1
|
Al-Lami BS, Al-Lami BS, Al-Lami YS. Survival outcomes after using charged particle radiotherapy as a treatment modality for gliomas: A systematic review and meta-analysis. J Med Imaging Radiat Sci 2024; 55:101410. [PMID: 38670903 DOI: 10.1016/j.jmir.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Charged particle therapy is an emerging radiation treatment for a number of tumors; however, more research is needed to determine its safety and efficacy when treating intra-axial brain tumors (commonly known as gliomas). The overall survival of patients treated with charged particle radiation versus those receiving photon therapy were compared in this systematic review and meta-analysis. METHODS The databases used as part of the search strategy were the following: MEDLINE (PubMed), Google Scholar, Scopus, and Cochrane. The search was conducted in order to find pertinent clinical studies. A random-effect meta-analysis was used to generate pooled estimates of overall survival at 1,3, and 5 years. RESULTS Nineteen studies with a total of 1140 patients were included in this meta-analysis. Following treatment, the patient's follow-up period lasted 44.4 months (range: 14.3 - 91.2 months). At one year (relative risk 1.17, 95% CI 1.07 - 1.28; p = 0.049), three years (relative risk 1.73, 95% CI 1.41 - 2.12; p = 0.001), and five years (relative risk 2.00, 95% CI 1.52 - 2.63; p = 0.005), charged particle radiotherapy had a significantly higher pooled overall survival than photon therapy. CONCLUSION Charged particle therapy could be associated with better clinical outcomes for patients with gliomas compared to photon therapy. More prospective randomized trials and comparative studies are strongly encouraged to enable accurate meta-analysis and a better exploration of prognosis.
Collapse
|
2
|
Mishchenko TA, Turubanova VD, Gorshkova EN, Krysko O, Vedunova MV, Krysko DV. Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy. Front Immunol 2024; 14:1299064. [PMID: 38274827 PMCID: PMC10809268 DOI: 10.3389/fimmu.2023.1299064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria D. Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience Research Institute, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina N. Gorshkova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
3
|
Tran NH, Ryzhov V, Volnitskiy A, Amerkanov D, Pack F, Golubev AM, Arutyunyan A, Spitsyna A, Burdakov V, Lebedev D, Konevega AL, Shtam T, Marchenko Y. Radiosensitizing Effect of Dextran-Coated Iron Oxide Nanoparticles on Malignant Glioma Cells. Int J Mol Sci 2023; 24:15150. [PMID: 37894830 PMCID: PMC10606998 DOI: 10.3390/ijms242015150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The potential of standard methods of radiation therapy is limited by the dose that can be safely delivered to the tumor, which could be too low for radical treatment. The dose efficiency can be increased by using radiosensitizers. In this study, we evaluated the sensitizing potential of biocompatible iron oxide nanoparticles coated with a dextran shell in A172 and Gl-Tr glioblastoma cells in vitro. The cells preincubated with nanoparticles for 24 h were exposed to ionizing radiation (X-ray, gamma, or proton) at doses of 0.5-6 Gy, and their viability was assessed by the Resazurin assay and by staining of the surviving cells with crystal violet. A statistically significant effect of radiosensitization by nanoparticles was observed in both cell lines when cells were exposed to 35 keV X-rays. A weak radiosensitizing effect was found only in the Gl-Tr line for the 1.2 MeV gamma irradiation and there was no radiosensitizing effect in both lines for the 200 MeV proton irradiation at the Bragg peak. A slight (ca. 10%) increase in the formation of additional reactive oxygen species after X-ray irradiation was found when nanoparticles were present. These results suggest that the nanoparticles absorbed by glioma cells can produce a significant radiosensitizing effect, probably due to the action of secondary electrons generated by the magnetite core, whereas the dextran shell of the nanoparticles used in these experiments appears to be rather stable under radiation exposure.
