1
|
Krzemińska A, Czapiga B, Koźba-Gosztyła M. Accuracy of Raman spectroscopy in discriminating normal brain tissue from brain tumor: A systematic review and meta-analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125518. [PMID: 39637568 DOI: 10.1016/j.saa.2024.125518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
IMPORTANCE There are several methods of intraoperative tumor border identification, but none of them is perfect. There is a need of a new tool. OBJECTIVE Raman spectroscopy, being a noninvasive, requiring no tissue preparation, quick technique of substance structure identification, is a potential tool for intraoperative identification of brain tumor. This meta-analysis aimed to assess the accuracy of Raman spectroscopy in differentiation of normal brain tissue from brain tumor. DATA SOURCES PubMed, Google Scholar, Scopus and Web of Science databases were searched until October 1, 2024. STUDY SELECTION All English-language articles reporting efficacy and accuracy of Raman spectroscopy for brain tumor differentiation were analyzed, sufficient data to construct 2x2 table was extracted. EXCLUSION CRITERIA studies using data from national databases; reviews, conference abstracts, case studies, letters to the editor; studies with irrelevant or not sufficient data; not human tissue used in the experiment. 6112 records were found; after exclusion, the suitability of 64 full-text articles was evaluated. 18 studies were reviewed and included into the meta-analysis. DATA EXTRACTION AND SYNTHESIS The meta-analysis was performed in accordance with PRISMA guidelines and recommendations. Methodological quality was assessed according to the QUADAS-2 guidelines. Data were extracted by multiple observers and any discrepancies were resolved by discussion and consensus. Data were pooled using a random-effects model. MAIN OUTCOME(S) AND MEASURE(S) The primary outcome was pooled sensitivity, specificity and diagnostic odds ratio (DOR) for Raman spectroscopy. RESULTS The manuscript presents 18 studies which were used to calculate pooled values. The pooled sensitivity, specificity and pooled diagnostic odds ratio (DOR) of RS for discriminating glioma and normal brain tissues were 0,965, 0,738 and 61,305 respectively. For GBM the results were 0,948, 0,506 and 78,420 respectively. For meningioma pooled values were 0,896, 0,913, and 149,59. For metastases pooled values were 0,946, 0,862 and 133,90 respectively. CONCLUSIONS AND RELEVANCE Raman spectroscopy has a potential to serve as a tool for differentiation of brain tumor from normal brain tissue. Not only could it be helpful in distinguishing malignant lesion from benign with high sensitivity and specificity, but also indicate type of tumor. There is a need for more studies examining the accuracy of spectroscopy in differentiating brain tumors from healthy tissues, especially in vivo and in differentiation of brain tumor subtypes.
Collapse
Affiliation(s)
| | - Bogdan Czapiga
- Faculty of Medicine, Wroclaw University of Science and Technology, Grunwaldzki square 11, 51-377 Wrocław, Poland; Department of Neurosurgery, 4th Military Hospital in Wroclaw, Wrocław, Poland
| | | |
Collapse
|
2
|
Nawabi NLA, Emedom-Nnamdi P, Kilgallon JL, Gerstl JVE, Cote DJ, Jha R, Ellen JG, Maniar KM, Hong CS, Dawood HY, Onnela JP, Smith TR. Assessing Mobility in Patients With Glioblastoma Using Digital Phenotyping-Piloting the Digital Assessment in Neuro-Oncology. Neurosurgery 2025; 96:183-192. [PMID: 38912791 DOI: 10.1227/neu.0000000000003051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/26/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Digital phenotyping (DP) enables objective measurements of patient behavior and may be a useful tool in assessments of quality-of-life and functional status in neuro-oncology patients. We aimed to identify trends in mobility among patients with glioblastoma (GBM) using DP. METHODS A total of 15 patients with GBM enrolled in a DP study were included. The Beiwe application was used to passively collect patient smartphone global positioning system data during the study period. We estimated step count, time spent at home, total distance traveled, and number of places visited in the preoperative, immediate postoperative, and late postoperative periods. Mobility trends for patients with GBM after surgery were calculated by using local regression and were compared with preoperative values and with values derived from a nonoperative spine disease group. RESULTS One month postoperatively, median values for time spent at home and number of locations visited by patients with GBM decreased by 1.48 h and 2.79 locations, respectively. Two months postoperatively, these values further decreased by 0.38 h and 1.17 locations, respectively. Compared with the nonoperative spine group, values for time spent at home and the number of locations visited by patients with GBM 1 month postoperatively were less than control values by 0.71 h and 2.79 locations, respectively. Two months postoperatively, time spent at home for patients with GBM was higher by 1.21 h and locations visited were less than nonoperative spine group values by 1.17. Immediate postoperative values for distance traveled, maximum distance from home, and radius of gyration for patients with GBM increased by 0.346 km, 2.24 km, and 1.814 km, respectively, compared with preoperative values. CONCLUSIONS :Trends in patients with GBM mobility throughout treatment were quantified through the use of DP in this study. DP has the potential to quantify patient behavior and recovery objectively and with minimal patient burden.
Collapse
Affiliation(s)
- Noah L A Nawabi
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
- College of Medicine, Medical University of South Carolina, Charleston , South Carolina , USA
| | - Patrick Emedom-Nnamdi
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston , Massachusetts , USA
| | - John L Kilgallon
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Jakob V E Gerstl
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - David J Cote
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - Rohan Jha
- Harvard Medical School, Boston , Massachusetts , USA
| | - Jacob G Ellen
- Harvard Medical School, Boston , Massachusetts , USA
| | - Krish M Maniar
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Christopher S Hong
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Hassan Y Dawood
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Jukka-Pekka Onnela
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston , Massachusetts , USA
| | - Timothy R Smith
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston , Massachusetts , USA
- Harvard Medical School, Boston , Massachusetts , USA
| |
Collapse
|
3
|
Yuno T, Nakade Y, Nakada M, Kinoshita M, Nakata M, Nakagawa S, Oe H, Mori M, Wada T, Kanamori H. Predicting Postoperative Motor Function After Brain Tumor Resection With Motor Evoked Potential Monitoring Using Decision Tree Analysis. Cureus 2024; 16:e74155. [PMID: 39712700 PMCID: PMC11662959 DOI: 10.7759/cureus.74155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Background Motor evoked potential (MEP) monitoring is a commonly employed method in neurosurgery to prevent postoperative motor dysfunction. However, it has low prediction accuracy for postoperative paralysis. This study aimed to develop a decision tree (DT) model for predicting postoperative motor function using MEP monitoring data. Methodology In this retrospective cohort study, we used datasets, comprising 14 variables including MEP amplitudes, obtained from 125 patients who underwent brain tumor resection with intraoperative MEP monitoring at our hospital. Prediction models were developed using DT and receiver operating characteristic (ROC) curve analyses. Model performance was assessed for accuracy, sensitivity, specificity, kappa (κ) coefficient, and area under the ROC curve (AUC) for internal and external validation. For the external validation of the classification model, we retrospectively collected data from an additional 28 patients who underwent brain tumor surgery with MEP monitoring. Results The amplitude of the last measured MEP and amplitude ratio were independent predictors of outcomes. The DT model achieved an accuracy of 0.921, sensitivity of 0.917, specificity of 0.923, and AUC of 0.931 using the internal test. In comparison, the ROC curve based on the amplitude of the last measured MEP achieved a sensitivity of 0.875, specificity of 0.906, and AUC of 0.941. External validation was performed and the DT model was superior to prediction by cutoff values from ROC curves in terms of accuracy, sensitivity, specificity, and κ coefficient. Conclusions Our study suggested the usefulness of DT modeling for predicting postoperative paralysis. However, this study has several limitations, such as the retrospective design and small sample size of the validation dataset. Nonetheless, the DT modeling presented in this study might be applicable to surgeries using MEP monitoring and is expected to contribute to devising treatment strategies by predicting postoperative motor function in various patients.
