1
|
Liao W, Shi Y, Li Z, Yin X. Advances in 3D printing combined with tissue engineering for nerve regeneration and repair. J Nanobiotechnology 2025; 23:5. [PMID: 39754257 PMCID: PMC11697815 DOI: 10.1186/s12951-024-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair. By implanting scaffolds into damaged nerve tissue sites, the repair and functional reconstruction of nerve injuries can be significantly facilitated. The integration of three-dimensional (3D) printing technology introduces a novel approach for accurate simulation and scalably fabricating neural tissue structures. Tissue-engineered scaffolds developed through 3D printing technology are expected to be a viable therapeutic option for nerve injuries, with broad applicability and continued development. This review systematically examines recent advances in 3D printing and tissue engineering for nerve regeneration and repair. It details the basic principles and construction strategies of neural tissue engineering and explores the crucial role of 3D printing technology. Additionally, it elucidates specific applications and technical challenges associated with this integrated approach, thereby providing valuable insights into innovative strategies and pragmatic implementation within this field.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Yuying Shi
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Zuguang Li
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.
| |
Collapse
|
2
|
Huang Y, Cao S, Li T, Wang J, Xia Z. Exploring core and bridge symptoms in patients recovering from stroke: a network analysis. Front Neurol 2024; 15:1434303. [PMID: 39416666 PMCID: PMC11479880 DOI: 10.3389/fneur.2024.1434303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Background Patients recovering from stroke experience a variety of symptoms that present as a synergistic and mutually reinforcing "symptom cluster," rather than as singular symptoms. In this study, we researched and systematic analyzed these symptom clusters, including core and bridge symptoms, to help determine the relationships between symptoms and to identify key symptom targets, providing a new approach for formulating precise symptom management interventions. Methods Convenience sampling was applied to select 432 stroke recovery patients treated in the Seventh People's Hospital of Changzhou City from August 1, 2023 to April 14, 2024. Subsequently, a cross-sectional survey was conducted using the General Information Questionnaire and Stroke Symptom Experience Scale to extract symptom clusters via exploratory factor analysis. Finally, the "qgraph" and "bootnet" packages in the R language were used to construct a network layout to describe the relationships between symptoms and calculate the centrality index. Results The average age of the 432 enrolled recovering stroke patients was 68.17 ± 12.14 years, including 268 males (62.04%) and 164 females (37.96%), none of whom underwent surgical intervention. Among this cohort, the 3 symptoms with the highest incidence rates were "limb weakness" (A2, 80.56%), "fatigue" (A5, 77.78%), and "limitations of limb movement" (A1, 68.06%). A total of 5 symptom clusters were extracted: the somatic activity disorder, mood-disorder-related, cognitive-linguistic dysfunction, somatic-pain-related, and foot dysfunction symptom clusters. In the symptom network, the 2 most common symptoms in terms of intensity and expected impact were "fatigue" (A5, rs = 1.14, re = 1.00) and "pessimism about the future" (B3, rs = 1.09, re = 1.02). The symptom with the strongest bridge intensity was "limb pain" (D1, rs = 2.64). Conclusion This study uses symptom network analysis to explore the symptoms of stroke patients during recovery, identifying core symptoms and bridge symptoms. Based on these findings, we can develop more targeted management plans to improve the accuracy and efficiency of interventions. Through this management approach, we can enhance treatment effectiveness, reduce unnecessary medication, lower adverse drug reactions, and optimize the allocation of medical resources.