Collapse
Affiliation(s)
- Nhan Hau Tran
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg 195251, Russia
| | - Vyacheslav Ryzhov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Andrey Volnitskiy
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Dmitry Amerkanov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Fedor Pack
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Aleksander M. Golubev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Alexandr Arutyunyan
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Anastasiia Spitsyna
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| | - Dmitry Lebedev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Andrey L. Konevega
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg 195251, Russia
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Yaroslav Marchenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia; (N.H.T.); (A.V.); (D.A.); (F.P.); (A.M.G.); (A.A.); (A.S.); (V.B.); (D.L.); (A.L.K.); (T.S.)
| |
Collapse
|
4
|
Gram D, Brodin NP, Björk-Eriksson T, Nysom K, Munck Af Rosenschöld P. The risk of radiation-induced neurocognitive impairment and the impact of sparing the hippocampus during pediatric proton cranial irradiation. Acta Oncol 2023; 62:134-140. [PMID: 36847433 DOI: 10.1080/0284186x.2023.2176253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND PURPOSE Hippocampus is a central component for neurocognitive function and memory. We investigated the predicted risk of neurocognitive impairment of craniospinal irradiation (CSI) and the deliverability and effects of hippocampal sparing. The risk estimates were derived from published NTCP models. Specifically, we leveraged the estimated benefit of reduced neurocognitive impairment with the risk of reduced tumor control. MATERIAL AND METHODS For this dose planning study, a total of 504 hippocampal sparing intensity modulated proton therapy (HS-IMPT) plans were generated for 24 pediatric patients whom had previously received CSI. Plans were evaluated with respect to target coverage and homogeneity index to target volumes, maximum and mean dose to OARs. Paired t-tests were used to compare hippocampal mean doses and normal tissue complication probability estimates. RESULTS The median mean dose to the hippocampus could be reduced from 31.3 GyRBE to 7.3 GyRBE (p < .001), though 20% of these plans were not considered clinically acceptable as they failed one or more acceptance criterion. Reducing the median mean hippocampus dose to 10.6 GyRBE was possible with all plans considered as clinically acceptable treatment plans. By sparing the hippocampus to the lowest dose level, the risk estimation of neurocognitive impairment could be reduced from 89.6%, 62.1% and 51.1% to 41.0% (p < .001), 20.1% (p < .001) and 29.9% (p < .001) for task efficiency, organization and memory, respectively. Estimated tumor control probability was not adversely affected by HS-IMPT, ranging from 78.5 to 80.5% for all plans. CONCLUSIONS We present estimates of potential clinical benefit in terms of neurocognitive impairment and demonstrate the possibility of considerably reducing neurocognitive adverse effects, minimally compromising target coverage locally using HS-IMPT.
Collapse
Affiliation(s)
- Daniel Gram
- Department of Oncology - Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Oncology and Palliative Care, Radiotherapy, Zealand University Hospital, Næstved, Denmark
| | - N Patrik Brodin
- Institute for Onco-Physics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Thomas Björk-Eriksson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden.,Regional Cancer Centre West, Gothenburg, Sweden
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, The Juliane Marie Center, Rigshospitalet, Copenhagen, Denmark
| | - Per Munck Af Rosenschöld
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Radiation Physics - Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
5
|
The correlations between psychological distress, cognitive impairment and quality of life in patients with brain metastases after whole-brain radiotherapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:207-217. [PMID: 36038750 DOI: 10.1007/s12094-022-02927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Psychological distress and cognitive impairment are highly prevalent among patients with brain metastases after whole-brain radiotherapy (WBRT). Our purpose was to evaluate the correlations between psychological distress, cognitive impairment and quality of life in patients with brain metastases after WBRT. METHODS Seventy-one patients with brain metastasis treated with WBRT were enrolled in this study and were investigated with several scales, including the Montreal Cognitive Assessment Scale (MoCA), the Functional Assessment of Cancer Therapy-Cognitive Function version 3 (FACT-Cog, version 3), the Functional Assessment of Cancer Therapy-Brain Module version 4 (FACT-Br, version 4) and the Psychological Distress Thermometer (DT), before and after WBRT. RESULTS The MoCA, FACT-Cog and FACT-Br scores in patients with brain metastases were significantly decreased after WBRT compared with before WBRT (z = - 7.106, - 6.933 and - 6.250, respectively, P < 0.001), while the DT scores were significantly increased (z = 6.613, P < 0.001). There was an obvious negative correlation between the DT score and the FACT-Cog score (r = - 0.660, P < 0.001), a significant negative correlation between the DT score and the FACT-Br score (r = - 0.833, P < 0.001), and an obvious positive correlation between the FACT-Cog score and the FACT-Br score (r = 0.603, P < 0.001). These results suggest that WBRT can cause cognitive impairment in patients with brain metastases, increase their psychological distress and reduce their quality of life (QOL). CONCLUSION After receiving WBRT, the cognitive function and QOL of patients with brain metastases were decreased, while psychological distress increased. The cognitive impairment and the decline of QOL after WBRT are associated with increased psychological distress, and that the decline of QOL is associated with cognitive impairment of patients.
