the utility measurement for health-related quality of life (HRQoL). While generic utility measures perform well in HRQoL assessments of many diseases and patient populations, appropriateness for cancer-specific disease burdens needs attention and condition-specific measures could be a viable option. This study assessed the clinical validity of the cancer-specific EORTC QLU-C10D, a utility scoring algorithm for the EORTC QLQ-C30, in patients with glioblastoma. We expect the EORTC QLU-C10D to be sensitive and responsive in glioblastoma patients. Furthermore, we compared its statistical efficiency with the generic utility measure EQ-5D-3L. METHODS We used data from a multi-center randomized controlled trial (NCT00689221) with patients from 146 study sites in 25 countries. Both, the QLQ-C30 and the EQ-5D-3L, had been administered at seven assessment points together. Utilities of both measures were calculated for four country value set (Australia, Canada, UK, USA). Ceiling effects, agreement (Bland-Altman plots (BA), intra-class correlation (ICC)), were calculated to analyze construct validity. Sensitivity to known-groups (performance status; global health) and responsiveness to changes (progressive vs. non-progressive; stable vs. improved or deteriorated HRQoL) were investigated for clinical validity. Relative Efficiency (RE) was calculated to compare statistical efficiency of both utility measures. RESULTS 435 patients were included at baseline and six subsequent time points (median timeframe 497 days). QLU-C10D country value set showed negligible ceiling effects (< 6.7%) and high agreement with EQ-5D-3L (ICC > 0.750). BA indicated that differences between both utility measures increased with deteriorating health states. While the QLU-C10D was more sensitive to global health groups (RE > 1.2), the EQ-5D-3L was more sensitive to performance status groups (RE < 0.7) than the other utility measure. Statistical efficiency to detect differences between change groups and within HRQoL deterioration group (RE > 1.4) favored QLU-C10D in 18 of 24 (75%) and 20 of 24 (83%) comparisons with the EQ-5D-3L respectively. Responsiveness to overall HRQoL change (RE > 3.4) also favored the QLU-C10D. CONCLUSION Our results indicate that the QLU-C10D is a valid utility measure to assess HRQoL in patients with glioblastoma. This facilitates the investigation of HRQoL profiles and utilities in this patient population by administering a single questionnaire, the EORTC QLQ-C30. Efficiency analyses point to higher statistical power of the QLU-C10D compared to the EQ-5D-3L.
Collapse
Affiliation(s)
- Simone Seyringer
- Department for Psychiatry, Psychotherapy and Psychosomatic Medicine,University Hospital of Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
- Department of Social Psychology, Personnel Development and Adult Education, Johannes Kepler University Linz, Linz, Austria
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Micha J Pilz
- Department for Psychiatry, Psychotherapy and Psychosomatic Medicine,University Hospital of Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrew Bottomley
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | - Madeleine T King
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
| | - Richard Norman
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Eva M Gamper
- Department for Psychiatry, Psychotherapy and Psychosomatic Medicine,University Hospital of Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria.
- Department of Nuclear Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
8
|
Sagberg LM, Salvesen Ø, Jakola AS, Thurin E, De Dios E, Nawabi NLA, Kilgallon JL, Bernstock JD, Kavouridis VK, Smith TR, Solheim O. Progression-free survival versus post-progression survival and overall survival in WHO grade 2 gliomas. Acta Oncol 2024; 63:798-804. [PMID: 39428639 PMCID: PMC11500610 DOI: 10.2340/1651-226x.2024.40845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND PURPOSE Progression-free survival (PFS) remains to be validated as an outcome measure for diffuse WHO grade 2 gliomas, and knowledge about the relationships between PFS, post-progression survival (PPS), and overall survival (OS) in this subset of tumors is limited. We sought to assess correlations between PFS and OS, and identify factors associated with PFS, PPS, and OS in patients treated for diffuse supratentorial WHO grade 2 gliomas. MATERIAL AND METHODS We included 319 patients from three independent observational cohorts. The correlation between PFS and OS was analyzed using independent exponential distributions for PFS and time from progression to death. Cox proportional hazards models were used to determine the effects of covariates on PFS, PPS, and OS. RESULTS The overall correlation between PFS and OS was rs0.31. The correlation was rs 0.37 for astrocytomas and rs 0.19 for oligodendrogliomas. Longer PFS did not predict longer PPS. Patients with astrocytomas had shorter PFS, PPS, and OS. Larger preoperative tumor volume was a risk factor for shorter PFS, while older age was a risk factor for shorter PPS and OS. Patients who received early radio- and chemotherapy had longer PFS, but shorter PPS and OS. INTERPRETATION We found a weak correlation between PFS and OS in WHO grade 2 gliomas, with the weakest correlation observed in oligodendrogliomas. Our analyses did not demonstrate any association between PFS and PPS. Critically, predictors of PFS are not necessarily predictors of OS. There is a need for validation of PFS as an endpoint in diffuse WHO grade 2 gliomas.
Collapse
Affiliation(s)
- Lisa Millgård Sagberg
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Øyvind Salvesen
- Clinical Research Unit, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
| | - Erik Thurin
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden; Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eddie De Dios
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden; Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Noah L A Nawabi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John L Kilgallon
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vasileios K Kavouridis
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ole Solheim
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Stritzelberger J, Gesmann A, Fuhrmann I, Uhl M, Brandner S, Welte TM, Schembs L, Dörfler A, Coras R, Adler W, Schwab S, Putz F, Fietkau R, Distel L, Hamer H. The course of tumor-related epilepsy in glioblastoma patients: A retrospective analysis. Epilepsy Behav 2024; 158:109919. [PMID: 38941953 DOI: 10.1016/j.yebeh.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
PURPOSE Many patients with glioblastoma suffer from tumor-related seizures. However, there is limited data on the characteristics of tumor-related epilepsy achieving seizure freedom. The aim of this study was to characterize the course of epilepsy in patients with glioblastoma and the factors that influence it. METHODS We retrospectively analyzed the medical records of glioblastoma patients treated at the University Hospital Erlangen between 01/2006 and 01/2020. RESULTS In the final cohort of patients with glioblastoma (n = 520), 292 patients (56.2 %) suffered from tumor-related epilepsy (persons with epilepsy, PWE). Levetiracetam was the most commonly used first-line antiseizure medication (n = 245, 83.9 % of PWE). The onset of epilepsy was preoperative in 154/292 patients (52.7 %). 136 PWE (46.6 %) experienced only one single seizure while 27/292 PWE (9.2 %) developed drug-resistant epilepsy. Status epilepticus occurred in 48/292 patients (16.4 %). Early postoperative onset (within 30 days of surgery) of epilepsy and total gross resection (compared with debulking) were independently associated with a lower risk of further seizures. We did not detect dose-dependent pro- or antiseizure effects of radiochemotherapy. CONCLUSION Tumor-related epilepsy occurred in more than 50% of our cohort, but drug-resistant epilepsy developed in less than 10% of cases. Epilepsy usually started before tumor surgery.
Collapse
Affiliation(s)
- Jenny Stritzelberger
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE.
| | - Anna Gesmann
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Imke Fuhrmann
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Martin Uhl
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Sebastian Brandner
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Tamara-M Welte
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Leah Schembs
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Werner Adler
- Department of Biometry and Epidemiology and Department of Psychosomativ Medicine and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Stefan Schwab
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| | - Florian Putz
- Department of Radiooncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiooncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiooncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany, Full Member of ERN EpiCARE
| |
Collapse
|
10
|
Bruno F, Pellerino A, Conti Nibali M, Pronello E, Cofano F, Rossi M, Levis M, Bertero L, Soffietti R, Cassoni P, Garbossa D, Bello L, Rudà R. Association of Clinical, Tumor, and Treatment Characteristics With Seizure Control in Patients With IDH1/2-Mutant Lower-Grade Glioma. Neurology 2024; 102:e209352. [PMID: 38684041 DOI: 10.1212/wnl.0000000000209352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with IDH1/2-mutant lower-grade glioma have a high frequency of seizures. We aimed to investigate the correlations between seizures and tumor/patient characteristics and the impact of surgery and adjuvant treatments (AT) on seizure control along the disease trajectory. METHODS We retrospectively included patients with IDH1/2-mutant lower-grade glioma who underwent surgery at the neurosurgery divisions of the University of Turin and Milan and were treated at the Division of Neuro-Oncology of Turin. Inclusion criteria were a diagnosis according to the 2021 WHO Classification and presentation with seizures; exclusion criteria were presence of CDKN2A/B homozygous deletion, intense/ring contrast enhancement on MRI at presentation, and small tissue biopsy. We evaluated seizure freedom for 2 months after surgery, 6 months from starting observation or AT, at recurrence, and for 6 months after treatments of recurrence. RESULTS We included 150 patients. There were 77 (51%) and 31 (21%) patients with IDH-mutant/1p19q-codeleted grade 2 and 3 oligodendroglioma and 30 (20%) and 12 (8%) with IDH-mutant grade 2 and 3 astrocytoma, respectively. Total resection was accomplished in 68 (45%). Seventy-five patients (50%) received AT while the remaining 75 were observed with MRI. After 6 months after AT, 28 of 29 patients (96.5%) displayed seizure reduction, 5 of 28 (18%) being seizure-free. 66 of 124 patients (53%) had seizures at recurrence. After 6 months after second-line treatments, 60 of 66 patients (91%) had seizure reduction, 11 (17%) being seizure-free. In multivariable analyses, grade 3 histology positively correlated with seizure freedom at 2 months after surgery (OR 3.5, 1.4-8.9, p = 0.008), 6 months after AT (OR 9.0, 1.5-54.9, p = 0.017), and 6 months after treatment of recurrence (OR 4.9, 1.5-16.5, p = 0.009). Adjuvant radiotherapy reduced seizures at recurrence in a univariate analysis (OR 0.14, 0.03-0.7, p = 0.020). Patients with seizure freedom after surgery and AT displayed longer progression-free survival (PFS) (65, 24.5-105, vs 48 months, 32-63.5, p = 0.037). DISCUSSION This study analyzed seizure control in patients with IDH1/2-mutant lower-grade glioma across multiple time points. Grade 3 correlated with better seizure control throughout the entire disease trajectory, and seizure freedom after surgery and AT correlated with a longer PFS regardless of tumor grade. These results could serve as an external control arm in clinical trials evaluating the efficacy on seizures of antitumor agents in patients with IDH-mutant lower-grade glioma.