Collapse
Affiliation(s)
- Yao Huang
- Department of Nursing, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Neurology, Changzhou Seventh People’s Hospital, Changzhou, China
| | - Songmei Cao
- Department of Nursing, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Teng Li
- Department of Nursing, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingjing Wang
- Department of Nursing, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhuoran Xia
- Department of Nursing, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Yao S, Yang Y, Li C, Yang K, Song X, Li C, Cao Z, Zhao H, Yu X, Wang X, Wang LN. Axon-like aligned conductive CNT/GelMA hydrogel fibers combined with electrical stimulation for spinal cord injury recovery. Bioact Mater 2024; 35:534-548. [PMID: 38414842 PMCID: PMC10897856 DOI: 10.1016/j.bioactmat.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Rehabilitation and regenerative medicine are two promising approaches for spinal cord injury (SCI) recovery, but their combination has been limited. Conductive biomaterials could bridge regenerative scaffolds with electrical stimulation by inducing axon regeneration and supporting physiological electrical signal transmission. Here, we developed aligned conductive hydrogel fibers by incorporating carbon nanotubes (CNTs) into methacrylate acylated gelatin (GelMA) hydrogel via rotating liquid bath electrospinning. The electrospun CNT/GelMA hydrogel fibers mimicked the micro-scale aligned structure, conductivity, and soft mechanical properties of neural axons. For in vitro studies, CNT/GelMA hydrogel fibers supported PC12 cell proliferation and aligned adhesion, which was enhanced by electrical stimulation (ES). Similarly, the combination of aligned CNT/GelMA hydrogel fibers and ES promoted neuronal differentiation and axon-like neurite sprouting in neural stem cells (NSCs). Furthermore, CNT/GelMA hydrogel fibers were transplanted into a T9 transection rat spinal cord injury model for in vivo studies. The results showed that the incorporating CNTs could remain at the injury site with the GelMA fibers biodegraded and improve the conductivity of regenerative tissue. The aligned structure of the hydrogel could induce the neural fibers regeneration, and the ES enhanced the remyelination and axonal regeneration. Behavioral assessments and electrophysiological results suggest that the combination of aligned CNT/GelMA hydrogel fibers and ES could significantly restore motor function in rats. This study demonstrates that conductive aligned CNT/GelMA hydrogel fibers can not only induce neural regeneration as a scaffold but also support ESto promote spinal cord injury recovery. The conductive hydrogel fibers enable merging regenerative medicine and rehabilitation, showing great potential for satisfactory locomotor recovery after SCI.
Collapse
Affiliation(s)
- Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongdong Yang
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Hai Yun Cang, Beijing, 100700, China
| | - Chenyu Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kaitan Yang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Hai Yun Cang, Beijing, 100700, China
| | - Xin Song
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanhong Li
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Hai Yun Cang, Beijing, 100700, China
| | - Zheng Cao
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Zhao
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Hai Yun Cang, Beijing, 100700, China
| | - Xing Yu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Hai Yun Cang, Beijing, 100700, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lu-Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Yang F, Chen L, Wang H, Zhang J, Shen Y, Qiu Y, Qu Z, Li J, Xu W. Combined contralateral C7 to C7 and L5 to S1 cross nerve transfer for treating limb hemiplegia after stroke. Br J Neurosurg 2024; 38:510-513. [PMID: 33843383 DOI: 10.1080/02688697.2021.1910764] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Contralateral C7 to C7 cross nerve transfer has been proved to be safe and effective for patients with spastic arm paralysis due to stroke and traumatic brain injury. For the lower limb, contralateral L5 to S1 cross nerve transfer serves as a novel surgical approach. In many cases, patients with hemiplegia have both upper and lower limb dysfunction and hope to restore all limb functions within one operation. To cope with this demand, we performed combined contralateral C7 to C7 and L5 to S1 cross nerve transfer in two cases successfully. CASE DESCRIPTION Two patients were enrolled in this study. The first patient is a 36-year-old woman who had spasticity and hemiplegia in both upper and lower limbs on the left side after a right cerebral hemorrhage 14 years prior. The second patient is a 64-year-old man who suffered from permanent muscle weakness in his right limbs, especially the leg, after a left cerebral hemorrhage 7 years prior. Both patients underwent the combined nerve transfer to improve upper and lower limb motor functions simultaneously. During the 10-month follow-up after surgery, the limb functions of both patients improved significantly. CONCLUSIONS This study demonstrates the safety and benefits of combined contralateral C7 to C7 and L5 to S1 cross nerve transfer for hemiplegic patients after stroke. This novel combined surgical approach could provide an optimal choice for patients suffering from both upper and lower limb dysfunction, to reduce hospital stay while reducing financial burden.