Collapse
|
6
|
Waqar M, Trifiletti DM, McBain C, O'Connor J, Coope DJ, Akkari L, Quinones-Hinojosa A, Borst GR. Early Therapeutic Interventions for Newly Diagnosed Glioblastoma: Rationale and Review of the Literature. Curr Oncol Rep 2022; 24:311-324. [PMID: 35119629 PMCID: PMC8885508 DOI: 10.1007/s11912-021-01157-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Glioblastoma is the commonest primary brain cancer in adults whose outcomes are amongst the worst of any cancer. The current treatment pathway comprises surgery and postoperative chemoradiotherapy though unresectable diffusely infiltrative tumour cells remain untreated for several weeks post-diagnosis. Intratumoural heterogeneity combined with increased hypoxia in the postoperative tumour microenvironment potentially decreases the efficacy of adjuvant interventions and fails to prevent early postoperative regrowth, called rapid early progression (REP). In this review, we discuss the clinical implications and biological foundations of post-surgery REP. Subsequently, clinical interventions potentially targeting this phenomenon are reviewed systematically. RECENT FINDINGS Early interventions include early systemic chemotherapy, neoadjuvant immunotherapy, local therapies delivered during surgery (including Gliadel wafers, nanoparticles and stem cell therapy) and several radiotherapy techniques. We critically appraise and compare these strategies in terms of their efficacy, toxicity, challenges and potential to prolong survival. Finally, we discuss the most promising strategies that could benefit future glioblastoma patients. There is biological rationale to suggest that early interventions could improve the outcome of glioblastoma patients and they should be investigated in future trials.
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Catherine McBain
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - James O'Connor
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - David J Coope
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alfredo Quinones-Hinojosa
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Gerben R Borst
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
7
|
Nagtegaal S, David S, van Grinsven E, van Zandvoort M, Seravalli E, Snijders T, Philippens M, Verhoeff J. Morphological changes after cranial fractionated photon radiotherapy: Localized loss of white matter and grey matter volume with increasing dose. Clin Transl Radiat Oncol 2021; 31:14-20. [PMID: 34504960 PMCID: PMC8416633 DOI: 10.1016/j.ctro.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Numerous brain MR imaging studies have been performed to understand radiation-induced cognitive decline. However, many of them focus on a single region of interest, e.g. cerebral cortex or hippocampus. In this study, we use deformation-based morphometry (DBM) and voxel-based morphometry (VBM) to measure the morphological changes in patients receiving fractionated photon RT, and relate these to the dose. Additionally, we study tissue specific volume changes in white matter (WM), grey matter (GM), cerebrospinal fluid and total intracranial volume (TIV). METHODS AND MATERIALS From our database, we selected 28 patients with MRI of high quality available at baseline and 1 year after RT. Scans were rigidly registered to each other, and to the planning CT and dose file. We used DBM to study non-tissue-specific volumetric changes, and VBM to study volume loss in grey matter. Observed changes were then related to the applied radiation dose (in EQD2). Additionally, brain tissue was segmented into WM, GM and cerebrospinal fluid, and changes in these volumes and TIV were tested. RESULTS Performing DBM resulted in clusters of dose-dependent volume loss 1 year after RT seen throughout the brain. Both WM and GM were affected; within the latter both cerebral cortex and subcortical nuclei show volume loss. Volume loss rates ranging from 5.3 to 15.3%/30 Gy were seen in the cerebral cortical regions in which more than 40% of voxels were affected. In VBM, similar loss rates were seen in the cortex and nuclei. The total volume of WM and GM significantly decreased with rates of 5.8% and 2.1%, while TIV remained unchanged as expected. CONCLUSIONS Radiotherapy is associated with dose-dependent intracranial morphological changes throughout the entire brain. Therefore, we will consider to revise sparing of organs at risk based on future cognitive and neurofunctional data.