Collapse
Affiliation(s)
- Francesco Bruno
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Alessia Pellerino
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Marco Conti Nibali
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Edoardo Pronello
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Fabio Cofano
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Marco Rossi
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Mario Levis
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Luca Bertero
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Riccardo Soffietti
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Paola Cassoni
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Diego Garbossa
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Lorenzo Bello
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| | - Roberta Rudà
- From the Division of Neuro-Oncology (F.B., A.P., R.S., R.R.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital, Turin; Neurosurgical Oncology Unit (M.C.N., M.R., L. Bello), "Galeazzi - Sant'Ambrogio" IRCCS, Milan; Departments of Oncology and Hemato-Oncology (L. Bello) and Medical Biotechnology and Translational Medicine (M.R.), University of Milan; Division of Neuro-Oncology (E.P.), Department of Neuroscience "Rita Levi di Montalcini", University and City of Health and Science Hospital, Turin; Neurology Unit (E.P.), Department of Translational Medicine, University of Eastern Piedmont, Novara; Division of Neurosurgery (F.C., D.G.), Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science Hospital; Division of Radiotherapy (M.L.), Department of Oncology; and Pathology Unit (L. Bertero, P.C.), Department of Medical Sciences, University of Turin, Italy
| |
Collapse
|
11
|
Nandoliya KR, Thirunavu V, Ellis E, Dixit K, Tate MC, Drumm MR, Templer JW. Pre-operative predictors of post-operative seizure control in low-grade glioma: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:94. [PMID: 38411788 DOI: 10.1007/s10143-024-02329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
As many as 80% of low-grade gliomas (LGGs) present with seizures, negatively impacting quality of life. While seizures are associated with gliomas regardless of grade, the importance of minimizing impact of seizures for patients with low grade tumors cannot be understated given the prolonged survival period in this population. The objective of this systematic review and meta-analysis was to summarize existing literature and identify factors associated with post-operative seizure control (defined as Engel I classification) in patients with LGGs, with a focus on pre-operative factors. Patient data extracted include tumor location and histology, pre-operative anti-seizure medication use, extent of resection (EOR), adjuvant treatment, pre-operative seizure type, duration, and frequency, and post-operative Engel classification. A random-effects model was used to calculate the effects of EOR, pre-operative seizure duration, adjuvant radiation, and adjuvant chemotherapy on post-operative seizure control. The effect of tumor location and histology on post-operative Engel I classification was determined using contingency analyses. Thirteen studies including 1628 patients with seizures were included in the systematic review. On meta-analyses, Engel I classification was associated with pre-operative seizure type (OR = 0.79 (0.63-0.99), p = 0.0385, focal versus generalized), frontal lobe LGGs (OR = 1.5 (1.1-2.0), p = 0.0195), and EOR (OR (95% CI) = 4.5 (2.3-6.7), p < 0.0001 gross-total versus subtotal). Pre-operative seizure duration less than one year, adjuvant radiation, adjuvant chemotherapy, and tumor histology were not associated with achieving Engel I classification. In addition to the known effects of EOR, Engel I classification is less likely to be achieved in patients with focal pre-operative seizures and more likely to be achieved in patients with frontal lobe LGGs.
Collapse
Affiliation(s)
- Khizar R Nandoliya
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Vineeth Thirunavu
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Erin Ellis
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Karan Dixit
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 675 N. St. Clair Street, Suite 20-100, Chicago, IL, 60611, USA
| | - Matthew C Tate
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Michael R Drumm
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jessica W Templer
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 675 N. St. Clair Street, Suite 20-100, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Avila EK, Tobochnik S, Inati SK, Koekkoek JAF, McKhann GM, Riviello JJ, Rudà R, Schiff D, Tatum WO, Templer JW, Weller M, Wen PY. Brain tumor-related epilepsy management: A Society for Neuro-oncology (SNO) consensus review on current management. Neuro Oncol 2024; 26:7-24. [PMID: 37699031 PMCID: PMC10768995 DOI: 10.1093/neuonc/noad154] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Tumor-related epilepsy (TRE) is a frequent and major consequence of brain tumors. Management of TRE is required throughout the course of disease and a deep understanding of diagnosis and treatment is key to improving quality of life. Gross total resection is favored from both an oncologic and epilepsy perspective. Shared mechanisms of tumor growth and epilepsy exist, and emerging data will provide better targeted therapy options. Initial treatment with antiseizure medications (ASM) in conjunction with surgery and/or chemoradiotherapy is typical. The first choice of ASM is critical to optimize seizure control and tolerability considering the effects of the tumor itself. These agents carry a potential for drug-drug interactions and therefore knowledge of mechanisms of action and interactions is needed. A review of adverse effects is necessary to guide ASM adjustments and decision-making. This review highlights the essential aspects of diagnosis and treatment of TRE with ASMs, surgery, chemotherapy, and radiotherapy while indicating areas of uncertainty. Future studies should consider the use of a standardized method of seizure tracking and incorporating seizure outcomes as a primary endpoint of tumor treatment trials.
Collapse
Affiliation(s)
- Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Guy M McKhann
- Department of Neurosurgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - James J Riviello
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Italy
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Center, and Division of Neuro-Oncology, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Lukas RV, Horbinski C. Glioma Response to IDH Inhibition: Real-World Experience. Clin Cancer Res 2023; 29:4709-4710. [PMID: 37738033 PMCID: PMC10840794 DOI: 10.1158/1078-0432.ccr-23-2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Treatment of IDH-mutated non-enhancing grade 2 and 3 diffuse gliomas with ivosidenib leads to reduction of tumor size when assessed via volumetric MRI. Isocitrate dehydrogenase inhibition has a therapeutic benefit in patients with these tumors. See related article by Kamson et al., p. 4863.
Collapse
Affiliation(s)
- Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, Illinois
| | - Craig Horbinski
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, Illinois
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
- Department of Pathology, Northwestern University, Chicago, Illinois
| |
Collapse
|
14
|
Shaffer A, Pozin M, Nasr S, Arnold PM, Mikhail F, Huesmann G, Hassaneen W. Refractory seizures secondary to radiation-induced focal cortical dysplasia/neuronal gigantism: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 6:CASE23374. [PMID: 37992306 PMCID: PMC10664630 DOI: 10.3171/case23374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Focal cortical dysplasia is a structural cause of drug-resistant epilepsy commonly identified in childhood. In rare cases, radiation-induced injury has led to radiation-induced cortical dysplasia, also known as "focal neuronal gigantism." OBSERVATIONS The authors present a 53-year-old woman with recurrent status epilepticus events after she had radiation therapy and surgery for a left frontal meningioma several years prior. Imaging revealed findings consistent with radiation necrosis and possible recurrence. The patient's status epilepticus events required escalating therapies to manage. Scalp electroencephalography indicated that the seizure's origin was in the left hemisphere. A craniotomy was performed to remove the left frontal lesion, and histopathology was consistent with radiation-induced focal cortical dysplasia/neuronal gigantism. The patient's seizures ceased following the surgery, and she remains on maintenance antiseizure medications. LESSONS Radiation-induced focal cortical dysplasia/neuronal gigantism is an incredibly rare complication of therapy. However, it warrants consideration in the context of radiation necrosis and intractable epilepsy.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois; and Departments of
| | - Michael Pozin
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois; and Departments of
| | | | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois; and Departments of
- Neurosurgery, and
| | - Fadi Mikhail
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois; and Departments of
- Neurology, Carle Foundation Hospital, Urbana, Illinois
| | - Graham Huesmann
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois; and Departments of
- Neurology, Carle Foundation Hospital, Urbana, Illinois
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois; and Departments of
- Neurosurgery, and
| |
Collapse
|
15
|
Hauff NS, Storstein A. Seizure Management and Prophylaxis Considerations in Patients with Brain Tumors. Curr Oncol Rep 2023; 25:787-792. [PMID: 37071297 PMCID: PMC10256653 DOI: 10.1007/s11912-023-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE OF REVIEW The article gives an overview of the current knowledge in the management of tumor related epilepsy, including systematic reviews and consensus statements as well as recent insight into a potentially more individualized treatment approach. RECENT FINDINGS Tumor molecular markers as IDH1 mutation and MGMT methylation status may provide future treatment targets. Seizure control should be included as a metric in assessing efficacy of tumor treatment. Prophylactic treatment is recommended in all brain tumor patients after the first seizure. Epilepsy has a profound effect on the quality of life in this patient group. The clinician should tailor the choice of seizure prophylactic treatment to the individual patient, with the goal of limiting adverse effects, avoiding interactions and obtaining a high degree of seizure freedom. Status epilepticus is associated with inferior survival and must be treated promptly. A multidisciplinary team should treat patients with brain tumors and epilepsy.