Collapse
Affiliation(s)
- Takeo Yuno
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Yusuke Nakade
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | | | | | - Masako Nakata
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Shiori Nakagawa
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Hiroyasu Oe
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Mika Mori
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Takashi Wada
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Hajime Kanamori
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| |
Collapse
|
4
|
Gambarin M, Malgrati T, Di Censo R, Modenese A, Balestro G, Muti G, Cappellesso M, Fonte C, Varalta V, Gallinaro Y, Pinto M, Carlucci M, Picelli A, Smania N. An Overview of Reviews on Predictors of Neurorehabilitation in Surgical or Non-Surgical Patients with Brain Tumours. Life (Basel) 2024; 14:1377. [PMID: 39598176 PMCID: PMC11595827 DOI: 10.3390/life14111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background. People suffering from brain cancer, regardless of histological tumour characteristics, often experience motor disturbances, cognitive-behavioural difficulty, language impairments, and functional and social limitations. The current treatment approach entails surgery and adjuvant therapy such as chemotherapy and radiotherapy combined with intensive rehabilitation. The primary focus of rehabilitation is usually motor and functional recovery, without specifically addressing the patient's quality of life. The present systematic review identifies and evaluates the predictors of functional and cognitive rehabilitation outcomes and their influence on quality of life in adult patients with brain cancer. (2) Methods. Three electronic databases (PubMed, Elsevier, Cochrane) were searched for reviews about functional, cognitive, and quality-of-life outcomes in patients with central nervous system tumours, including articles published between January 2018 and May 2024. (3) Results. The search retrieved 399 records, 40 of which were reviewed. Five main areas of predictive factors were identified: diagnosis, therapy, complications, outcomes (in the motor, cognitive, and quality-of-life categories), and tailored rehabilitation. (4) Conclusions. These indicators may inform integrated care pathways for patients with primary central nervous system tumours.
Collapse
Affiliation(s)
- Mattia Gambarin
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy
| | - Tullio Malgrati
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Rita Di Censo
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Angela Modenese
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy
| | - Giulio Balestro
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Gloria Muti
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Marta Cappellesso
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Cristina Fonte
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Valentina Varalta
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Ylenia Gallinaro
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
- National Cancer Institute Pascale Foundation IRCSS, 80131 Napoli, Italy
| | - Monica Pinto
- National Cancer Institute Pascale Foundation IRCSS, 80131 Napoli, Italy
| | - Matilde Carlucci
- Healthcare Directorate, Hospital Trust of Verona, 37126 Verona, Italy
| | - Alessandro Picelli
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Nicola Smania
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy
- Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| |
Collapse
|
5
|
Sherry N, Eagle SR, Henry LC, Appleton H, González Martínez JA, Friedlander RM, Okonkwo DO, Zinn PO. Perceived Cognitive Function in Neurosurgical Patients. Neurosurgery 2024:00006123-990000000-01382. [PMID: 39471094 DOI: 10.1227/neu.0000000000003207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/24/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES This study explores perceived cognitive function in preoperative cranial neurosurgical patients and its association with neuropsychological testing (NPT). METHODS A total of 96 patients were referred for NPT by neurosurgical service. Patients completed the Neuro-QoL Item Bank v2.0-Cognitive Function-Short Form (Neuro-QoL) to measure perceived cognitive function, as well as NPT. Linear regression (LR) models were analyzed for demographic variables (ie, age, sex, handedness, educational attainment, employment/academic status, candidacy vs baseline testing, and history of neurological, mental health, and developmental conditions) and NPT outcomes (ie, intellectual estimation, attention/working memory, processing speed, executive functioning, learning/memory, language, visual-spatial, anxiety symptoms, and depression symptoms). Significant predictors from the LR models were then combined into a single model to identify the most robust predictors of perceived cognitive function. RESULTS Patients were aged 17 to 79 years (M = 49.64, SD = 18.56) and comprised 45 men and 51 women. The most common referrals for NPT were related to intracranial mass (39%), Chiari malformation type 1 (33%), and deep brain stimulation (20%). Results of the final LR model indicated mental health and developmental history, as well as elevated anxiety symptoms, significantly predicted 50.7% of the variance in perceived cognitive function (F = 30.91, P < .001). Patients referred to determine surgical candidacy reported significantly fewer cognitive complaints (P < .001) vs those referred for baseline testing by approximately 0.5 SDs. CONCLUSION Perceived cognitive function in neurosurgical patients appears to be strongly predicted by demographic factors, with mental health variables being robust predictors. Perceived cognition is not a proxy for measured cognitive function.
Collapse
Affiliation(s)
- Natalie Sherry
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Shawn R Eagle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Luke C Henry
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hannah Appleton
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge A González Martínez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Gerritsen JKW, Young JS, Krieg SM, Jungk C, Ille S, Schucht P, Nahed BV, Broekman MLD, Berger M, De Vleeschouwer S, Vincent AJPE. Resection versus biopsy in patients with glioblastoma (RESBIOP study): study protocol for an international multicentre prospective cohort study (ENCRAM 2202). BMJ Open 2024; 14:e081689. [PMID: 39260848 PMCID: PMC11409263 DOI: 10.1136/bmjopen-2023-081689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION There are no guidelines or prospective studies defining the optimal surgical treatment for glioblastomas in older patients (≥70 years), for those with a limited functioning performance at presentation (Karnofsky Performance Scale ≤70) or for those with tumours in certain locations (midline, multifocal). Therefore, the decision between resection and biopsy is varied, among neurosurgeons internationally and at times even within an institution. This study aims to compare the effects of maximal tumour resection versus tissue biopsy on survival, functional, neurological and quality of life outcomes in these patient subgroups. Furthermore, it evaluates which modality would maximise the potential to undergo adjuvant treatment. METHODS AND ANALYSIS This study is an international, multicentre, prospective, two-arm cohort study of an observational nature. Consecutive patients with glioblastoma will be treated with resection or biopsy and matched with a 1:1 ratio. Primary endpoints are (1) overall survival and (2) proportion of patients that have received adjuvant treatment with chemotherapy and radiotherapy. Secondary endpoints are (1) proportion of patients with National Institute of Health Stroke Scale deterioration at 6 weeks, 3 months and 6 months after surgery; (2) progression-free survival (PFS); (3) quality of life at 6 weeks, 3 months and 6 months after surgery and (4) frequency and severity of serious adverse events. The total duration of the study is 5 years. Patient inclusion is 4 years; follow-up is 1 year. ETHICS AND DISSEMINATION The study has been approved by the Medical Ethics Committee (METC Zuid-West Holland/Erasmus Medical Center; MEC-2020-0812). The results will be published in peer-reviewed academic journals and disseminated to patient organisations and media. TRIAL REGISTRATION NUMBER NCT06146725.
Collapse
Affiliation(s)
| | - Jacob S Young
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Sandro M Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, Munich, Germany
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital Universitätsspital Bern, Bern, Switzerland
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Mitchel Berger
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
7
|
Hamer RP, Praeger AJ. Facilitating complete resection of intrinsic motor cortex glioma with titration of high-frequency cortico-subcortical mapping train count informed by navigated transcranial magnetic stimulation: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24197. [PMID: 38976917 DOI: 10.3171/case24197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The dilemma of neuro-oncological surgery involving suspected eloquent cortex is to maximize the extent of resection while minimizing neurological morbidity, referred to as the "onco-functional balance." Diffuse lower-grade gliomas are capable of infiltrating or displacing neural function within cortical regions and subcortical white matter tracts, which can render classical anatomic associations of eloquent function misleading. OBSERVATIONS This study employed presurgical navigated transcranial magnetic stimulation (nTMS) to determine the motor eloquence of a diffuse lower-grade glioma at the superior frontal gyrus extending and intrinsic to the primary motor cortex in a 45-year-old female. Positive nTMS findings were confirmed intraoperatively with high-frequency direct cortico-subcortical stimulation (HF-DCS). Modification of the HF-DCS train count from train-of-five to train-of-two permitted resection beyond classic anatomical boundaries and conventional HF-DCS safe stopping criteria. LESSONS Anatomical correlates of function can inaccurately inform the surgical management of diffuse lower-grade glioma, which represents the utmost opportunity for progression-free survival. Integrating an individually tailored nTMS-DCS surgical strategy contributed to complete resection, negating the requirement for adjuvant therapy. Serial nTMS follow-up may assist with the characterization of tumor-induced functional reorganization. https://thejns.org/doi/10.3171/CASE24197.