Collapse
Key Words
- Brain neoplasms
- CAT12, Computational Anatomy Toolbox 12
- CSF, cerebrospinal fluid
- CT, computed tomography
- DBM, deformation based morphometry
- FWER, family-wise error rate
- GM, grey matter
- Gray matter
- IMPT, intensity modulated proton therapy
- MNI, Montreal Neurological Institute
- MRI, magnetic resonance imaging
- PALM, permutation analysis of linear models
- PTV, planning target volume
- RT, radiotherapy
- Radiotherapy
- SNR, signal to noise ratio
- TFCE, Threshold-Free Cluster Enhancement
- TFE, turbo fast echo
- TIV, total intracranial volume
- VBM, voxel-based morphometry
- VMAT, volumetric modulated arc therapy
- White matter
Collapse
Affiliation(s)
- S.H.J. Nagtegaal
- Department of Radiation Oncology, University Medical Center, HP Q 00.3.11, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - S David
- Department of Radiation Oncology, University Medical Center, HP Q 00.3.11, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - E.E. van Grinsven
- Department of Radiation Oncology, University Medical Center, HP Q 00.3.11, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - M.J.E. van Zandvoort
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center, HP L 01.310, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - E. Seravalli
- Department of Radiation Oncology, University Medical Center, HP Q 00.3.11, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - T.J Snijders
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center, HP L 01.310, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - M.E.P. Philippens
- Department of Radiation Oncology, University Medical Center, HP Q 00.3.11, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - J.J.C. Verhoeff
- Department of Radiation Oncology, University Medical Center, HP Q 00.3.11, PO Box 85500, 3508 GA Utrecht, the Netherlands
| |
Collapse
|
8
|
Miles X, Vandevoorde C, Hunter A, Bolcaen J. MDM2/X Inhibitors as Radiosensitizers for Glioblastoma Targeted Therapy. Front Oncol 2021; 11:703442. [PMID: 34307171 PMCID: PMC8296304 DOI: 10.3389/fonc.2021.703442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Inhibition of the MDM2/X-p53 interaction is recognized as a potential anti-cancer strategy, including the treatment of glioblastoma (GB). In response to cellular stressors, such as DNA damage, the tumor suppression protein p53 is activated and responds by mediating cellular damage through DNA repair, cell cycle arrest and apoptosis. Hence, p53 activation plays a central role in cell survival and the effectiveness of cancer therapies. Alterations and reduced activity of p53 occur in 25-30% of primary GB tumors, but this number increases drastically to 60-70% in secondary GB. As a result, reactivating p53 is suggested as a treatment strategy, either by using targeted molecules to convert the mutant p53 back to its wild type form or by using MDM2 and MDMX (also known as MDM4) inhibitors. MDM2 down regulates p53 activity via ubiquitin-dependent degradation and is amplified or overexpressed in 14% of GB cases. Thus, suppression of MDM2 offers an opportunity for urgently needed new therapeutic interventions for GB. Numerous small molecule MDM2 inhibitors are currently undergoing clinical evaluation, either as monotherapy or in combination with chemotherapy and/or other targeted agents. In addition, considering the major role of both p53 and MDM2 in the downstream signaling response to radiation-induced DNA damage, the combination of MDM2 inhibitors with radiation may offer a valuable therapeutic radiosensitizing approach for GB therapy. This review covers the role of MDM2/X in cancer and more specifically in GB, followed by the rationale for the potential radiosensitizing effect of MDM2 inhibition. Finally, the current status of MDM2/X inhibition and p53 activation for the treatment of GB is given.