Collapse
Affiliation(s)
- Nils Stenvågnes Hauff
- Department of Neurology, Haukeland University Hospital, Jonas Lies Vei 65, 5021, Bergen, Norway.
| | - Anette Storstein
- Department of Neurology, Haukeland University Hospital, Jonas Lies Vei 65, 5021, Bergen, Norway
| |
Collapse
|
16
|
van Opijnen MP, Tesileanu CMS, Dirven L, van der Meer PB, Wijnenga MMJ, Vincent AJPE, Broekman MLD, Dubbink HJ, Kros JM, van Duinen SG, Smits M, French PJ, van den Bent MJ, Taphoorn MJB, Koekkoek JAF. IDH1/2 wildtype gliomas grade 2 and 3 with molecular glioblastoma-like profile have a distinct course of epilepsy compared to IDH1/2 wildtype glioblastomas. Neuro Oncol 2023; 25:701-709. [PMID: 35972438 PMCID: PMC10076940 DOI: 10.1093/neuonc/noac197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND IDH1/2 wildtype (IDHwt) glioma WHO grade 2 and 3 patients with pTERT mutation and/or EGFR amplification and/or + 7/-10 chromosome gain/loss have a similar overall survival time as IDHwt glioblastoma patients, and are both considered glioblastoma IDHwt according to the WHO 2021 classification. However, differences in seizure onset have been observed. This study aimed to compare the course of epilepsy in the 2 glioblastoma subtypes. METHODS We analyzed epilepsy data of an existing cohort including IDHwt histologically lower-grade glioma WHO grade 2 and 3 with molecular glioblastoma-like profile (IDHwt hLGG) and IDHwt glioblastoma patients. Primary outcome was the incidence proportion of epilepsy during the disease course. Secondary outcomes included, among others, onset of epilepsy, number of seizure days, and antiepileptic drug (AED) polytherapy. RESULTS Out of 254 patients, 78% (50/64) IDHwt hLGG and 68% (129/190) IDHwt glioblastoma patients developed epilepsy during the disease (P = .121). Epilepsy onset before histopathological diagnosis occurred more frequently in IDHwt hLGG compared to IDHwt glioblastoma patients (90% vs 60%, P < .001), with a significantly longer median time to diagnosis (3.5 vs 1.3 months, P < .001). Median total seizure days was also longer for IDHwt hLGG patients (7.0 vs 3.0, P = .005), and they received more often AED polytherapy (32% vs 17%, P = .028). CONCLUSIONS Although the incidence proportion of epilepsy during the entire disease course is similar, IDHwt hLGG patients show a significantly higher incidence of epilepsy before diagnosis and a significantly longer median time between first seizure and diagnosis compared to IDHwt glioblastoma patients, indicating a distinct clinical course.
Collapse
Affiliation(s)
- Mark P van Opijnen
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - C Mircea S Tesileanu
- Department of Neurology, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Linda Dirven
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Pim B van der Meer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten M J Wijnenga
- Department of Neurology, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Arnaud J P E Vincent
- Department of Neurosurgery, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, the Brain Tumor Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johan M Kros
- Department of Pathology, the Brain Tumor Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pim J French
- Department of Neurology, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Martin J van den Bent
- Department of Neurology, the Brain Tumor Center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| |
Collapse
|
17
|
Antitumor Potential of Antiepileptic Drugs in Human Glioblastoma: Pharmacological Targets and Clinical Benefits. Biomedicines 2023; 11:biomedicines11020582. [PMID: 36831117 PMCID: PMC9953000 DOI: 10.3390/biomedicines11020582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients' quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. The present review summarizes emerging cooperative mechanisms in oncogenesis and epileptogenesis, focusing on the neuron-to-glioma interface. The main effects and efficacy of selected AEDs used in the management of GRE are discussed in this paper, as well as their potential beneficial activity as antitumor treatment. Overall, although still many unclear processes overlapping in GBM growth and seizure onset need to be elucidated, this review focuses on the intriguing targeting of GBM-neuron mutual interactions to improve the outcome of the so challenging to treat GBM.
Collapse
|
18
|
Fu DB, Kong XT, Veenema TG, Bota DA, Koirala B. Adherence to Prophylactic Anticonvulsant Guidelines for Newly Diagnosed Brain Tumor Patients: A Quality Improvement Study. J Adv Pract Oncol 2022; 13:775-789. [PMID: 36727021 PMCID: PMC9881735 DOI: 10.6004/jadpro.2022.13.8.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background and Purpose Clinical guidelines suggest that prophylactic antiepileptic drugs (AEDs) should be given to newly diagnosed seizure-naive brain tumor patients for up to 1 week after craniotomy. Yet, data suggest that prophylactic AEDs are used up to 12 months after surgery. A quality improvement project was implemented to improve adherence to evidence-based prophylactic AED guidelines. Methods A quasi-experimental, pre- and post-test intervention design was used to assess the effect of a multiphase intervention on guideline adherence and prophylactic anticonvulsant prescription rates. The 16-week intervention consisted of provider education sessions, provider alerts, documentation templates, and a weekly audit and feedback. Participants included four providers and newly diagnosed seizure-naive brain tumor patients. Measures included guideline adherence rates and AED prescription rates extracted from chart review, and a provider attitude and knowledge survey. Analyses included descriptive statistics, Wilcoxon signed-rank tests, and Chi-square tests. Results Guideline adherence increased significantly (p < .01) from 4 months before implementation (15.8%) to 1 year before implementation (27.8%) and then to 93.3% after implementation. Provider knowledge showed clinically meaningful decreases in the likelihood to prescribe prophylactic AEDs (-.5 point) and increased understanding of prophylactic AED side effects (+0.5 point), although these were not statistically significant (p = .083). Finally, prophylactic AED prescription rates decreased by 2.2% (p = .119) compared with 4 months and 1 year before implementation (2.6%; p = .072). Conclusion This project highlights the important role of provider education, provider alerts, a documentation template, and audit and feedback in improving guideline adherence rate. Findings suggest that the combination intervention and weekly audit and feedback strategy can improve guideline adherence to prophylactic anticonvulsant use in seizure-naive newly diagnosed brain tumor patients. Implications By following prophylactic AED guideline recommendations, clinicians can avoid the potential side effects of anticonvulsant-induced cognitive, behavioral, and psychiatric issues that can impair patients' quality of life.
Collapse
Affiliation(s)
- Dan Beverly Fu
- From University of California Irvine, School of Medicine, Irvine, California
| | - Xiao-Tang Kong
- From University of California Irvine, School of Medicine, Irvine, California
| | | | - Daniela A. Bota
- From University of California Irvine, School of Medicine, Irvine, California
| | - Binu Koirala
- Johns Hopkins School of Nursing, Baltimore, Maryland
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW A concise review of recent findings in brain tumor-related epilepsy (BTRE), with focus on the effect of antitumor treatment on seizure control and the management of antiepileptic drugs (AEDs). RECENT FINDINGS Isocitrate dehydrogenase mutation and its active metabolite d -2-hydroxyglutarate seem important contributing factors to epileptogenesis in BTRE. A beneficial effect of antitumor treatment (i.e. surgery, radiotherapy, and chemotherapy) on seizure control has mainly been demonstrated in low-grade glioma. AED prophylaxis in seizure-naïve BTRE patients is not recommended, but AED treatment should be initiated after a first seizure has occurred. Comparative efficacy randomized controlled trials (RCTs) are currently lacking, but second-generation AED levetiracetam seems the preferred choice in BTRE. Levetiracetam lacks significant drug-drug interactions, has shown favorable efficacy compared to valproic acid in BTRE, generally causes no hematological or neurocognitive functioning adverse effects, but caution should be exercised with regard to psychiatric adverse effects. Potential add-on AEDs in case of uncontrolled seizures include lacosamide, perampanel, and valproic acid. Ultimately, in the end-of-life phase when oral intake of medication is hampered, benzodiazepines via nonoral administration routes are potential alternatives. SUMMARY Management of seizures in BTRE is complex and with currently available evidence levetiracetam seems the preferred choice. Comparative efficacy RCTs in BTRE are warranted.
Collapse
Affiliation(s)
| | - Martin J.B. Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Johan A.F. Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
20
|
Hertler C, Seystahl K, Le Rhun E, Wirsching HG, Roth P, Weller M, Gramatzki D. Improved seizure control in patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 2022; 24:2001-2004. [PMID: 35906902 PMCID: PMC9629429 DOI: 10.1093/neuonc/noac172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Caroline Hertler
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.,Competence Center for Palliative Care, University Hospital Zurich, Zurich, Switzerland
| | - Katharina Seystahl
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Emilie Le Rhun
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.,Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hans-Georg Wirsching
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Roth
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Dorothee Gramatzki
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Qi J, Liu X, Xu N, Wang Q. The Clinical Characteristics of New-Onset Epilepsy in the Elderly and Risk Factors for Treatment Outcomes of Antiseizure Medications. Front Neurol 2022; 13:819889. [PMID: 35273558 PMCID: PMC8901571 DOI: 10.3389/fneur.2022.819889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
Objective To describe the clinical characteristics of elderly patients with new-onset epilepsy in a Class A tertiary comprehensive hospital in north China and evaluate the treatment outcomes of antiseizure medications (ASMs). This study focuses on investigating the factors affecting the treatment outcomes, guiding the drug treatment, and judging the prognosis of elderly epilepsy patients. Methods We included patients aged 60 years or older at the time of their first seizure between January 2014 and August 2020. Demographic characteristics, effects of ASM, and the proportion of 1-year and long-term seizure freedom were reported. The univariate analysis and binary logistic regression were used to identify factors potentially influencing treatment outcomes. Results A total of 326 patients (median age 65 years, 67.2% men) were included. Moreover, 185 (56.7%) patients who received the first ASM monotherapy achieved 1 year of seizure freedom in the early stage. Compared with structural etiology, unknown etiology was associated with a higher likelihood of early seizure freedom (odds ratio [OR] = 0.545; p < 0.05). Conversely, comorbid intracranial malignant tumors, taking carbamazepine (CBZ), and sodium valproate (VPA) were associated with a lower likelihood of seizure freedom (OR = 3.527 vs. 6.550 vs. 8.829; p < 0.05). At long-term follow-up, 263 (80.6%) patients achieved seizure freedom, with 79.8% on monotherapy. Conclusions Elderly patients with new-onset epilepsy responded well to the initial ASMs treatment. Patients with intracranial malignant tumors and prescribed VPA and CBZ were less likely to achieve early seizure freedom, while those with unknown etiology had higher probabilities of achieving early seizure freedom than those with structural etiology.