Collapse
Affiliation(s)
- Ryan P Hamer
- Department of Neurosurgery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
- Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Adrian J Praeger
- Department of Neurosurgery, Monash Health, Melbourne, Victoria, Australia and
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Gómez Vecchio T, Rydén I, Ozanne A, Blomstrand M, Carstam L, Smits A, Jakola AS. Global health status and fatigue score in isocitrate dehydrogenase-mutant diffuse glioma grades 2 and 3: A longitudinal population-based study from surgery to 12-month follow-up. Neurooncol Pract 2024; 11:347-357. [PMID: 38737607 PMCID: PMC11085849 DOI: 10.1093/nop/npae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background At the group level, health-related quality of life (HRQoL) in patients with IDH-mutant diffuse glioma grades 2 and 3 seems to remain stable over time. However, clinical experience indicates that there are patients with unfavorable outcomes on key HRQoL subdomains. The aim of this longitudinal population-based study, following patients over a period of 12 months from surgery, was to describe individual-level data on global health status and fatigue score and explore possible predictors of deterioration. Methods All patients undergoing surgery for presumed glioma grades 2 or 3 at the Sahlgrenska University Hospital during 2017-2022, were screened for the study. Patients were invited to complete the European Organization of Research and Treatment of Cancer core questionnaires and brain module at baseline, 3 and 12 months postoperatively. Data is reported with respect to minimal clinical important difference (MCID). Results We included 51 patients with IDH-mutant diffuse glioma grades 2 or 3. There was no difference in group-level data of either global health status or fatigue score from baseline to the 12-month follow-up (P-value > .05). Unfavorable individual changes (beyond MCID) in global health status and fatigue score were observed in 12 and in 17 patients, respectively (23.5% and 33.3%). A lower proportion of proton radiotherapy was found in patients with unfavorable changes in fatigue (10/15, 66.7%) compared to all other patients undergoing radiotherapy (22/23, 95.7%, P-value .03). Conclusions Deterioration beyond MCID was seen in approximately one-third of patients. Changes in global health status could not be predicted, but changes in fatigue may be influenced by tumor-targeted and symptomatic treatment.
Collapse
Affiliation(s)
- Tomás Gómez Vecchio
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Isabelle Rydén
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anneli Ozanne
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Health and Care Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Malin Blomstrand
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Carstam
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anja Smits
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
9
|
Alhalabi OT, Dao Trong P, Kaes M, Jakobs M, Kessler T, Oehler H, König L, Eichkorn T, Sahm F, Debus J, von Deimling A, Wick W, Wick A, Krieg SM, Unterberg AW, Jungk C. Repeat surgery of recurrent glioma for molecularly informed treatment in the age of precision oncology: A risk-benefit analysis. J Neurooncol 2024; 167:245-255. [PMID: 38334907 PMCID: PMC11023957 DOI: 10.1007/s11060-024-04595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.
Collapse
Affiliation(s)
- Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Philip Dao Trong
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Manuel Kaes
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Martin Jakobs
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
- Department of Neurosurgery, Division for Stereotactic Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Oehler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Centre (HIT), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Antje Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Andreas W Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Department of Neurosurgery, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
10
|
Bala A, Olejnik A, Dziedzic T, Piwowarska J, Podgórska A, Marchel A. What helps patients to prepare for and cope during awake craniotomy? A prospective qualitative study. J Neuropsychol 2024; 18:30-46. [PMID: 37036087 DOI: 10.1111/jnp.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023]
Abstract
There is growing interest in awake craniotomies, but some clinicians are concerned that such procedures are poorly tolerated by patients. Therefore, we conducted a study to assess this phenomenon. In this prospective qualitative study, 68 patients who qualified for awake craniotomy were asked to complete the Hospital Anxiety and Depression Scale (HADS)-two days before the surgery and visual analogue scales (VAS) for pain and stress, two days before the surgery and again about two days after. In addition, after their surgery, they took part in a structured interview about what helped them prepare for and cope with the surgery. Most patients tolerated the awake surgery well, scoring low on stress and pain scales. They reported a lower level of stress during the surgery (when questioned afterwards) than before it. Intensity of stress before the surgery correlated negatively with age, positively with HADS anxiety score and positively with stress subsequently experienced during surgery. The level of stress during surgery was associated with stress experienced before the surgery, pain and HADS anxiety and depression scores. Severity of pain during the surgery was positively correlated with stress during surgery and HADS depression and anxiety scores before the surgery. There was no correlation between stress, pain, anxiety and depression and the location of the lesion. Patients have a high tolerance for awake craniotomy. Various factors have an impact on how well patients cope with the operation. Extensive preoperative preparation should be considered a key part of the procedure.
Collapse
Affiliation(s)
| | | | - Tomasz Dziedzic
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Piwowarska
- Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Anna Podgórska
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Marchel
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Aebisher D, Przygórzewska A, Myśliwiec A, Dynarowicz K, Krupka-Olek M, Bożek A, Kawczyk-Krupka A, Bartusik-Aebisher D. Current Photodynamic Therapy for Glioma Treatment: An Update. Biomedicines 2024; 12:375. [PMID: 38397977 PMCID: PMC10886821 DOI: 10.3390/biomedicines12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Magdalena Krupka-Olek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
12
|
Ramakrishnan PK, Saeed F, Thomson S, Corns R, Mathew RK, Sivakumar G. Awake craniotomy for high-grade gliomas - a prospective cohort study in a UK tertiary-centre. Surgeon 2024; 22:e3-e12. [PMID: 38008681 DOI: 10.1016/j.surge.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Studies from the UK reporting on awake craniotomy (AC) include a heterogenous group of patients which limit the evaluation of the true impact of AC in high-grade glioma (HGG) patients. This study aims to report solely the experience and outcomes of AC for HGG surgery from our centre. METHODS A prospective review of all patients who underwent AC for HGG from 2013 to 2019 were performed. Data on patient characteristics including but not limited to demographics, pre- and post-operative Karnofsky performance status (KPS), tumour location and volume, type of surgery, extent of resection (EOR), tumour histopathology, intra- and post-operative complications, morbidity, mortality, disease recurrence, progression-free survival (PFS) and overall survival (OS) from the time of surgery were collected. RESULTS Fifteen patients (6 males; 9 females; 17 surgeries) underwent AC for HGG (median age = 55 years). Two patients underwent repeat surgeries due to disease recurrence. Median pre- and post-operative KPS score was 90 (range:80-100) and 90 (range:60-100), respectively. The EOR ranges from 60 to 100 % with a minimum of 80 % achieved in 81.3 % cases. Post-operative complications include focal seizures (17.6 %), transient aphasia/dysphasia (17.6 %), permanent motor deficit (11.8 %), transient motor deficit (5.9 %) and transient sensory disturbance (5.9 %). There were no surgery-related mortality or post-operative infection. The median PFS and OS were 13 (95%CI 5-78) and 30 (95%CI 21-78) months, respectively. CONCLUSION This is the first study in the UK to solely report outcomes of AC for HGG surgery. Our data demonstrates that AC for HGG in eloquent region is safe, feasible and provides comparable outcomes to those reported in the literature.
Collapse
Affiliation(s)
- Piravin Kumar Ramakrishnan
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Fozia Saeed
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Simon Thomson
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Robert Corns
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom
| | - Ryan K Mathew
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom; School of Medicine, University of Leeds, Woodhouse, Leeds LS2 9JT, United Kingdom.
| | - Gnanamurthy Sivakumar
- Department of Neurosurgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds LS1 3EX, United Kingdom.
| |
Collapse
|
13
|
Büttner T, Maerevoet MKE, Giordano FA, Veldwijk MR, Herskind C, Ruder AM. Combining a noble gas with radiotherapy: glutamate receptor antagonist xenon may act as a radiosensitizer in glioblastoma. Radiat Oncol 2024; 19:16. [PMID: 38291439 PMCID: PMC10826195 DOI: 10.1186/s13014-023-02395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Ionotropic glutamate receptors α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) modulate proliferation, invasion and radioresistance in glioblastoma (GB). Pharmacological targeting is difficult as many in vitro-effective agents are not suitable for in patient applications. We aimed to develop a method to test the well tolerated AMPAR- and NMDAR-antagonist xenon gas as a radiosensitizer in GB. METHODS We designed a diffusion-based system to perform the colony formation assay (CFA), the radiobiological gold standard, under xenon exposure. Stable and reproducible gas atmosphere was validated with oxygen and carbon dioxide as tracer gases. After checking for AMPAR and NMDAR expression via immunofluorescence staining we performed the CFA with the glioblastoma cell lines U87 and U251 as well as the non-glioblastoma derived cell line HeLa. Xenon was applied after irradiation and additionally tested in combination with NMDAR antagonist memantine. RESULTS The gas exposure system proved compatible with the CFA and resulted in a stable atmosphere of 50% xenon. Indications for the presence of glutamate receptor subunits were present in glioblastoma-derived and HeLa cells. Significantly reduced clonogenic survival by xenon was shown in U87 and U251 at irradiation doses of 4-8 Gy and 2, 6 and 8 Gy, respectively (p < 0.05). Clonogenic survival was further reduced by the addition of memantine, showing a significant effect at 2-8 Gy for both glioblastoma cell lines (p < 0.05). Xenon did not significantly reduce the surviving fraction of HeLa cells until a radiation dose of 8 Gy. CONCLUSION The developed system allows for testing of gaseous agents with CFA. As a proof of concept, we have, for the first time, unveiled indications of radiosensitizing properties of xenon gas in glioblastoma.