Collapse
Affiliation(s)
- Xanthene Miles
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Alistair Hunter
- Radiobiology Section, Division of Radiation Oncology, Department of Radiation Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
9
|
Yang Y, Ma Y, Lu J, Du S, Zhang J, Meng H, Chen Z, Zhang Q, Zhang X, Shi W, Girolamo F, Cepeda S, Kang J. Evaluation of the reporting quality of clinical practice guidelines on gliomas using the RIGHT checklist. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1002. [PMID: 34277802 PMCID: PMC8267264 DOI: 10.21037/atm-21-2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Background The reporting quality of clinical practice guidelines (CPGs) for gliomas has not yet been thoroughly assessed. The International Reporting Items for Practice Guidelines in Healthcare (RIGHT) statement developed in 2016 provides a reporting framework to improve the quality of CPGs. We aimed to estimate the reporting quality of glioma guidelines using the RIGHT checklist and investigate how the reporting quality differs by selected characteristics. Methods We systematically searched electronic databases, guideline databases, and medical society websites to retrieve CPGs on glioma published between 2018 and 2020. We calculated the compliance of the CPGs to individual items, domains and the RIGHT checklist overall. We performed stratified analyses by publication year, country of development, reporting of funding, and impact factor (IF) of the journal. Results Our search revealed 20 eligible guidelines. Mean overall adherence to the RIGHT statement was 54.6%. Eight CPGs reported more than 60% of the items, and five reported less than 50%. All guidelines adhered to the items 1a, 3, 7a, 13a, while no guidelines reported the items 17 or 18b (see http://www.right-statement.org/right-statement/checklist for a description of the items). Two of the seven domains, “Basic information” and “Background”, had mean reporting rates above 60%. The “Review and quality assurance” domain had the lowest mean reporting rate, 12.5%. The reporting quality of guidelines published in 2020, guidelines developed in the United States, and guidelines that reported funding tended to be above average. Conclusions The reporting quality of CPGs on gliomas is low and needs improvement. Particular attention should be paid on reporting the external review and quality assurance process. The use of the RIGHT criteria should be encouraged to guide the development, reporting and evaluation of CPGs.
Collapse
Affiliation(s)
- Yongjie Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yanfang Ma
- School of Chinese Medicine of Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jingli Lu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuzhang Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingmin Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhe Chen
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qiwen Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Santiago Cepeda
- Department of Neurosurgery, University Hospital Río Hortega, Valladolid, Spain
| | - Jian Kang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Tonse R, Noufal MP, Shamurailatpam D, Jalali R. Excellent Radiological Response with Modern Contemporary Proton Beam Therapy in Favorable Molecular Low-Intermediate Grade Oligodendroglioma: A Report of Two Cases. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1729342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractRadiotherapy (RT) has been a long-standing treatment option for low-grade glioma. Improvements in tumor control and reduced radiation-related toxicity can be attributed to advances in neuroimaging as well as RT treatment planning and delivery techniques. The molecular markers such as isocitrate dehydrogenase and lpl9q play a key role in determining which patients will benefit most from combined radiation and systemic therapy. We hereby report two cases of favorable molecular low-intermediate grade oligodendroglioma treated with modern proton pencil-beam therapy under high-precision image guidance showing excellent radiological response that is usually not seen with conventional photon radiation.
Collapse
Affiliation(s)
- Raees Tonse
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - MP Noufal
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | | | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Wu A, Jin MC, Meola A, Wong HN, Chang SD. Efficacy and toxicity of particle radiotherapy in WHO grade II and grade III meningiomas: a systematic review. Neurosurg Focus 2020; 46:E12. [PMID: 31153145 DOI: 10.3171/2019.3.focus1967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVEAdjuvant radiotherapy has become a common addition to the management of high-grade meningiomas, as immediate treatment with radiation following resection has been associated with significantly improved outcomes. Recent investigations into particle therapy have expanded into the management of high-risk meningiomas. Here, the authors systematically review studies on the efficacy and utility of particle-based radiotherapy in the management of high-grade meningioma.METHODSA literature search was developed by first defining the population, intervention, comparison, outcomes, and study design (PICOS). A search strategy was designed for each of three electronic databases: PubMed, Embase, and Scopus. Data extraction was conducted in accordance with the PRISMA guidelines. Outcomes of interest included local disease control, overall survival, and toxicity, which were compared with historical data on photon-based therapies.RESULTSEleven retrospective studies including 240 patients with atypical (WHO grade II) and anaplastic (WHO grade III) meningioma undergoing particle radiation therapy were identified. Five of the 11 studies included in this systematic review focused specifically on WHO grade II and III meningiomas; the others also included WHO grade I meningioma. Across all of the studies, the median follow-up ranged from 6 to 145 months. Local control rates for high-grade meningiomas ranged from 46.7% to 86% by the last follow-up or at 5 years. Overall survival rates ranged from 0% to 100% with better prognoses for atypical than for malignant meningiomas. Radiation necrosis was the most common adverse effect of treatment, occurring in 3.9% of specified cases.CONCLUSIONSDespite the lack of randomized prospective trials, this review of existing retrospective studies suggests that particle therapy, whether an adjuvant or a stand-alone treatment, confers survival benefit with a relatively low risk for severe treatment-derived toxicity compared to standard photon-based therapy. However, additional controlled studies are needed.