Collapse
Affiliation(s)
- Jing Qi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Na Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Marku M, Rasmussen BK, Belmonte F, Andersen EAW, Johansen C, Bidstrup PE. Postoperative epilepsy and survival in glioma patients: a nationwide population-based cohort study from 2009 to 2018. J Neurooncol 2022; 157:71-80. [PMID: 35089480 DOI: 10.1007/s11060-022-03948-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/06/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Postoperative epilepsy is common in glioma patients and has been suggested to indicate disease progression, yet knowledge of its role as a prognostic factor is limited. This study investigates the association between postoperative epilepsy and survival amongst patients with gliomas. METHODS We included 3763 patients with histopathologically diagnosed grade II, III, and IV gliomas from 2009 to 2018 according to the Danish Neuro-Oncology Registry. Information on epilepsy diagnosis was redeemed from the Danish National Patient Registry, the National Prescription Registry and the Danish Neuro-Oncology Registry. We used Cox proportional hazards models with 95% confidence intervals (CIs) to examine hazard ratios (HRs) for the association between postoperative epilepsy and risk of death. We examined the role of the timing of epilepsy in three different samples: Firstly, in all glioma patients with postoperative epilepsy; secondly, in patients with postoperative de novo epilepsy; thirdly, exclusively in a homogeneous sub-group of grade IV patients with postoperative de novo epilepsy. RESULTS Glioma patients with postoperative epilepsy had an increased risk of death, regardless of prior epilepsy status (HR = 4.03; CI 2.69-6.03). A similar increase in the risk of death was also seen in patients with postoperative de novo epilepsy (HR = 2.08; CI 1.26-3.44) and in the sub-group of grade IV patients with postoperative de novo epilepsy (HR = 1.83; CI 1.05-3.21). CONCLUSIONS Postoperative epilepsy may negatively impact survival after glioma diagnosis, regardless of preoperative epilepsy status. Postoperative epilepsy may be an expression of a more invasive growth pattern of the gliomas following primary tumor treatment.
Collapse
Affiliation(s)
- Mirketa Marku
- Department of Neurology, North Zealand Hospital, University of Copenhagen, Hilleroed, Denmark. .,Psychological Aspects of Cancer, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Birthe Krogh Rasmussen
- Department of Neurology, North Zealand Hospital, University of Copenhagen, Hilleroed, Denmark
| | - Federica Belmonte
- Statistics and Data Analysis Unit, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | | | - Christoffer Johansen
- Psychological Aspects of Cancer, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Cancer Survivorship and Treatment Late Effects (CASTLE), 9601, Department of Oncology, Centre for Cancer and Organ Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Envold Bidstrup
- Psychological Aspects of Cancer, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
The european particle therapy network (EPTN) consensus on the follow-up of adult patients with brain and skull base tumours treated with photon or proton irradiation. Radiother Oncol 2022; 168:241-249. [DOI: 10.1016/j.radonc.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
|
24
|
The IDH1 inhibitor ivosidenib improved seizures in a patient with drug-resistant epilepsy from IDH1 mutant oligodendroglioma. Epilepsy Behav Rep 2022; 18:100526. [PMID: 35198955 PMCID: PMC8844211 DOI: 10.1016/j.ebr.2022.100526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/03/2022] Open
Abstract
Focal epilepsy from oligodendrogliomas can be very treatment resistant. IDH1/2 mutation can lower seizure threshold by D2HG production. Ivosidenib, an IDH1 inhibitor, significantly improved seizures in our patient. In our patient, seizure improvement was seen with stable tumor appearance on MRI.
Compared to high grade gliomas, low grade gliomas such as oligodendrogliomas are often more epileptogenic. Epilepsy develops in 70–90% of patients with oligodendrogliomas and 40% of these are resistant to anti-seizure medications and surgery [3]. IDH1/2 mutation is one defining feature of oligodendrogliomas and confers improved prognosis when found in astrocytomas [7]. One possible etiology of the high rate of epileptogenicity in oligodendrogliomas is D-2-Hydroxyglutarate (D2HG), an oncometabolite seen in IDH mutation [8]. D2HG can mimic the effect of glutamate at the NMDA receptor and increase the seizure risk [11]. In this case report, we present a patient with drug resistant focal epilepsy from IDH1 mutant oligodendroglioma with markedly improved seizure frequency after starting Ivosidenib, an IDH1 inhibitor, in the absence of any changes to traditional anti-seizure medications. Our case suggests the possibility that IDH1 inhibitors may help reduce seizure burden in patients with difficult to control epilepsy from IDH1 mutant oligodendrogliomas. This is significant because we show that a targeted cancer therapy is able to improve seizure frequency through a unique pathway, and suggests that research into similar targeted, precision medicine therapies in brain lesions associated with epilepsy may be beneficial.
Collapse
|
25
|
Malbari F, Zhu H, Riviello JJ, Clarke D. Antiepileptic drug management in pediatric patients with brain tumor-related epilepsy. Epilepsy Behav 2021; 125:108359. [PMID: 34731721 DOI: 10.1016/j.yebeh.2021.108359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Patients with brain tumor-related epilepsy (BTRE) are at a higher risk of significant morbidity, lower quality of life, and increased risk of mortality. We surveyed providers regarding anti-seizure medication (ASM) management in pediatric BTRE to determine if practices are standard or markedly variable. METHODS An anonymous voluntary online survey was sent to members of the Child Neurology Society. Providers were asked specific questions regarding initiation and wean of ASMs and if this was dependent on multiple factors. Demographic information was collected. RESULTS Fifty-one providers responded to the survey. Ninety-four percent of providers would start an ASM after a second seizure. Eighty-four percent chose levetiracetam as the preferred ASM. Management was variable when based on tumor location, extent of surgical resection, pathology, and tumor prognosis. Statistically significant differences in responses regarding management were identified when comparing neurologists and epileptologists, providers with formal neuro-oncology or epilepsy training, providers at large institutions, and years of experience. For patients who underwent a gross total resection of the tumor, neuro-oncology and epilepsy-trained providers were more likely to wean off ASMs (p < 0.049). Providers without formal training in neuro-oncology or epilepsy were more likely to get an EEG prior to making a decision about weaning off ASMs (p < 0.016). CONCLUSION These results suggest that ASM management in BTRE varies greatly according to sub-specialty and experience. Further studies and potential development of guidelines are needed to identify the most appropriate management of ASMs for BTRE.
Collapse
Affiliation(s)
- Fatema Malbari
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Texas Children's Hospital/Baylor College of Medicine, 6701 Fannin St, Suite 1250, Houston, TX 77030, United States.
| | - Huirong Zhu
- Department of Outcome & Impact Service, Texas Children's Hospital, 6701 Fannin St, Suite 680, Houston, TX 77030, United States.
| | - James J Riviello
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Texas Children's Hospital/Baylor College of Medicine, 6701 Fannin St, Suite 1250, Houston, TX 77030, United States
| | - Dave Clarke
- Department of Neurology and Pediatrics, Dell Children's Medical Center of Central Texas, 1301 Barbara Jordan Blvd, Austin, TX 78723, United States.
| |
Collapse
|
26
|
Mazzucchi E, Vollono C, Pauletto G, Lettieri C, Budai R, Gigli GL, Sabatino G, La Rocca G, Skrap M, Ius T. The persistence of seizures after tumor resection negatively affects survival in low-grade glioma patients: a clinical retrospective study. J Neurol 2021; 269:2627-2633. [PMID: 34693462 DOI: 10.1007/s00415-021-10845-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Seizures are the most common clinical manifestation of low-grade glioma (LGG). Many papers hypothesized an influence of epilepsy on glioma progression. To our knowledge, no clinical study demonstrated a direct relationship between persistence of epileptic seizures after surgery and overall survival (OS) in LGG patients. The present study aims at investigating the correlation between post-operative seizure outcome and survival in tumor-related epilepsy (TRE) patients. METHODS We performed a retrospective analysis of adult patients affected by TRE who underwent surgery for resection of LGG in a single high-volume neurosurgical center. Seizure outcome was assessed 1 year after surgery and categorized according to Engel classification. Clinical, molecular and radiological features were evaluated in univariate and multivariate analyses to investigate the correlation with OS. RESULTS A total of 146 patients met the inclusion criteria. Histopathological diagnosis was Diffuse Astrocytoma isocitrate dehydrogenase (IDH) wild type in 16 patients (11%), Diffuse astrocytoma IDH mutated in 89 patients (61%) and oligodendroglioma IDH mutated, 1p 19q codeleted in 41 patients (28%). 1 year after surgery, 103 (70.6%) patients were in Engel class 1. Median duration of follow-up period was 69.5 months. Median OS was 79.3 (72.2-86.4) months in the whole population, while it was 86.8 (78.4-95.2), 63.9 (45.7-82), 63.7 (45.2-82.2) and 47.5 (18.3-76.6) months for patients in Engel class 1, 2, 3 and 4, respectively. In a univariate analysis, Engel class evaluated 1 year after surgery significantly influenced OS (p < 0.01). Multivariate analysis showed that OS was independently associated with extent of resection (p = 0.02), molecular class (p < 0.01) and Engel class (p = 0.04). CONCLUSIONS Seizure control 1 year after surgery significantly predicted survival of patients affected by LGG-related epilepsy in a large monocentric retrospective series. Future studies are needed to confirm these results and to assess if an epilepsy-surgical therapeutic approach may improve OS.
Collapse
Affiliation(s)
- Edoardo Mazzucchi
- Unit of Neurosurgery, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026, Olbia, Italy.,Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Catello Vollono
- Institute of Neurology, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Christian Lettieri
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Riccardo Budai
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Gian Luigi Gigli
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy.,Clinical Neurology, Department of Medicine, University of Udine, Udine, Italy
| | - Giovanni Sabatino
- Unit of Neurosurgery, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026, Olbia, Italy. .,Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy.
| | - Giuseppe La Rocca
- Unit of Neurosurgery, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026, Olbia, Italy.,Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| |
Collapse
|
27
|
de Bruin ME, van der Meer PB, Dirven L, Taphoorn MJB, Koekkoek JAF. Efficacy of antiepileptic drugs in glioma patients with epilepsy: a systematic review. Neurooncol Pract 2021; 8:501-517. [PMID: 34589231 PMCID: PMC8475226 DOI: 10.1093/nop/npab030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Comprehensive data on the efficacy and tolerability of antiepileptic drugs (AED) treatment in glioma patients with epilepsy are currently lacking. In this systematic review, we specifically assessed the efficacy of AEDs in patients with a grade II-IV glioma. Methods Electronic databases PubMed/MEDLINE, EMBASE, Web of Science, and Cochrane Library were searched up to June 2020. Three different outcomes for both mono- and polytherapy were extracted from all eligible articles: (i) seizure freedom; (ii) ≥50% reduction in seizure frequency; and (iii) treatment failure. Weighted averages (WA) were calculated for outcomes at 6 and 12 months. Results A total of 66 studies were included. Regarding the individual outcomes on the efficacy of monotherapy, the highest seizure freedom rate at 6 months was with phenytoin (WA = 72%) while at 12-month pregabalin (WA = 75%) and levetiracetam (WA = 74%) showed highest efficacy. Concerning ≥50% seizure reduction rates, levetiracetam showed highest efficacy at 6 and 12 months (WAs of 82% and 97%, respectively). However, treatment failure rates at 12 months were highest for phenytoin (WA = 34%) and pregabalin (41%). When comparing the described polytherapy combinations with follow-up of ≥6 months, levetiracetam combined with phenytoin was most effective followed by levetiracetam combined with valproic acid. Conclusion Given the heterogeneous patient populations and the low scientific quality across the different studies, seizure rates need to be interpreted with caution. Based on the current limited evidence, with the ranking of AEDs being confined to the AEDs studied, levetiracetam, phenytoin, and pregabalin seem to be most effective as AED monotherapy in glioma patients with epilepsy, with levetiracetam showing the lowest treatment failure rate, compared to the other AEDs studied.