Collapse
Affiliation(s)
- Thomas Büttner
- Department of Radiation Oncology, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
- Clinic for Urology and Paediatric Urology, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Marielena K E Maerevoet
- Department of Radiation Oncology, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Arne Mathias Ruder
- Department of Radiation Oncology, Medical Faculty Mannheim, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
14
|
Tan H, Nugent JG, Fecker A, Richie EA, Maanum KA, Nerison C, Bowden SG, Yaylali I, Han SJ, Colgan DD, Oken B, Raslan AM. Rapid Passive Gamma Mapping as an Adjunct to Electrical Stimulation Mapping for Functional Localization in Resection of Primary Brain Neoplasms. World Neurosurg 2024; 181:e483-e492. [PMID: 37871691 DOI: 10.1016/j.wneu.2023.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE We examined the utility of passive high gamma mapping (HGM) as an adjunct to conventional awake brain mapping during glioma resection. We compared functional and survival outcomes before and after implementing intraoperative HGM. METHODS This was a retrospective cohort study of 75 patients who underwent a first-time, awake craniotomy for glioma resection. Patients were stratified by whether their operation occurred before or after the implementation of a U.S. Food and Drug Administration-approved high-gamma mapping tool in July 2017. RESULTS The preimplementation and postimplementation cohorts included 28 and 47 patients, respectively. Median intraoperative time (261 vs. 261 minutes, P = 0.250) and extent of resection (97.14% vs. 98.19%, P = 0.481) were comparable between cohorts. Median Karnofsky performance status at initial follow-up was similar between cohorts (P = 0.650). Multivariable Cox regression models demonstrated an adjusted hazard ratio for overall survival of 0.10 (95% confidence interval: 0.02-0.43, P = 0.002) for the postimplementation cohort relative to the preimplementation cohort. Progression-free survival adjusted for insular involvement showed an adjusted hazard ratio of 1.00 (95% confidence interval: 0.49-2.06, P = 0.999) following HGM implementation. Falling short of statistical significance, prevalence of intraoperative seizures and/or afterdischarges decreased after HGM implementation as well (12.7% vs. 25%, P = 0.150). CONCLUSIONS Our results tentatively indicate that passive HGM is a safe and potentially useful adjunct to electrical stimulation mapping for awake cortical mapping, conferring at least comparable functional and survival outcomes with a nonsignificant lower rate of intraoperative epileptiform events. Considering the limitations of our study design and patient cohort, further investigation is needed to better identify optimal use cases for HGM.
Collapse
Affiliation(s)
- Hao Tan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph G Nugent
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Adeline Fecker
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Emma A Richie
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Kayla A Maanum
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Caleb Nerison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Stephen G Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Ilker Yaylali
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Seunggu J Han
- Department of Neurosurgery, Stanford Medicine, Palo Alto, California, USA
| | - Dana D Colgan
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Barry Oken
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
15
|
Zhu E, Shi W, Chen Z, Wang J, Ai P, Wang X, Zhu M, Xu Z, Xu L, Sun X, Liu J, Xu X, Shan D. Reasoning and causal inference regarding surgical options for patients with low-grade gliomas using machine learning: A SEER-based study. Cancer Med 2023; 12:20878-20891. [PMID: 37929878 PMCID: PMC10709720 DOI: 10.1002/cam4.6666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Due to the heterogeneity of low-grade gliomas (LGGs), the lack of randomized control trials, and strong clinical evidence, the effect of the extent of resection (EOR) is currently controversial. AIM To determine the best choice between subtotal resection (STR) and gross-total resection (GTR) for individual patients and to identify features that are potentially relevant to treatment heterogeneity. METHODS Patients were enrolled from the SEER database. We used a novel DL approach to make treatment recommendations for patients with LGG. We also made causal inference of the average treatment effect (ATE) of GTR compared with STR. RESULTS The patients were divided into the Consis. and In-consis. groups based on whether their actual treatment and model recommendations were consistent. Better brain cancer-specific survival (BCSS) outcomes in the Consis. group was observed. Overall, we also identified two subgroups that showed strong heterogeneity in response to GTR. By interpreting the models, we identified numerous variables that may be related to treatment heterogeneity. CONCLUSIONS This is the first study to infer the individual treatment effect, make treatment recommendation, and guide surgical options through deep learning approach in LGG research. Through causal inference, we found that heterogeneous responses to STR and GTR exist in patients with LGG. Visualization of the model yielded several factors that contribute to treatment heterogeneity, which are worthy of further discussion.
Collapse
Affiliation(s)
- Enzhao Zhu
- School of MedicineTongji UniversityShanghaiChina
| | - Weizhong Shi
- Shanghai Hospital Development CenterShanghaiChina
| | - Zhihao Chen
- School of BusinessEast China University of Science and TechnologyShanghaiChina
| | - Jiayi Wang
- School of MedicineTongji UniversityShanghaiChina
| | - Pu Ai
- School of MedicineTongji UniversityShanghaiChina
| | - Xiao Wang
- School of MedicineTongji UniversityShanghaiChina
| | - Min Zhu
- Department of Computer Science and Technology, School of Electronics and Information EngineeringTongji UniversityShanghaiChina
| | - Ziqin Xu
- Department of Industrial Engineering and Operations ResearchColumbia UniversityNew YorkNew YorkUSA
| | - Lingxiao Xu
- School of MedicineTongji UniversityShanghaiChina
| | - Xueyi Sun
- School of Ocean and Earth ScienceTongji UniversityShanghaiChina
| | - Jingyu Liu
- School of Ocean and Earth ScienceTongji UniversityShanghaiChina
| | - Xuetong Xu
- College of Civil EngineeringTongji UniversityShanghaiChina
| | - Dan Shan
- Regenerative Medicine Institute, School of MedicineNational University of IrelandGalwayIreland
| |
Collapse
|
16
|
Cui M, Liu Y, Zhou C, Chen H, Gao X, Liu J, Guo Q, Guan B, Ma X. Resection of high-grade glioma involving language areas assisted by multimodal techniques under general anesthesia: a retrospective study. Chin Neurosurg J 2023; 9:25. [PMID: 37691110 PMCID: PMC10494413 DOI: 10.1186/s41016-023-00340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Multimodal techniques-assisted resection of glioma under general anesthesia (GA) has been shown to achieve similar clinical outcomes as awake craniotomy (AC) in some studies. In this study, we aim to validate the use of multimodal techniques can achieve the maximal safe resection of high-grade glioma involving language areas (HGILAs) under GA. METHODS HGILAs cases were reviewed and collected between January 2009 and December 2020 in our center. Patients were separated into multimodal group (using neuronavigation, intraoperative MRI combined with direct electrical stimulation [DES] and neuromonitoring [IONM]) and conventional group (neuronavigation alone) and clinical outcomes were compared between groups. Studies of HGILAs were reviewed systematically and the meta-analysis results of previous (GA or AC) studies were compared with our results. RESULTS Finally, there were 263 patients in multimodal group and 137 patients in conventional group. Compared to the conventional group, the multimodal group achieved the higher median EOR (100% versus 94.32%, P < 0.001) and rate of gross total resection (GTR) (73.8% versus 36.5%, P < 0.001) and the lower incidence of permanent language deficit (PLD) (9.5% versus 19.7%, P = 0.004). The multimodal group achieved the longer median PFS (16.8 versus 10.3 months, P < 0.001) and OS (23.7 versus 15.7 months, P < 0.001) than the conventional group. The multimodal group achieved a higher rate of GTR than the cohorts in previous multimodal studies under GA and AC (73.8% versus 55.7% [95%CI 32.0-79.3%] versus 53.4% [35.5-71.2%]). The multimodal group had a lower incidence of PLD than the cohorts in previous multimodal studies under GA (9.5% versus 14.0% [5.8-22.1%]) and our incidence of PLD was a little higher than that of previous multimodal studies under AC (9.5% versus 7.5% [3.7-11.2%]). Our multimodal group also achieved a relative longer survival than previous studies. CONCLUSIONS Surgery assisted by multimodal techniques can achieve maximal safe resection for HGILAs under GA. Further prospective studies are needed to compare GA with AC for HGILAs.