Collapse
Affiliation(s)
- Adela Wu
- 1Department of Neurosurgery, Stanford Health Care, Palo Alto
| | - Michael C Jin
- 2Stanford University School of Medicine, Stanford; and
| | - Antonio Meola
- 1Department of Neurosurgery, Stanford Health Care, Palo Alto
| | - Hong-Nei Wong
- 3Lane Medical Library, Stanford Medicine, Palo Alto, California
| | - Steven D Chang
- 1Department of Neurosurgery, Stanford Health Care, Palo Alto
| |
Collapse
|
12
|
Neurocognitive function and quality of life after proton beam therapy for brain tumour patients. Radiother Oncol 2020; 143:108-116. [DOI: 10.1016/j.radonc.2019.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 11/21/2022]
|
13
|
Acharya S, Robinson CG, Michalski JM, Mullen D, DeWees TA, Campian JL, Chundury A, Bottani B, Hallahan DE, Bradley JD, Huang J. Association of 1p/19q Codeletion and Radiation Necrosis in Adult Cranial Gliomas After Proton or Photon Therapy. Int J Radiat Oncol Biol Phys 2018. [DOI: 10.1016/j.ijrobp.2018.01.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Bronk JK, Guha-Thakurta N, Allen PK, Mahajan A, Grosshans DR, McGovern SL. Analysis of pseudoprogression after proton or photon therapy of 99 patients with low grade and anaplastic glioma. Clin Transl Radiat Oncol 2018; 9:30-34. [PMID: 29594248 PMCID: PMC5862685 DOI: 10.1016/j.ctro.2018.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/10/2018] [Indexed: 01/23/2023] Open
Abstract
No difference in pseudoprogression rate six months after proton or photon therapy. Oligodendrogliomas develop pseudoprogression sooner after protons vs. photons. Astrocytomas develop pseudoprogression at similar time after protons vs. photons.
Background and purpose Proton therapy is increasingly used to treat primary brain tumors. There is concern for higher rates of pseudoprogression (PsP) after protons compared to photons. The purposes of this study are to compare the rate of PsP after proton vs. photon therapy for grade II and III gliomas and to identify factors associated with the development of PsP. Materials and methods Ninety-nine patients age >18 years with grade II or III glioma treated with photons or protons were retrospectively reviewed. Demographic data, IDH and 1p19q status, and treatment factors were analyzed for association with PsP, progression free survival (PFS), and overall survival (OS). Results Sixty-five patients were treated with photons and 34 with protons. Among those with oligodendroglioma, PsP developed in 6/42 photon-treated patients (14.3%) and 4/25 proton-treated patients (16%, p = 1.00). Among those with astrocytoma, PsP developed in 3/23 photon-treated patients (13%) and 1/9 proton-treated patients (11.1%, p = 1.00). There was no difference in PsP rate based on radiation type, radiation dose, tumor grade, 1p19q codeletion, or IDH status. PsP occurred earlier in oligodendroglioma patients treated with protons compared to photons, 48 days vs. 131 days, p < .01. On multivariate analyses, gross total resection (p = .03, HR = 0.48, 95%CI = 0.25–0.93) and PsP (p = .04, HR = 0.22, 95% CI = 0.05–0.91) were associated with better PFS; IDH mutation was associated with better OS (p < .01, HR = 0.22, 95%CI = 0.08–0.65). Conclusions Patients with oligodendroglioma but not astrocytoma develop PsP earlier after protons compared to photons. PsP was associated with better PFS.
Collapse
Affiliation(s)
- Julianna K Bronk
- Baylor College of Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nandita Guha-Thakurta
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pamela K Allen
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Mahajan
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|