Collapse
Affiliation(s)
| | - Pim B van der Meer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda Dirven
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
28
|
Pepper J, Cuthbert H, Scott T, Ughratdar I, Wykes V, Watts C, D'Urso P, Karabatsou K, Moor CC, Albanese E. Seizure Outcome After Surgery for Insular High-Grade Glioma. World Neurosurg 2021; 154:e718-e723. [PMID: 34343689 DOI: 10.1016/j.wneu.2021.07.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The insular cortex is an eloquent island of mesocortex surrounded by vital structures making this region relatively challenging to neurosurgeons. Historically, lesions in this region were considered too high risk to approach given the strong chance of poor surgical outcome. Advances in recent decades have meant that surgeons can more safely access this eloquent region. Seizure outcome after excision of insular low-grade gliomas is well reported, but little is known about seizure outcomes after excision of insular high-grade gliomas. METHODS A retrospective analysis was performed of all patients presenting with new-onset seizures during 2015-2019 who underwent excision of an insular high-grade glioma at 3 regional neurosurgical centers in the United Kingdom. RESULTS We identified 38 patients with a mean (SD) age of 45.7 (15.3) years with median follow-up of 21 months. At long-term follow-up, of 38 patients, 23 were seizure-free (Engel class I), 2 had improved seizures (Engel class II), 6 had poor seizure control (Engel class III/IV), and 7 died. CONCLUSIONS Excision of insular high-grade gliomas is safe and results in excellent postoperative seizure control.
Collapse
Affiliation(s)
- Joshua Pepper
- Department of Neurosurgery, University Hospital of North Midlands, Stoke on Trent, United Kingdom.
| | - Hadleigh Cuthbert
- Department of Neurosurgery, University Hospital of North Midlands, Stoke on Trent, United Kingdom
| | - Teresa Scott
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ismail Ughratdar
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Victoria Wykes
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Colin Watts
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Pietro D'Urso
- Department of Neurosurgery, Salford Royal Hospital, Salford, United Kingdom
| | | | - Carl-Christian Moor
- Department of Neurology, University Hospital of North Midlands, Stoke on Trent, United Kingdom
| | - Erminia Albanese
- Department of Neurosurgery, University Hospital of North Midlands, Stoke on Trent, United Kingdom
| |
Collapse
|
29
|
Easwaran TP, Lancki N, Henriquez M, Vortmeyer AO, Barbaro NM, Scholtens DM, Ahmed AU, Dey M. Molecular Classification of Gliomas is Associated with Seizure Control: A Retrospective Analysis. Neuromolecular Med 2021; 23:315-326. [PMID: 33206320 PMCID: PMC8128931 DOI: 10.1007/s12017-020-08624-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 01/18/2023]
Abstract
Classically, histologic grading of gliomas has been used to predict seizure association, with low-grade gliomas associated with an increased incidence of seizures compared to high-grade gliomas. In 2016, WHO reclassified gliomas based on histology and molecular characteristics. We sought to determine whether molecular classification of gliomas is associated with preoperative seizure presentation and/or post-operative seizure control across multiple glioma subtypes. All gliomas operated at our institution from 2007 to 2017 were identified based on ICD 9 and 10 billing codes and were retrospectively assessed for molecular classification of the IDH1 mutation, and 1p/19q codeletion. Logistic regression models were performed to assess associations of seizures at presentation as well as post-operative seizures with IDH status and the new WHO integrated classification. Our study included 376 patients: 82 IDH mutant and 294 IDH wildtype. The presence of IDH mutation was associated with seizures at presentation [OR 3.135 (1.818-5.404), p < 0.001]. IDH-mutant glioblastomas presented with seizures less often than other IDH-mutant glioma subtypes grade II and III [OR 0.104 (0.032-0.340), p < 0.001]. IDH-mutant tumors were associated with worse post-operative seizure outcomes, demonstrated by Engel Class [OR 2.666 (1.592-4.464), p < 0.001]. IDH mutation in gliomas is associated with an increased risk of seizure development and worse post-operative seizure control, in all grades except for GBM.
Collapse
Affiliation(s)
- Teresa P Easwaran
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicola Lancki
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mario Henriquez
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue CSC K3/803, Madison, WI, 53792, USA
| | - Alexander O Vortmeyer
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas M Barbaro
- Department of Neurosurgery, Dell Medical School, The University of Texas, Austin, TX, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Atique U Ahmed
- Department of Neurosurgery and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue CSC K3/803, Madison, WI, 53792, USA.
| |
Collapse
|
30
|
Zoccarato M, Nardetto L, Basile AM, Giometto B, Zagonel V, Lombardi G. Seizures, Edema, Thrombosis, and Hemorrhages: An Update Review on the Medical Management of Gliomas. Front Oncol 2021; 11:617966. [PMID: 33828976 PMCID: PMC8019972 DOI: 10.3389/fonc.2021.617966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Patients affected with gliomas develop a complex set of clinical manifestations that deeply impact on quality of life and overall survival. Brain tumor-related epilepsy is frequently the first manifestation of gliomas or may occur during the course of disease; the underlying mechanisms have not been fully explained and depend on both patient and tumor factors. Novel treatment options derive from the growing use of third-generation antiepileptic drugs. Vasogenic edema and elevated intracranial pressure cause a considerable burden of symptoms, especially in high-grade glioma, requiring an adequate use of corticosteroids. Patients with gliomas present with an elevated risk of tumor-associated venous thromboembolism whose prophylaxis and treatment are challenging, considering also the availability of new oral anticoagulant drugs. Moreover, intracerebral hemorrhages can complicate the course of the illness both due to tumor-specific characteristics, patient comorbidities, and side effects of antithrombotic and antitumoral therapies. This paper aims to review recent advances in these clinical issues, discussing the medical management of gliomas through an updated literature review.
Collapse
Affiliation(s)
- Marco Zoccarato
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | - Lucia Nardetto
- Neurology Unit, O.S.A., Azienda Ospedale-Università, Padua, Italy
| | | | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCSS, Padua, Italy
| |
Collapse
|
31
|
Ghinda DC, Lambert B, Lu J, Jiang N, Tsai E, Sachs A, Wu JS, Northoff G. Scale-Free Analysis of Intraoperative ECoG During Awake Craniotomy for Glioma. Front Oncol 2021; 10:625474. [PMID: 33708619 PMCID: PMC7942167 DOI: 10.3389/fonc.2020.625474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Electrocorticography (ECoG) has been utilized in many epilepsy cases however, the use of this technique for evaluating electrophysiological changes within tumoral zones is spare. Nonetheless, epileptic activities seem to arise from the neocortex surrounding the gliomas suggesting a link between epileptogenesis and glioma cell infiltration in the peritumoral area. The purpose of this study was to implement novel scale-free measures to assess how cortical physiology is altered by the presence of an invasive brain tumor. METHODS Twelve patients undergoing an awake craniotomy for resection of a supratentorial glioma were included. ECoG data over the main tumor and the exposed surroundings was acquired intra-operatively just prior to tumor resection. Six of the patients presented with seizures and had data acquired both in the awake and anesthetic state. The corresponding anatomical location of each electrode in relation to the macroscopically-detectable tumor was recorded using the neuronavigation system based on structural anatomical images obtained pre-operatively. The electrodes were classified into tumoral, healthy or peritumoral based on the macroscopically detectable tumoral tissue from the pre-operative structural MRI. RESULTS The electrodes overlying the tumoral tissue revealed higher power law exponent (PLE) values across tumoral area compared to the surrounding tissues. The difference between the awake and anesthetic states was significant in the tumoral and healthy tissue (p < 0.05) but not in the peritumoral tissue. The absence of a significant PLE reduction in the peritumoral tissue from the anesthetic to the awake state could be considered as an index of the presence or absence of infiltration of tumor cells into the peritumoral tissue. CONCLUSIONS The current study portrays for the first time distinct power law exponent features in the tumoral tissue, which could provide a potential novel electrophysiological marker in the future. The distinct features seen in the peritumoral tissue of gliomas seem to indicate the area where both the onset of epileptiform activity and the tumor infiltration take place.
Collapse
Affiliation(s)
- Diana Cristina Ghinda
- Department of Neurosurgery, The Ottawa Hospital, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Ben Lambert
- Faculty of Engineering, Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Junfeng Lu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Jiang
- Faculty of Engineering, Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Eve Tsai
- Department of Neurosurgery, The Ottawa Hospital, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Adam Sachs
- Department of Neurosurgery, The Ottawa Hospital, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jin-Song Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
32
|
You G, Sha Z, Jiang T. Clinical Diagnosis and Perioperative Management of Glioma-Related Epilepsy. Front Oncol 2021; 10:550353. [PMID: 33520690 PMCID: PMC7841407 DOI: 10.3389/fonc.2020.550353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Gliomas account for more than half of all adult primary brain tumors. Epilepsy is the most common initial clinical presentation in gliomas. Glioma related epilepsy (GRE) is defined as symptomatic epileptic seizures secondary to gliomas, occurring in nearly 50% in high-grade glioma (HGG) patients and up to 90% in patients with low-grade glioma (LGG). Uncontrolled seizures, which have major impact on patients’ quality of life, are caused by multiple factors. Although the anti-seizure medications (ASMs), chemotherapy and radiation therapy are also beneficial for seizure treatment, the overall seizure control for GRE continue to be unsatisfactory. Due to the close relationship between GRE and glioma, surgical resection is often the treatment of choice not only for the tumor treatment, but also for the seizure control. Despite aggressive surgical treatment, there are about 30% of patients continue to have poor seizure control postoperatively. Furthermore, the diagnostic criteria for GRE is not well established. In this review, we propose an algorithm for the diagnosis and perioperative management for GRE.