Collapse
Affiliation(s)
- Meng Cui
- Department of Emergency, the Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Yukun Liu
- Department of Neurosurgery, Chinese Air Force Medical Center, Beijing, China
| | - Chunhui Zhou
- Department of Neurosurgery, the Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hewen Chen
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Gao
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiayu Liu
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qingbao Guo
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Bing Guan
- Department of Health Economics, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Xiaodong Ma
- Department of Neurosurgery, the First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
17
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
18
|
Fauvet C, Villain M, Gatignol P. Repeated awake surgery and quality of life in patients with diffuse glioma: a systematic review and meta-analysis. Neurosurg Rev 2023; 46:156. [PMID: 37382692 DOI: 10.1007/s10143-023-02073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Diffuse gliomas significantly affect patients' daily lives. Because of the high risk of recurrence and anaplasic transformation, repeated surgery can be proposed in awake condition to prolongs overall survival by limiting and reducing residual tumour volume. However, oncological interest alone is no longer sufficient due to the consequent increase in median survival, and quality of life is becoming an important issue in clinical decision-making. This systematic review focuses on the effects of repeated surgery in awake condition on the quality of life of adults with diffuse glioma through three parameters: return to work, presence of postoperative neurocognitive disorders, and occurrence of epileptic seizures. A systematic review of the last 20 years was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) standards. Summarized data from selected studies were processed quantitatively, using a meta-analysis process, with the Review Manager 5.4 software. Five databases (PubMed, Web of Science, Science Direct, Dimensions, and Embase) were used. Fifteen articles were selected for qualitative analysis and 11 for meta-analysis. One hundred and fifty-one patients (85%) returned to an active socio-professional life after repeated surgery, and 78 (41%) presented neurocognitive disorders in the immediate postoperative period, only 3% (n = 4) of them suffering from permanent disorders. One hundred and forty-nine (78%) participants were free of epileptic seizure after repeated surgery. This systematic review of the literature highlights the benefit of repeated surgery on the quality of life of patients with adult diffuse glioma.
Collapse
Affiliation(s)
| | - Marie Villain
- AP-HP, Service MPR, Pitié-Salpêtrière University Hospital, Paris, France.
- Speech Therapy Department, Sorbonne Université, Paris, France.
- Sorbonne Université, GRC No. 24, Handicap Moteur Et Cognitif & Réadaptation (HaMCRe) AP-HP, Sorbonne Université, 75013, Paris, France.
| | - Peggy Gatignol
- AP-HP, Service MPR, Pitié-Salpêtrière University Hospital, Paris, France
- Speech Therapy Department, Sorbonne Université, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, Paris, France
| |
Collapse
|
19
|
Tan H, Nugent J, Nerison C, Ward E, Bowden S, Raslan AM. Survival, Functional, and Seizure Control Outcomes After Resection of Perirolandic World Health Organization Grade II and III Gliomas: A Single-Center Retrospective Review. World Neurosurg 2023; 172:e165-e176. [PMID: 36603651 DOI: 10.1016/j.wneu.2022.12.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE We aimed to assess, in patients with perirolandic gliomas and gliomas originating from other regions, survival, functional outcomes, and seizure control and, in addition, to identify any clinical characteristics predictive of progression-free survival, overall survival, and seizure control. METHODS We retrospectively analyzed 87 patients who underwent resection of World Health Organization grade II or III gliomas at a single institution between 2009 and 2021. Tumors were classified by topographic involvement. One-year postoperative functional status was quantified with Karnofsky Performance Status. One-year seizure control was defined by Engel seizure classification. Dichotomous and categorical variables were reported as counts and percentages and compared using Fisher exact test. A Cox regression model was used to identify covariates that affect progression-free survival and overall survival. RESULTS Patients with perirolandic gliomas had similar survival and functional outcomes to patients with gliomas from other regions and a low rate of lasting neurologic deficits. Patients with perirolandic gliomas had comparatively worse long-term seizure outcomes (approached statistical significance). Perirolandic involvement (hazard ratio [HR], 0.10; 95% confidence interval [CI], 0.02-0.46; P = 0.005) and preoperative seizures (HR, 0.14; 95% CI, 0.02-0.62; P = 0.017) conferred a lower likelihood of durable seizure control, whereas increased extent of resection (HR, 1.07; 95% CI, 1.03-1.12; P = 0.003) enhanced the likelihood of seizure freedom. CONCLUSIONS Despite proximity to or presence in eloquent structures, perirolandic gliomas can largely be resected without incurring worse functional outcomes. Patients with perirolandic gliomas should be considered for maximal safe resection to optimize survival outcomes and improve seizure control.
Collapse
Affiliation(s)
- Hao Tan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph Nugent
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Caleb Nerison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward Ward
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Stephen Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
20
|
Digital Patient-Reported Outcome Measures Assessing Health-Related Quality of Life in Skull Base Diseases-Analysis of Feasibility and Pitfalls Two Years after Implementation. Healthcare (Basel) 2023; 11:healthcare11040472. [PMID: 36833006 PMCID: PMC9956346 DOI: 10.3390/healthcare11040472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Health-related quality of life (HRQoL) assessment is becoming increasingly important in neurosurgery following the trend toward patient-centered care, especially in the context of skull base diseases. The current study evaluates the systematic assessment of HRQoL using digital patient-reported outcome measures (PROMs) in a tertiary care center specialized in skull base diseases. The methodology and feasibility to conduct digital PROMs using both generic and disease-specific questionnaires were investigated. Infrastructural and patient-specific factors affecting participation and response rates were analyzed. Since August 2020, 158 digital PROMs were implemented in skull base patients presenting for specialized outpatient consultations. Reduced personnel capacity led to significantly fewer PROMs being conducted during the second versus (vs.) the first year after introduction (mean: 0.77 vs. 2.47 per consultation day, p = 0.0002). The mean age of patients not completing vs. those completing long-term assessments was significantly higher (59.90 vs. 54.11 years, p = 0.0136). Follow-up response rates tended to be increased with recent surgery rather than with the wait-and-scan strategy. Our strategy of conducting digital PROMs appears suitable for assessing HRQoL in skull base diseases. The availability of medical personnel for implementation and supervision was essential. Response rates during follow-up tended to be higher both with younger age and after recent surgery.
Collapse
|
21
|
Sinha R, Masina R, Morales C, Burton K, Wan Y, Joannides A, Mair RJ, Morris RC, Santarius T, Manly T, Price SJ. A Prospective Study of Longitudinal Risks of Cognitive Deficit for People Undergoing Glioblastoma Surgery Using a Tablet Computer Cognition Testing Battery: Towards Personalized Understanding of Risks to Cognitive Function. J Pers Med 2023; 13:jpm13020278. [PMID: 36836511 PMCID: PMC9967594 DOI: 10.3390/jpm13020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma and the surgery to remove it pose high risks to the cognitive function of patients. Little reliable data exist about these risks, especially postoperatively before radiotherapy. We hypothesized that cognitive deficit risks detected before surgery will be exacerbated by surgery in patients with glioblastoma undergoing maximal treatment regimens. We used longitudinal electronic cognitive testing perioperatively to perform a prospective, longitudinal, observational study of 49 participants with glioblastoma undergoing surgery. Before surgery (A1), the participant risk of deficit in 5/6 cognitive domains was increased compared to normative data. Of these, the risks to Attention (OR = 31.19), Memory (OR = 97.38), and Perception (OR = 213.75) were markedly increased. These risks significantly increased in the early period after surgery (A2) when patients were discharged home or seen in the clinic to discuss histology results. For participants tested at 4-6 weeks after surgery (A3) before starting radiotherapy, there was evidence of risk reduction towards A1. The observed risks of cognitive deficit were independent of patient-specific, tumour-specific, and surgery-specific co-variates. These results reveal a timeframe of natural recovery in the first 4-6 weeks after surgery based on personalized deficit profiles for each participant. Future research in this period could investigate personalized rehabilitation tools to aid the recovery process found.