Collapse
Affiliation(s)
- Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyi Sha
- Department of Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Stocksdale B, Nagpal S, Hixson JD, Johnson DR, Rai P, Shivaprasad A, Tremont-Lukats IW. Neuro-Oncology Practice Clinical Debate: long-term antiepileptic drug prophylaxis in patients with glioma. Neurooncol Pract 2020; 7:583-588. [PMID: 33312673 DOI: 10.1093/nop/npaa026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with primary brain tumors often experience seizures, which can be the presenting symptom or occur for the first time at any point along the illness trajectory. In addition to causing morbidity, seizures negatively affect independence and quality of life in other ways, for example, by leading to loss of driving privileges. Long-term therapy with antiepileptic drugs (AEDs) is the standard of care in brain tumor patients with seizures, but the role of prophylactic AEDs in seizure-naive patients remains controversial. In this article, experts in the field discuss the issues of AED efficacy and toxicity, and explain their differing recommendations for routine use of prophylactic AEDs.
Collapse
Affiliation(s)
- Brian Stocksdale
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Seema Nagpal
- Department of Neurology, Stanford University, California
| | - John D Hixson
- Department of Neurology, University of California San Francisco
| | | | - Prashant Rai
- Department of Neurology, The University of Texas Medical Branch at Galveston
| | - Akhil Shivaprasad
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Texas
| | - Ivo W Tremont-Lukats
- Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, Texas.,Department of Neurosurgery, Houston Methodist Hospital, Texas
| |
Collapse
|
34
|
Lange F, Hartung J, Liebelt C, Boisserée J, Resch T, Porath K, Hörnschemeyer MF, Reichart G, Sellmann T, Neubert V, Kriesen S, Hildebrandt G, Schültke E, Köhling R, Kirschstein T. Perampanel Add-on to Standard Radiochemotherapy in vivo Promotes Neuroprotection in a Rodent F98 Glioma Model. Front Neurosci 2020; 14:598266. [PMID: 33328869 PMCID: PMC7734300 DOI: 10.3389/fnins.2020.598266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/10/2020] [Indexed: 01/02/2023] Open
Abstract
An abnormal glutamate signaling of glioblastoma may contribute to both tumor progression and the generation of glioma-associated epileptic seizures. We hypothesized that the AMPA receptor antagonist perampanel (PER) could attenuate tumor growth and epileptic events. F98 glioma cells, grown orthotopically in Fischer rats, were employed as a model of glioma to investigate the therapeutic efficiency of PER (15 mg/kg) as adjuvant to standard radiochemotherapy (RCT). The epileptiform phenotype was investigated by video-EEG analysis and field potential recordings. Effects on glioma progression were estimated by tumor size quantification, survival analysis and immunohistological staining. Our data revealed that orthotopically-growing F98 glioma promote an epileptiform phenotype in rats. RCT reduced the tumor size and prolonged the survival of the animals. The adjuvant administration of PER had no effect on tumor progression. The tumor-associated epileptic events were abolished by PER application or RCT respectively, to initial baseline levels. Remarkably, PER preserved the glutamatergic network activity on healthy peritumoral tissue in RCT-treated animals. F98 tumors are not only a robust model to investigate glioma progression, but also a viable model to simulate a glioma-associated epileptiform phenotype. Furthermore, our data indicate that PER acts as a potent anticonvulsant and may protect the tumor-surrounding tissue as adjuvant to RCT, but failed to attenuate tumor growth or promote animal survival.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Jens Hartung
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Clara Liebelt
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Julius Boisserée
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Tobias Resch
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | | | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Valentin Neubert
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Stephan Kriesen
- Department of Radiotherapy and Radiation Oncology, Rostock University Medical Center, Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, Rostock University Medical Center, Rostock, Germany
| | - Elisabeth Schültke
- Department of Radiotherapy and Radiation Oncology, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
35
|
Lombardi G, Barresi V, Castellano A, Tabouret E, Pasqualetti F, Salvalaggio A, Cerretti G, Caccese M, Padovan M, Zagonel V, Ius T. Clinical Management of Diffuse Low-Grade Gliomas. Cancers (Basel) 2020; 12:E3008. [PMID: 33081358 PMCID: PMC7603014 DOI: 10.3390/cancers12103008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Diffuse low-grade gliomas (LGG) represent a heterogeneous group of primary brain tumors arising from supporting glial cells and usually affecting young adults. Advances in the knowledge of molecular profile of these tumors, including mutations in the isocitrate dehydrogenase genes, or 1p/19q codeletion, and in neuroradiological techniques have contributed to the diagnosis, prognostic stratification, and follow-up of these tumors. Optimal post-operative management of LGG is still controversial, though radiation therapy and chemotherapy remain the optimal treatments after surgical resection in selected patients. In this review, we report the most important and recent research on clinical and molecular features, new neuroradiological techniques, the different therapeutic modalities, and new opportunities for personalized targeted therapy and supportive care.
Collapse
Affiliation(s)
- Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy;
| | - Antonella Castellano
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Emeline Tabouret
- Team 8 GlioMe, CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, 13005 Marseille, France;
| | | | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| |
Collapse
|
36
|
Rudà R, Houillier C, Maschio M, Reijneveld JC, Hellot S, De Backer M, Chan J, Joeres L, Leunikava I, Glas M, Grant R. Effectiveness and tolerability of lacosamide as add-on therapy in patients with brain tumor-related epilepsy: Results from a prospective, noninterventional study in European clinical practice (VIBES). Epilepsia 2020; 61:647-656. [PMID: 32329527 PMCID: PMC7384112 DOI: 10.1111/epi.16486] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
Objective To evaluate the effectiveness and tolerability of lacosamide added to one or two antiepileptic drugs (AEDs) in the treatment of patients with brain tumor–related epilepsy (BTRE), and to evaluate patients’ global impression of change and quality of life (QoL). Methods This was a prospective, multicenter, single‐arm, noninterventional study with a 6‐month observation period (EP0045; NCT02276053). Eligible patients (≥16 years old) had active BTRE secondary to low‐grade glioma (World Health Organization grade 1 and 2) and were receiving treatment with one or two AEDs at baseline. Lacosamide was initiated by the treating physician in the course of routine clinical practice. Primary outcomes were 50% responders (≥50% reduction in focal seizure frequency from baseline) and Patient's Global Impression of Change (PGIC) at month 6. Secondary outcomes included seizure‐free status and Clinical Global Impression of Change (CGIC) at month 6, change in QoL (5‐Level EuroQol‐5 Dimension Quality of Life Assessment) and symptom outcomes (MD Anderson Symptom Inventory–Brain Tumor) from baseline to month 6, and Kaplan‐Meier estimated 6‐month retention on lacosamide. Safety variables included adverse drug reactions (ADRs). Results Patients were recruited from 24 sites in Europe. Ninety‐three patients received lacosamide (mean [standard deviation] age = 44.5 [14.7] years; 50 [53.8%] male; median baseline focal seizure frequency = five seizures/28 days [range = 1‐280]), of whom 79 (84.9%) completed the study. At 6 months, 66 of 86 (76.7%) patients were 50% responders and 30 of 86 (34.9%) were seizure‐free. Improvements on PGIC were reported by 49 of 76 (64.5%) patients. Based on CGIC, 52 of 81 (64.2%) patients improved. QoL and symptoms outcome measures remained stable. Kaplan‐Meier estimated 6‐month retention rate was 86.0% (N = 93). Fifteen (16.1%) patients reported ADRs; four (4.3%) had ADRs leading to discontinuation (N = 93). Significance Results of this prospective, noninterventional study suggest that add‐on lacosamide is effective and generally well tolerated in patients with BTRE.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, City of Health and Science and University of Turin, Turin, Italy
| | - Caroline Houillier
- AP-HP, Sorbonne Université, IHU, ICM, Public Hospital Network of Paris, Service de Neurologie 2-Mazarin, Hôpitaux, Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
| | - Marta Maschio
- Center for Tumor-Related Epilepsy, UOSD Neuro-Oncology IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Jaap C Reijneveld
- Amsterdam UMC, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | | | | | | | | | | | - Martin Glas
- Division of Clinical Neuro-oncology, Department of Neurology, West German Cancer Center and German Cancer Consortium Partner Site, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Robin Grant
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
Is chemotherapy alone an option as initial treatment for low-grade oligodendrogliomas? Curr Opin Neurol 2020; 33:707-715. [DOI: 10.1097/wco.0000000000000866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Dimou J, Kelly J. The biological and clinical basis for early referral of low grade glioma patients to a surgical neuro-oncologist. J Clin Neurosci 2020; 78:20-29. [PMID: 32381393 DOI: 10.1016/j.jocn.2020.04.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/24/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
The discovery of IDH1/2 (isocitrate dehydrogenase) mutation in large scale, genomewide mutational analyses of gliomas has led to profound developments in understanding tumourigenesis, and restructuring of the classification of both high and low grade gliomas. Owing to this progress made in the recognition of molecular markers which predict tumour behavior and treatment response, the increasing importance of adjuvant treatments such as chemo- and radiotherapy, and the tremendous advances in surgical technique and intraoperative monitoring which have facilitated superior extents of resection whilst preserving neurological functioning and quality of life, contemporary management of low grade glioma (LGG) has switched from a passive, observant approach to a more active, interventional one. Furthermore, this has implications for the manner in which patients with incidentally discovered and/or asymptomatic LGG are managed, and this review of the biological behaviour of LGG, as well as its clinical investigation and management, should act as a timely reminder to all clinicians of the importance of referring LGG patients early to a surgical neuro-oncologist who is not only familiar and acquainted with the vagaries of this disease process, but who, in addition, is devoted to delivering care to these patients with the support of a multi-disciplinary clinical decision-making unit, comprising medical neuro-oncologists, radiation oncologists and allied health professionals.
Collapse
Affiliation(s)
- James Dimou
- Department of Neurosurgery, University of Calgary, Alberta, Canada.
| | - John Kelly
- Department of Neurosurgery, University of Calgary, Alberta, Canada
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight advances in the management of seizures in brain metastases from solid tumors. RECENT FINDINGS The highest risk for seizures is in patients with melanoma and lung cancer. There is lack of data on the efficacy of antiepileptic drugs (AEDs), but interactions between enzyme-inducing AEDs and anticancer agents must be avoided. Levetiracetam and valproic acid are the most appropriate drugs. Prophylaxis with AEDs for patients with brain metastases without a history of seizures is not recommended. Total resection of a brain metastasis allows complete seizure control. Seizures may represent an adverse effect of stereotactic radiosurgery or of high-dose chemotherapy. New preclinical and clinical studies should define the risk of brain metastasis in light of the new treatment options in the different tumor types. New clinical trials should be designed in patients with brain metastases in terms of treatment or prophylaxis of seizures.
Collapse
|
40
|
Suzuki H, Mikuni N, Sugita S, Aoyama T, Yokoyama R, Suzuki Y, Enatsu R, Akiyama Y, Mikami T, Wanibuchi M, Hasegawa T. Molecular Aberrations Associated with Seizure Control in Diffuse Astrocytic and Oligodendroglial Tumors. Neurol Med Chir (Tokyo) 2020; 60:147-155. [PMID: 32009124 PMCID: PMC7073702 DOI: 10.2176/nmc.oa.2019-0218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diffuse astrocytic and oligodendroglial tumors are frequently associated with symptomatic epilepsy, and predictive seizure control is important for the improvement of patient quality of life. To elucidate the factors related to drug resistance of brain tumor-associated epilepsy from a pathological perspective. From January 2012 to October 2017, 36 patients diagnosed with diffuse astrocytic or oligodendroglial tumors were included. Assessment for seizure control was performed according to the Engel classification of seizures. Patient clinical, radiological, and pathological data were stratified based on the following 16 variables: age, sex, location of tumor, existence of the preoperative seizure, extent of resection, administration of temozolomide, radiation therapy, recurrence, Karnofsky performance scale, isocitrate dehydrogenase 1, 1p/19q co-deletion, Olig2, platelet-derived growth factor receptor alpha, p53, ATRX, and Ki67. These factors were compared between the well-controlled group and drug-resistant seizure group. Twenty-seven patients experienced seizures; of these, 14 cases were well-controlled, and 13 cases were drug-resistant. Neither clinical nor radiological characteristics were significantly different between these two groups, though p53 immunodetection levels were significantly higher, and the frequency of 1p/19q co-deletion was significantly lower in the group with drug-resistant seizures than in the well-controlled group. In the multivariate analysis, only one item was selected according to stepwise methods, and a significant difference was observed for p53 (OR, 21.600; 95% CI, 2.135–218.579; P = 0.009). Upregulation of p53 may be a molecular mechanism underlying drug resistant epilepsy associated with diffuse astrocytic and oligodendroglial tumors.
Collapse
Affiliation(s)
- Hime Suzuki
- Department of Neurosurgery, Sapporo Medical University
| | | | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University
| | - Tomoyuki Aoyama
- Department of Surgical Pathology, Sapporo Medical University
| | | | - Yuto Suzuki
- Department of Neurosurgery, Sapporo Medical University
| | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University
| | | | | | | | | |
Collapse
|
41
|
Gonzalez Castro LN, Milligan TA. Seizures in patients with cancer. Cancer 2020; 126:1379-1389. [PMID: 31967671 DOI: 10.1002/cncr.32708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Seizures are common in patients with cancer and either result from brain lesions, paraneoplastic syndromes, and complications of cancer treatment or are provoked by systemic illness (metabolic derangements, infections). Evaluation should include a tailored history, neurologic examination, laboratory studies, neuroimaging, and electroencephalogram. In unprovoked seizures, antiepileptic drug (AED) treatment is required, and a nonenzyme-inducing AED is preferred. Treatment of the underlying cancer with surgery, chemotherapy, and radiation therapy also can help reduce seizures. Benzodiazepines are useful in the treatment of both provoked seizures and breakthrough epileptic seizures and as first-line treatment for status epilepticus. Counseling for safety is an important component in the care of a patient with cancer who has seizures. Good seizure management can be challenging but significantly improves the quality of life during all phases of care, including end-of-life care.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tracey A Milligan
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
42
|
Liang S, Fan X, Zhao M, Shan X, Li W, Ding P, You G, Hong Z, Yang X, Luan G, Ma W, Yang H, You Y, Yang T, Li L, Liao W, Wang L, Wu X, Yu X, Zhang J, Mao Q, Wang Y, Li W, Wang X, Jiang C, Liu X, Qi S, Liu X, Qu Y, Xu J, Wang W, Song Z, Wu J, Liu Z, Chen L, Lin Y, Zhou J, Liu X, Zhang W, Li S, Jiang T. Clinical practice guidelines for the diagnosis and treatment of adult diffuse glioma-related epilepsy. Cancer Med 2019; 8:4527-4535. [PMID: 31240876 PMCID: PMC6712518 DOI: 10.1002/cam4.2362] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 05/05/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioma-related epilepsy (GRE) is defined as symptomatic epileptic seizures secondary to gliomas, it brings both heavy financial and psychosocial burdens to patients with diffuse glioma and significantly decreases their quality of life. To date, there have been no clinical guidelines that provide recommendations for the optimal diagnostic and therapeutic procedures for GRE patients. METHODS In March 2017, the Joint Task Force for GRE of China Association Against Epilepsy and Society for Neuro-Oncology of China launched the guideline committee for the diagnosis and treatment of GRE. The guideline committee conducted a comprehensive review of relevant domestic and international literatures that were evaluated and graded based on the Oxford Centre for Evidence-Based Medicine Levels of Evidence, and then held three consensus meetings to discuss relevant recommendations. The recommendations were eventually given according to those relevant literatures, together with the experiences in the diagnosis and treatment of over 3000 GRE cases from 24 tertiary level hospitals that specialize in clinical research of epilepsy, glioma, and GRE in China. RESULTS The manuscript presented the current standard recommendations for the diagnostic and therapeutic procedures of GRE. CONCLUSIONS The current work will provide a framework and assurance for the diagnosis and treatment strategy of GRE to reduce complications and costs caused by unnecessary treatment. Additionally, it can serve as a reference for all professionals involved in the management of patients with GRE.
Collapse
Affiliation(s)
- Shuli Liang
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China.,Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Neuroelectrophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Zhao
- Department of Neurosurgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Xia Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China
| | - Wenling Li
- Department of Neurosurgery, Second Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | - Ping Ding
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Hong
- Department of Neurology, Shanghai Huashan Hospital, Fudan University, Shaihai, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoming Luan
- Department of Neurosurgery, Beijing Sanbo Hospital, Capital Medical University, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Yang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yongpin You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianming Yang
- Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Liang Li
- Department of Neurosurgery, First Affiliated Hospital, Beijing University, Beijing, China
| | - Weiping Liao
- Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Wu
- Department of Neurology, First Affiliated Hospital, Beijing University, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qing Mao
- Department of Neurosurgery, Huaxi Hospital, Sichuan University, Chengdu, China
| | - Yuping Wang
- Department of Neurology, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuefeng Wang
- Department of Neurology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chuanlu Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Liu
- Pediatric Department, First Affiliated Hospital, Beijing University, Beijing, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Nanfang Medical University, Guangzhou, China
| | - Xingzhou Liu
- Epilepsy Center, Shanghai Deji Hospital, Shanghai, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiwen Xu
- Department of Functional Neurosurgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Wang
- Department of Neurosurgery, Guangzhou Military General Hospital, Guangzhou, China
| | - Zhi Song
- Department of Neurology, Xiangya Third Hospital, Center South University, Changsha, China
| | - Jinsong Wu
- Department of Neurosurgery, Shanghai Huashan Hospital, Fudan University, Shanghai, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jian Zhou
- Department of Neurosurgery, Beijing Sanbo Hospital, Capital Medical University, Beijing, China
| | - Xianzeng Liu
- Department of Neurology, Peking University International Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China
| | - Shichuo Li
- China Association Against Epilepsy (CAAE), Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Molecular Neuropathology, Beijing Neurosurgery Institute, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Haggiagi A, Avila EK. Seizure response to temozolomide chemotherapy in patients with WHO grade II oligodendroglioma: a single-institution descriptive study. Neurooncol Pract 2019; 6:203-208. [PMID: 31073410 DOI: 10.1093/nop/npy029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/25/2018] [Accepted: 07/17/2018] [Indexed: 11/12/2022] Open
Abstract
Background Tumor-related epilepsy (TRE) is common in patients with low-grade oligodendrogliomas. TRE is difficult to control despite multiple antiepileptic drugs (AEDs) in up to 30% of patients. Chemotherapy has been used for treatment to avoid potential radiotherapy-related neurotoxicity. This study evaluates the effect of temozolomide on seizure frequency in a homogeneous group with World Health Organization (WHO) grade II oligodendrogliomas. Methods A retrospective analysis was conducted of adult patients with WHO grade II oligodendrogliomas and TRE followed at Memorial Sloan Kettering between 2005 and 2015 who were treated with temozolomide alone either as initial treatment or for disease progression. All had seizures 3 months prior to starting temozolomide. Seizure frequency was reviewed every 2 cycles and at the end of temozolomide treatment. Seizure reduction of ≥50% compared to baseline was defined as improvement. Results Thirty-nine individuals met inclusion criteria. Median follow-up since starting temozolomide was 6 years (0.8-13 years). Reduction in seizure frequency occurred in 35 patients (89.7%). Improvement was independent of AED regimen adjustments or prior antitumor treatment in 16 (41%); of these, AED dosage was successfully reduced or completely eliminated in 10 (25.6%). Twenty-five patients (64.1%) remained on a stable AED regimen. The majority (n = 32, 82%) had radiographically stable disease, 5 (12.8%) had objective radiographic response, and 2 (5.2%) had disease progression. Conclusions Temozolomide may result in reduced seizure frequency, and permit discontinuation of AEDs in patients with WHO II oligodendroglioma. Improvement was observed irrespective of objective tumor response on MRI, emphasizing the importance of incorporating seizure control in assessing response to tumor-directed therapy.