Collapse
Affiliation(s)
- Rohitashwa Sinha
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK
- Correspondence:
| | - Riccardo Masina
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Cristina Morales
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Katherine Burton
- Department of Oncology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Yizhou Wan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alexis Joannides
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard J. Mair
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robert C. Morris
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Thomas Santarius
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Tom Manly
- MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - Stephen J. Price
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
22
|
Cui M, Guo Q, Chi Y, Zhang M, Yang H, Gao X, Chen H, Liu Y, Ma X. Predictive model of language deficit after removing glioma involving language areas under general anesthesia. Front Oncol 2023; 12:1090170. [PMID: 36741717 PMCID: PMC9892894 DOI: 10.3389/fonc.2022.1090170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Purpose To establish a predictive model to predict the occurrence of language deficit for patients after surgery of glioma involving language areas (GILAs) under general anesthesia (GA). Methods Patients with GILAs were retrospectively collected in our center between January 2009 and December 2020. Clinical variables (age, sex, aphasia quotient [AQ], seizures and KPS), tumor-related variables (recurrent tumor or not, volume, language cortices invaded or not, shortest distance to language areas [SDLA], supplementary motor area or premotor area [SMA/PMA] involved or not and WHO grade) and intraoperative multimodal techniques (used or not) were analyzed by univariate and multivariate analysis to identify their association with temporary or permanent language deficits (TLD/PLD). The predictive model was established according to the identified significant variables. Receiver operating characteristic (ROC) curve was used to assess the accuracy of the predictive model. Results Among 530 patients with GILAs, 498 patients and 441 patients were eligible to assess TLD and PLD respectively. The multimodal group had the higher EOR and rate of GTR than conventional group. The incidence of PLD was 13.4% in multimodal group, which was much lower than that (27.6%, P<0.001) in conventional group. Three factors were associated with TLD, including SDLA (OR=0.85, P<0.001), preoperative AQ (OR=1.04, P<0.001) and multimodal techniques used (OR=0.41, P<0.001). Four factors were associated with PLD, including SDLA (OR=0.83, P=0.001), SMA/PMA involved (OR=3.04, P=0.007), preoperative AQ (OR=1.03, P=0.002) and multimodal techniques used (OR=0.35, P<0.001). The optimal shortest distance thresholds in detecting the occurrence of TLD/PLD were 1.5 and 4mm respectively. The optimal AQ thresholds in detecting the occurrence of TLD/PLD were 52 and 61 respectively. The cutoff values of the predictive probability for TLD/PLD were 23.7% and 16.1%. The area under ROC curve of predictive models for TLD and PLD were 0.70 (95%CI: 0.65-0.75) and 0.72 (95%CI: 0.66-0.79) respectively. Conclusion The use of multimodal techniques can reduce the risk of postoperative TLD/PLD after removing GILAs under general anesthesia. The established predictive model based on clinical variables can predict the probability of occurrence of TLD and PLD, and it had a moderate predictive accuracy.
Collapse
Affiliation(s)
- Meng Cui
- Department of Emergency, The Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China,Medical School of Chinese People's Liberation Army, Beijing, China,*Correspondence: Meng Cui, ; Xiaodong Ma,
| | - Qingbao Guo
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yihong Chi
- Department of Information Technology, Xian Janssen Pharmaceutical Ltd., Beijing, China
| | - Meng Zhang
- Department of Neurosurgery, The Second Hospital of Southern District of Chinese People's Liberation Army Navy, Sanya, China
| | - Hui Yang
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Gao
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hewen Chen
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yukun Liu
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaodong Ma
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China,*Correspondence: Meng Cui, ; Xiaodong Ma,
| |
Collapse
|
23
|
Svenjeby C, Carstam L, Werlenius K, Bontell TO, Rydén I, Jacobsson J, Dénes A, Jakola AS, Corell A. Changes in clinical management of diffuse IDH-mutated lower-grade gliomas: patterns of care in a 15-year period. J Neurooncol 2022; 160:535-543. [PMID: 36434487 PMCID: PMC9758083 DOI: 10.1007/s11060-022-04136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) mutated diffuse lower-grade gliomas (dLGG) are infiltrating brain tumors and increasing evidence is in favor of early multimodal treatment. In a Scandinavian population-based setting, we wanted to study treatment patterns over the last 15 years, focusing on the short-term postoperative course to better understand the potential negative consequences of treatment. METHODS Patients ≥ 18 years with primary IDH-mutated dLGG grade 2 and 3, operated between January 2007-June 2021 were identified. Patients were divided into subgroups (2007-2011, 2012-2016, and 2017-2021) and comparisons regarding tumor- and disease characteristics, treatment, and postoperative outcome were performed. RESULTS We identified 202 patients (n = 61, 2007-2011; n = 72, 2012-2016; n = 69, 2017-2021), where of 193 underwent resection without change in proportion of resections over time. More patients underwent complete resections in recent times (6.1%; 15.7%; 26.1%, respectively; p = 0.016). Forty-two patients had any neurological deficit postoperatively (14.8%; 23.6%; 23.2%; p = 0.379), mostly minor and transient. Differences in oncological therapy were seen between the investigated subgroups. Early radiotherapy alone (32.8%; 7%; 2.9%; p < 0.001), concomitant chemoradiotherapy (23%; 37.5%; 17.4%; p = 0.022), sequential chemoradiotherapy (0%; 18%; 49.3%; p < 0.001), and no adjuvant treatment (42.6%; 23.6%; 18.8%; p = 0.009) shifted during the studied period. Increasingly more patients received proton radiotherapy compared to photon radiotherapy during the later time periods (p < 0.001). CONCLUSION Complete resections were performed more often in later time periods without an apparent increase in surgical morbidity. Early adjuvant oncological treatment shifted towards providing chemotherapy and combined chemoradiotherapy more often in later time periods. Protons replaced photons as the radiation modality of choice.
Collapse
Affiliation(s)
- Caroline Svenjeby
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Carstam
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Isabelle Rydén
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julia Jacobsson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Dénes
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Asgeir S. Jakola
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alba Corell
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
24
|
Elsheikh M, Bridgman E, Lavrador JP, Lammy S, Poon MTC. Association of extent of resection and functional outcomes in diffuse low-grade glioma: systematic review & meta-analysis. J Neurooncol 2022; 160:717-724. [PMID: 36404358 PMCID: PMC9758089 DOI: 10.1007/s11060-022-04192-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Surgical resection offers survival benefits in patients with diffuse low-grade glioma (DLGG) but its association with functional outcomes is uncertain. This systematic review assessed functional outcomes associated with extent of resection (EoR) in adults with DLGG. METHODS We searched Medline, Embase and CENTRAL on the 19th of February 2021 for observational studies reporting functional outcomes after surgical resection for patients aged ≥ 18 years with a new diagnosis of supratentorial DLGG according to any World Health Organization classification of primary brain tumors. The Newcastle-Ottawa Scale (NOS) informed our risk of bias assessments. The proportion of patients returning to work within 12 months entered a random-effects meta-analysis. PROSPERO registration number CRD42021238387. RESULTS There were seven eligible moderate to high-quality (NOS > 6) observational studies identified from 1,183 records involving 234 patients with DLGG. Functional outcomes reported included neurocognition (n = 2 studies), performance status (n = 3), quality of life (QoL) (n = 1) and return to work (n = 6). The proportion of patients who returned to work within 12 months of surgery was 84% (95% confidence interval [CI] 50-96%, I-squared = 38%, 5 studies) for gross total resection, 66% (95% CI 14-96%, I2 = 57%, 5 studies) for subtotal resection, and 31% (95% CI 4-82%, I2 = 0%, 4 studies) for partial resection. There was insufficient data on other functional outcomes for quantitative synthesis. CONCLUSION A higher proportion of DLGG patients returned to work following gross total resection compared with those who had a subtotal or partial resection. Further studies with standardized assessments can clarify the association between EoR and different functional outcomes.
Collapse
Affiliation(s)
- Mustafa Elsheikh
- Department of Neurosurgery, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Elsie Bridgman
- Department of Neurosurgery, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King's College Hospital, King's College Hospital NHS Foundation Trust, London, UK
| | - Simon Lammy
- Department of Neurosurgery, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Michael Tin Chung Poon
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK.