Collapse
Affiliation(s)
- Aya Haggiagi
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
44
|
Kerkhof M, Koekkoek JAF, Vos MJ, van den Bent MJ, Taal W, Postma TJ, Bromberg JEC, Kouwenhoven MCM, Dirven L, Reijneveld JC, Taphoorn MJB. Withdrawal of antiepileptic drugs in patients with low grade and anaplastic glioma after long-term seizure freedom: a prospective observational study. J Neurooncol 2019; 142:463-470. [PMID: 30778733 PMCID: PMC6478626 DOI: 10.1007/s11060-019-03117-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
Background When glioma patients experience long-term seizure freedom the question arises whether antiepileptic drugs (AEDs) should be continued. As no prospective studies exist on seizure recurrence in glioma patients after AED withdrawal, we evaluated the decision-making process to withdraw AEDs in glioma patients, and seizure outcome after withdrawal. Methods Patients with a histologically confirmed low grade or anaplastic glioma were included. Eligible patients were seizure free ≥ 1 year from the date of last antitumor treatment, or ≥ 2 years since the last seizure when seizures occurred after the end of the last antitumor treatment. Patients and neuro-oncologists made a shared decision on the preferred AED treatment (i.e. AED withdrawal or continuation). Primary outcomes were: (1) outcome of the shared decision-making process and (2) rate of seizure recurrence. Results Eighty-three patients fulfilled all eligibility criteria. However, in 12/83 (14%) patients, the neuro-oncologist had serious objections to AED withdrawal. Therefore, 71/83 (86%) patients were analyzed; In 46/71 (65%) patients it was decided to withdraw AED treatment. In the withdrawal group, 26% (12/46) had seizure recurrence during follow-up. Seven of these 12 patients (58%) had tumor progression, of which three within 3 months after seizure recurrence. In the AED continuation group, 8% (2/25) of patients had seizure recurrence of which one had tumor progression. Conclusion In 65% of patients a shared decision was made to withdraw AEDs, of which 26% had seizure recurrence. AED withdrawal should only be considered in carefully selected patients with a presumed low risk of tumor progression.
Collapse
Affiliation(s)
- M Kerkhof
- Department of Neurology, Haaglanden Medical Center, PO Box 2191, 2501 VC, The Hague, The Netherlands.
| | - J A F Koekkoek
- Department of Neurology, Haaglanden Medical Center, PO Box 2191, 2501 VC, The Hague, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - M J Vos
- Department of Neurology, Haaglanden Medical Center, PO Box 2191, 2501 VC, The Hague, The Netherlands
| | - M J van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - W Taal
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - T J Postma
- Brain Tumor Center Amsterdam at VU University Medical Center, Amsterdam, The Netherlands
| | - J E C Bromberg
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - M C M Kouwenhoven
- Brain Tumor Center Amsterdam at VU University Medical Center, Amsterdam, The Netherlands
| | - L Dirven
- Department of Neurology, Haaglanden Medical Center, PO Box 2191, 2501 VC, The Hague, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - J C Reijneveld
- Brain Tumor Center Amsterdam at VU University Medical Center, Amsterdam, The Netherlands
| | - M J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, PO Box 2191, 2501 VC, The Hague, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Abstract
The distinction between high‐risk and low‐risk patients with low‐grade glioma is far from clear. yet this criterion is used to select patients for immediate postsurgery radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Marjolein Geurts
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin J van den Bent
- The Brain Tumor Center at Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
46
|
IJzerman-Korevaar M, Snijders TJ, de Graeff A, Teunissen SCCM, de Vos FYF. Prevalence of symptoms in glioma patients throughout the disease trajectory: a systematic review. J Neurooncol 2018; 140:485-496. [PMID: 30377935 PMCID: PMC6267240 DOI: 10.1007/s11060-018-03015-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/09/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Glioma patients suffer from a wide range of symptoms which influence quality of life negatively. The aim of this review is to give an overview of symptoms most prevalent in glioma patients throughout the total disease trajectory, to be used as a basis for the development of a specific glioma Patient Reported Outcome Measure (PROM) for early assessment and monitoring of symptoms in glioma patients. METHODS A systematic review focused on symptom prevalence in glioma patients in different phases of disease and treatment was performed in MEDLINE, CINAHL and EMBASE according to PRISMA recommendations. We calculated weighted means for prevalence rates per symptom. RESULTS The search identified 2.074 unique papers, of which 32 were included in this review. In total 25 symptoms were identified. The ten most prevalent symptoms were: seizures (37%), cognitive deficits (36%), drowsiness (35%), dysphagia (30%), headache (27%), confusion (27%), aphasia (24%), motor deficits (21%), fatigue (20%) and dyspnea (20%). CONCLUSIONS Eight out of ten of the most prevalent symptoms in glioma patients are related to the central nervous system and therefore specific for glioma. Our findings emphasize the importance of tailored symptom care for glioma patients and may aid in the development of specific PROMs for glioma patients in different phases of the disease.
Collapse
Affiliation(s)
- Margriet IJzerman-Korevaar
- Department of Medical Oncology, Cancer Center, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Tom J Snijders
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Alexander de Graeff
- Department of Medical Oncology, Cancer Center, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Saskia C C M Teunissen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Filip Y F de Vos
- Department of Medical Oncology, Cancer Center, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
47
|
Shou T, Yang H, Lv J, Liu D, Sun X. MicroRNA‑3666 suppresses the growth and migration of glioblastoma cells by targeting KDM2A. Mol Med Rep 2018; 19:1049-1055. [PMID: 30483744 PMCID: PMC6323202 DOI: 10.3892/mmr.2018.9698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are acknowledged as essential regulators in human cancer types, including glioblastoma (GBM). However, the functions of microRNA-3666 (miR-3666) in GBM remain unclear. In the present study, it was identified that the expression of miR-3666 was significantly downregulated in GBM tissues compared with adjacent normal tissues by reverse transcription-quantitative polymerase chain reaction. Additionally, miR-3666 was downregulated in GBM cell lines. Furthermore, it was observed that the miR-3666 expression level in patients with GBM was associated with prognosis. With functional experiments, it was identified that overexpression of miR-3666 significantly inhibited the proliferation, migration and invasion of GBM cells in vitro by Cell Counting kit-8 and Transwell assays. Ectopic expression of miR-3666 significantly arrested GBM cells in the G0 phase by fluorescence activated cell sorting. In terms of the underlying mechanism, it was identified that lysine-specific demethylase 2A (KDM2A) is a direct target of miR-3666 in GBM cells. Overexpression of miR-3666 significantly decreased the expression of KDM2A in GBM cells. Furthermore, it was observed that knockdown of KDM2A significantly suppressed the proliferation, migration and invasion of GBM cells. Collectively, the present results demonstrated that the miR-3666/KDM2A axis serves an important role in the progression of GBM, which provides novel insight into the development of therapeutic strategies for GBM treatment.
Collapse
Affiliation(s)
- Taotao Shou
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Huyin Yang
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jia Lv
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Dai Liu
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaoyang Sun
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
48
|
Tatum WO, Quinones-Hinojosa A. Onco-Epilepsy: More Than Tumor and Seizures. Mayo Clin Proc 2018; 93:1181-1184. [PMID: 30104043 DOI: 10.1016/j.mayocp.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022]
|
49
|
Brain tumor related-epilepsy. Neurol Neurochir Pol 2018; 52:436-447. [PMID: 30122210 DOI: 10.1016/j.pjnns.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Gliomas are commonly associated with the development of epilepsy; in some cases the two conditions share common pathogenic mechanisms and may influence each other. Brain tumor related-epilepsy (BTRE) complicates the clinical management of gliomas and can substantially affect daily life. STATE OF THE ART The incidence of seizures is high in patients with slow growing tumors located in the frontotemporal regions. However, recent studies suggest that epileptogenesis may be more associated with tumor molecular genetic markers than tumor grade or location. Although the exact mechanism of epileptogenesis in glioma is incompletely understood, glutamate-induced excitotoxicity and disruption of intracellular communication have garnered the most attention. CLINICAL MANAGEMENT Management of BTRE requires a multidisciplinary approach involving the use of antiepileptic drugs (AEDs), surgery aided by electrocorticography, and adjuvant chemoradiation. FUTURE DIRECTIONS Insight into the mechanisms of glioma growth and epileptogenesis is essential to identify new treatment targets and to develop effective treatment for both conditions. Selecting AEDs tailored to act against known tumor molecular markers involved in the epileptogenesis could enhance treatment value and help inform individualized medicine in BRTE.
Collapse
|
50
|
Abstract
In the 2016 WHO classification of diffuse glioma, the diagnosis of an (anaplastic) oligodendroglioma requires the presence of both an IDH mutation (mt) and 1p/19q codeletion, whereas (anaplastic) astrocytoma are divided in IDH wild-type and IDHmt tumors. Standard of care for grade II and III glioma consists of resection. For patients with tumors that require postoperative treatment, radiotherapy and chemotherapy are recommended. Trials in newly diagnosed grade II and III glioma have shown survival benefit of the addition of chemotherapy to radiotherapy compared with initial treatment with radiotherapy alone; both temozolomide and PCV have been shown to improve survival.
Collapse
Affiliation(s)
- Martin J van den Bent
- Brain Tumor Center, Erasmus MC Cancer Institute, Groene Hilledijk 301, Rotterdam 3075EA, The Netherlands.
| | - Susan M Chang
- Department of Neurosurgery, University of California, San Francisco, Box 0112, 505 Parnassus Avenue M779, San Francisco, CA 94143, USA
| |
Collapse
|