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, 50 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
25
|
Improving quality of life post-tumor craniotomy using personalized, parcel-guided TMS: safety and proof of concept. J Neurooncol 2022; 160:413-422. [DOI: 10.1007/s11060-022-04160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022]
|
26
|
The need to consider return to work as a main outcome in patients undergoing surgery for diffuse low-grade glioma: a systematic review. Acta Neurochir (Wien) 2022; 164:2789-2809. [PMID: 35945356 DOI: 10.1007/s00701-022-05339-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE For a long time, return to work (RTW) has been neglected in patients harboring a diffuse low-grade glioma (LGG). However, a majority of LGG patients worked at time of diagnosis. Moreover, these patients now live longer given current treatment paradigms, especially thanks to early maximal surgery. METHODS We systematically searched available medical databases for studies that reported data on RTW in patients who underwent resection for LGG. RESULTS A total of 30 studies were selected: 19 considered RTW (especially rate and timing) as an outcome and 11 used scales of health-related quality of life (HRQoL) which included work-related aspects. Series that considered RTW as a main endpoint were composed of 1014 patients, with postoperative RTW rates ranging from 31 to 97.1% (mean 73.1%). Timing to RTW ranged from 15 days to 22 months (mean 6.3 months). Factors related to an increased proportion of RTW were: younger age, better neurologic status, having a white-collar occupation, working pre-operatively, being the sole breadwinner, the use of awake surgery, and greater extent of resection. Female sex, older age, poor neurologic status, pre-operative history of work absences, slow lexical access speed, and postoperative seizures were negatively related to RTW. No studies that used HRQoL scales directly investigated RTW rate or timing. CONCLUSIONS RTW was scarcely analyzed in LGG patients who underwent resection. However, because they are usually young, with no or only mild functional deficits and have a longer life expectancy, postoperative RTW should be assessed more systematically and accurately as a main outcome. As majority (61.5-100%) of LGG patients were working at time of surgery, the responsibility of neurosurgeons is to bring these patients back to their previous activities according to his/her wishes. RTW might also be included as a critical endpoint for future prospective studies and randomized control trials on LGGs.
Collapse
|
27
|
Wang Z, Aili Y, Wang Y, Maimaitiming N, Qin H, Ji W, Fan G, Li B. The RPL4P4 Pseudogene Is a Prognostic Biomarker and Is Associated with Immune Infiltration in Glioma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7967722. [PMID: 35993018 PMCID: PMC9381859 DOI: 10.1155/2022/7967722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Objective Research over the past decade has suggested important roles for pseudogenes in gliomas. Our previous study found that the RPL4P4 pseudogene is highly expressed in gliomas. However, its biological function in gliomas remains unclear. Methods In this study, we analyzed clinical data on patients with glioma obtained from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), the Genotype-Tissue Expression (GTEx), and the GEPIA2 databases. We used the R language for the main analysis. Correlations among RPL4P4 expression, pathological characteristics, clinical outcome, and biological function were evaluated. In addition, the correlations of RPL4P4 expression with immune cell infiltration and glioma progression were analyzed. Finally, wound healing, Transwell, and CCK-8 assays were performed to analyze the function of RPL4P4 in glioma cells. Result We found that RPL4P4 is highly expressed in glioma tissues and is associated with poor prognosis, IDH1 wild type, codeletion of 1p19q, and age. Multivariate analysis and the nomogram model showed that high RPL4P4 expression was an independent risk factor for glioma prognosis and had better prognostic prediction power. Moreover, high RPL4P4 expression correlated with immune cell infiltration, which showed a significant positive association with M2-type macrophages. Finally, RPL4P4 knockdown in glioma cell lines caused decreased glioma cell proliferation, invasion, and migration capacity. Conclusion Our data suggest that RPL4P4 can function as an independent prognostic predictor of glioma. It also shows that RPL4P4 expression correlates with immune cell infiltration and that targeting RPL4P4 may be a new strategy for the treatment of glioma patients.
Collapse
Affiliation(s)
- Zengliang Wang
- Department of Neurosurgery, Xinjiang Bazhou People's Hospital, Xinjiang, China
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yirizhati Aili
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Nuersimanguli Maimaitiming
- Department of Oncology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenyu Ji
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guofeng Fan
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
28
|
Schiavolin S, Mariniello A, Broggi M, Abete-Fornara G, Bollani A, G GP, Bottini G, Querzola M, Scarpa P, Casarotti A, De Michele S, Isella V, Mauri I, Maietti A, Miramonti V, Orru MI, Pertichetti M, Pini E, Regazzoni R, Subacchi S, Ferroli P, Leonardi M. Patient-reported outcome and cognitive measures to be used in vascular and brain tumor surgery: proposal for a minimum set. Neurol Sci 2022; 43:5143-5151. [DOI: 10.1007/s10072-022-06162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
|
29
|
Aabedi AA, Young JS, Chang EF, Berger MS, Hervey-Jumper SL. Involvement of White Matter Language Tracts in Glioma: Clinical Implications, Operative Management, and Functional Recovery After Injury. Front Neurosci 2022; 16:932478. [PMID: 35898410 PMCID: PMC9309688 DOI: 10.3389/fnins.2022.932478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
To achieve optimal survival and quality of life outcomes in patients with glioma, the extent of tumor resection must be maximized without causing injury to eloquent structures. Preservation of language function is of particular importance to patients and requires careful mapping to reveal the locations of cortical language hubs and their structural and functional connections. Within this language network, accurate mapping of eloquent white matter tracts is critical, given the high risk of permanent neurological impairment if they are injured during surgery. In this review, we start by describing the clinical implications of gliomas involving white matter language tracts. Next, we highlight the advantages and limitations of methods commonly used to identify these tracts during surgery including structural imaging techniques, functional imaging, non-invasive stimulation, and finally, awake craniotomy. We provide a rationale for combining these complementary techniques as part of a multimodal mapping paradigm to optimize postoperative language outcomes. Next, we review local and long-range adaptations that take place as the language network undergoes remodeling after tumor growth and surgical resection. We discuss the probable cellular mechanisms underlying this plasticity with emphasis on the white matter, which until recently was thought to have a limited role in adults. Finally, we provide an overview of emerging developments in targeting the glioma-neuronal network interface to achieve better disease control and promote recovery after injury.
Collapse
Affiliation(s)
| | | | | | | | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Haddad AF, Young JS, Morshed RA, Berger MS. FLAIRectomy: Resecting beyond the Contrast Margin for Glioblastoma. Brain Sci 2022; 12:brainsci12050544. [PMID: 35624931 PMCID: PMC9139350 DOI: 10.3390/brainsci12050544] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
The standard of care for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) is maximal resection followed by chemotherapy and radiation. Studies investigating the resection of GBM have primarily focused on the contrast enhancing portion of the tumor on magnetic resonance imaging. Histopathological studies, however, have demonstrated tumor infiltration within peri-tumoral fluid-attenuated inversion recovery (FLAIR) abnormalities, which is often not resected. The histopathology of FLAIR and local recurrence patterns of GBM have prompted interest in the resection of peri-tumoral FLAIR, or FLAIRectomy. To this point, recent studies have suggested a significant survival benefit associated with safe peri-tumoral FLAIR resection. In this review, we discuss the evidence surrounding the composition of peri-tumoral FLAIR, outcomes associated with FLAIRectomy, future directions of the field, and potential implications for patients.
Collapse
|
31
|
Current Status of Neuromodulation-Induced Cortical Prehabilitation and Considerations for Treatment Pathways in Lower-Grade Glioma Surgery. LIFE (BASEL, SWITZERLAND) 2022; 12:life12040466. [PMID: 35454957 PMCID: PMC9024440 DOI: 10.3390/life12040466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
The infiltrative character of supratentorial lower grade glioma makes it possible for eloquent neural pathways to remain within tumoural tissue, which renders complete surgical resection challenging. Neuromodulation-Induced Cortical Prehabilitation (NICP) is intended to reduce the likelihood of premeditated neurologic sequelae that otherwise would have resulted in extensive rehabilitation or permanent injury following surgery. This review aims to conceptualise current approaches involving Repetitive Transcranial Magnetic Stimulation (rTMS-NICP) and extraoperative Direct Cortical Stimulation (eDCS-NICP) for the purposes of inducing cortical reorganisation prior to surgery, with considerations derived from psychiatric, rehabilitative and electrophysiologic findings related to previous reports of prehabilitation. Despite the promise of reduced risk and incidence of neurologic injury in glioma surgery, the current data indicates a broad but compelling possibility of effective cortical prehabilitation relating to perisylvian cortex, though it remains an under-explored investigational tool. Preliminary findings may prove sufficient for the continued investigation of prehabilitation in small-volume lower-grade tumour or epilepsy patients. However, considering the very low number of peer-reviewed case reports, optimal stimulation parameters and duration of therapy necessary to catalyse functional reorganisation remain equivocal. The non-invasive nature and low risk profile of rTMS-NICP may permit larger sample sizes and control groups until such time that eDCS-NICP protocols can be further elucidated.
Collapse
|
32
|
Combined use of multimodal techniques for the resection of glioblastoma involving corpus callosum. Acta Neurochir (Wien) 2022; 164:689-702. [PMID: 34636967 PMCID: PMC8913450 DOI: 10.1007/s00701-021-05008-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To compare the multimodal techniques (including neuronavigation, intraoperative MRI [iMRI], and neuromonitoring [IONM]) and conventional approach (only guided by neuronavigation) in removing glioblastoma (GBM) with corpus callosum (CC) involvement (ccGBM), their effectiveness and safety were analyzed and compared. METHODS Electronic medical records were retrospectively reviewed for ccGBM cases treated in our hospital between January 2016 and July 2020. Patient demographics, tumor characteristics, clinical outcomes, extent of resection (EOR), progression-free survival (PFS), and overall survival (OS) were obtained and compared between the multimodal group (used multimodal techniques) and the conventional group (only used neuronavigation). Both groups only included patients that had maximal safe resection (not biopsy). Postoperative radiochemotherapy was also performed or not. Univariate and multivariate analyses were performed to identify significant prognostic factors and optimal EOR threshold. RESULTS Finally 56 cases of the multimodal group and 21 cases of the conventional group were included. The multimodal group achieved a higher median EOR (100% versus 96.1%, P = 0.036) and gross total resection rate (60.7% versus 33.3%, P = 0.032) and a lower rate of permanent motor deficits (5.4% versus 23.8%, P = 0.052) than the conventional approach. The multimodal group had the longer median PFS (10.9 versus 7.0 months, P = 0.023) and OS (16.1 versus 11.6 months, P = 0.044) than the conventional group. Postoperative language and cognitive function were similar between the two groups. In multivariate analysis, a higher EOR, radiotherapy, and longer cycles of temozolomide chemotherapy were positive prognostic factors for survival of ccGBM. An optimal EOR threshold of 92% was found to significantly benefit the PFS (HR = 0.51, P = 0.036) and OS (HR = 0.49, P = 0.025) of ccGBM. CONCLUSION Combined use of multimodal techniques can optimize the safe removal of ccGBM. Aggressive resection of EOR > 92% using multimodal techniques combined with postoperative radiochemotherapy should be suggested for ccGBM.
Collapse
|
33
|
Patient-Reported Quality of Life in Grade 2 and 3 Gliomas after Surgery, Can We Do More? Clin Neurol Neurosurg 2022; 214:107175. [DOI: 10.1016/j.clineuro.2022.107175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
|
34
|
Aabedi AA, Young JS, Zhang Y, Ammanuel S, Morshed RA, Dalle Ore C, Brown D, Phillips JJ, Oberheim Bush NA, Taylor JW, Butowski N, Clarke J, Chang SM, Aghi M, Molinaro AM, Berger MS, Hervey-Jumper SL. Association of Neurological Impairment on the Relative Benefit of Maximal Extent of Resection in Chemoradiation-Treated Newly Diagnosed Isocitrate Dehydrogenase Wild-Type Glioblastoma. Neurosurgery 2022; 90:124-130. [PMID: 34982879 PMCID: PMC9514750 DOI: 10.1227/neu.0000000000001753] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increases in the extent of resection of both contrast-enhanced (CE) and non-contrast-enhanced (NCE) tissue are associated with substantial survival benefits in patients with isocitrate dehydrogenase wild-type glioblastoma. The fact, however, remains that these lesions exist within the framework of complex neural circuitry subserving cognition, movement, and behavior, all of which affect the ultimate survival outcome. The prognostic significance of the interplay between CE and NCE cytoreduction and neurological morbidity is poorly understood. OBJECTIVE To identify a clinically homogenous population of 228 patients with newly diagnosed isocitrate dehydrogenase wild-type glioblastoma, all of whom underwent maximal safe resection of CE and NCE tissue and adjuvant chemoradiation. We then set out to delineate the competing interactions between resection of CE and NCE tissue and postoperative neurological impairment with respect to overall survival. METHODS Nonparametric multivariate models of survival were generated via recursive partitioning to provide a clinically intuitive framework for the prognostication and surgical management of such patients. RESULTS We demonstrated that the presence of a new postoperative neurological impairment was the key factor in predicting survival outcomes across the entire cohort. Patients older than 60 yr who suffered from at least one new impairment had the worst survival outcome regardless of extent of resection (median of 11.6 mo), whereas those who did not develop a new impairment had the best outcome (median of 28.4 mo) so long as all CE tissue was resected. CONCLUSION Our data provide novel evidence for management strategies that prioritize safe and complete resection of CE tissue.
Collapse
Affiliation(s)
- Alexander A Aabedi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Simon Ammanuel
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Cecilia Dalle Ore
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Desmond Brown
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Clarke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Manish Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
35
|
Chen M, Cui Y, Hao W, Fan Y, Zhang J, Liu Q, Jiang M, Yang Y, Wang Y, Gao C. Ligand-modified homologous targeted cancer cell membrane biomimetic nanostructured lipid carriers for glioma therapy. Drug Deliv 2021; 28:2241-2255. [PMID: 34668811 PMCID: PMC8530486 DOI: 10.1080/10717544.2021.1992038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The main treatment measure currently used for glioma treatment is chemotherapy; the biological barrier of solid tumors hinders the deep penetration of nanomedicines and limits anticancer therapy. Furthermore, the poor solubility of many chemotherapeutic drugs limits the efficacy of antitumor drugs. Therefore, improving the solubility of chemotherapeutic agents and drug delivery to tumor tissues through the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) are major challenges in glioma treatment. Nanostructured lipid carriers (NLCs) have high drug loading capacity, high stability, and high in vivo safety; moreover, they can effectively improve the solubility of insoluble drugs. Therefore, in this study, we used solvent volatilization and ultrasonic melting methods to prepare dihydroartemisinin nanostructured lipid carrier (DHA-NLC). We further used the glioma C6 cancer cell (CC) membrane to encapsulate DHA-NLC owing to the homologous targeting mechanism of the CC membrane; however, the targeting ability of the CC membrane was weak. We accordingly used targeting ligands for modification, and developed a bionanostructured lipid carrier with BBB and BBTB penetration and tumor targeting abilities. The results showed that DHA-loaded NGR/CCNLC (asparagine-glycine-arginine, NGR) was highly targeted, could penetrate the BBB and BBTB, and showed good anti-tumor effects both in vitro and in vivo, which could effectively prolong the survival time of tumor-bearing mice. Thus, the use of DHA-loaded NGR/CCNLC is an effective strategy for glioma treatment and has the potential to treat glioma.
Collapse
Affiliation(s)
- Mengyu Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yuexin Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wenyan Hao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Yueyue Fan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Jingqiu Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qianqian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mingrui Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Yingzi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| |
Collapse
|
36
|
Della Pepa GM, Menna G, Quaranta D. Letter: Presurgical Identification of Patients With Glioblastoma at Risk for Cognitive Impairment at 3-Month Follow-up. Neurosurgery 2021; 89:E252. [PMID: 34318886 DOI: 10.1093/neuros/nyab274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Giuseppe Maria Della Pepa
- Institute of Neurosurgery Fondazione Policlinico Universitario Agostino Gemelli Catholic University IRCCS Rome, Italy
| | - Grazia Menna
- Institute of Neurosurgery Fondazione Policlinico Universitario Agostino Gemelli Catholic University IRCCS Rome, Italy
| | - Davide Quaranta
- Neurology Department Fondazione Policlinico Universitario Agostino Gemelli Catholic University IRCCS Rome, Italy
| |
Collapse
|
37
|
De Witt Hamer PC, Klein M, Hervey-Jumper SL, Wefel JS, Berger MS. In Reply: Functional Outcomes and Health-Related Quality of Life Following Glioma Surgery. Neurosurgery 2021; 89:E189. [PMID: 34131734 PMCID: PMC8364820 DOI: 10.1093/neuros/nyab218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philip C De Witt Hamer
- Cancer Center Amsterdam Department of Neurosurgery Amsterdam UMC Vrije Universiteit Amsterdam, The Netherlands
| | - Martin Klein
- Department of Medical Psychology Amsterdam UMC Vrije Universiteit Amsterdam, The Netherlands
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery University of California, San Francisco San Francisco, California, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology The University of Texas MD Anderson Cancer Center Houston, Texas, USA.,Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston, Texas, USA
| | - Mitchel S Berger
- Department of Neurological Surgery University of California, San Francisco San Francisco, California, USA
| |
Collapse
|
38
|
Lim MJR. Letter: Functional Outcomes and Health-Related Quality of Life Following Glioma Surgery. Neurosurgery 2021; 89:E187-E188. [PMID: 34131740 DOI: 10.1093/neuros/nyab214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Mervyn Jun Rui Lim
- Division of Neurosurgery University Surgical Centre National University Hospital Singapore
| |
Collapse
|