Collapse
Affiliation(s)
- Fangjing Yang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liwen Chen
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
| | - Haipeng Wang
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
- Department of Orthopedics, Jing'an District Center Hospital, Shanghai, China
| | - Jionghao Zhang
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
- Department of Orthopedics, Jing'an District Center Hospital, Shanghai, China
| | - Yundong Shen
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
| | - Yanqun Qiu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
| | - Zhiwei Qu
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
- Department of Orthopedics, Jing'an District Center Hospital, Shanghai, China
| | - Jie Li
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
| | - Wendong Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, China, Shanghai
| |
Collapse
|
5
|
Li M, Huan Y, Jiang T, He Y, Gao Z. Rehabilitation training enhanced the therapeutic effect of calycosin on neurological function recovery of rats following spinal cord injury. J Chem Neuroanat 2024; 136:102384. [PMID: 38154570 DOI: 10.1016/j.jchemneu.2023.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Calycosin (CA), a flavonoids component, has demonstrated potential neuroprotection effects by inhibiting oxidative stress in spinal cord injury (SCI) models. This study aims to investigate the impact of combined rehabilitation training (RT) and calycosin therapy on neurological function following SCI, primarily by assessing changes in motor function recovery, neuronal survival, neuronal oxidative stress levels, and neural proliferation, in order to provide novel insights for the treatment of SCI. MATERIALS AND METHODS The SCI model was constructed by compressing the spinal cord using vascular clamps. Calycosin was injected intraperitoneally into the SCI model rats, and a group of 5 rats underwent RT. The motor function of rats after SCI was evaluated using the Basso Beattle Bresnaha (BBB) score and the inclined plate test. Histopathological changes were evaluated by NeuN immunohistochemistry, HE and Nissl staining. Apoptosis was detected by TUNEL staining. The antioxidant effect of combined treatment was assessed by measuring changes in oxidative stress markers after SCI. Western blot analysis was conducted to examine changes in Hsp90-Akt/ASK1-p38 pathway-related proteins. Finally, cell proliferation was detected by BrdU and Ki67 assays. RESULTS RT significantly improved the BBB score and angle of incline promoted by calycosin, resulting in enhanced motor function recovery in rats with SCI. Combining rehabilitation training with calycosin has a positive effect on morphological recovery. Similarly, combined RT enhanced the Nissl and NeuN staining signals of spinal cord neurons increased by calycosin, thereby increasing the number of neurons. TUNEL staining results indicated that calycosin treatment reduced the apoptosis signal in SCI, and the addition of RT further reduced the apoptosis. Moreover, RT combined with calycosin reduced oxidative stress by increasing SOD and GSH levels, while decreasing MDA, NO, ROS, and LDH expressions compared to the calycosin alone. RT slightly enhanced the effect of calycosin in activating Hsp90 and Akt and inhibiting the activation of ASK1 and p38, leading to enhanced inhibition of oxidative stress by calycosin. Additionally, the proliferation indexes (Ki67 and BrdU) assays showed that calycosin treatment alone increased both, whereas the combination treatment further promoted cell proliferation. CONCLUSION Our research findings demonstrate that rehabilitation training enhances the ability of calycosin to reduce oxidative stress, resulting in a decrease in neuronal apoptosis and an increase in proliferation, ultimately promoting neuronal survival.
Collapse
Affiliation(s)
- Mingdong Li
- Department of Spine Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, China; Department of Orthopaedics and Traumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Yanqiang Huan
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot 010017, China
| | - Tianqi Jiang
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot 010017, China
| | - Yongxiong He
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Zengxin Gao
- Department of Spine Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, China; Department of Orthopedics, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, China.
| |
Collapse
|
6
|
Fujii K, Yamakawa K, Takeda Y, Okuda N, Takasu A, Ono F. Understanding the pathophysiology of acute critical illness: translational lessons from zebrafish models. Intensive Care Med Exp 2024; 12:8. [PMID: 38291192 PMCID: PMC10828313 DOI: 10.1186/s40635-024-00595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
The models used to investigate the pathophysiological mechanisms of acute critical illness are not limited to mammalian species. The zebrafish (Danio rerio) is a popular model organism for studying diseases due to its transparency and rapid development. The genes and signaling pathways involved in acute critical illness appear highly conserved among zebrafish and humans. Forward genetics such as random mutagenesis by a chemical mutagen or reverse genetics methods represented by CRISPR/Cas9 allowed researchers to reveal multiple novel aspects of pathological processes in areas including infection, immunity, and regeneration. As a model of sepsis, transgenic zebrafish allowed the visualization of lipopolysaccharide (LPS)-induced vascular leakage in vivo and the demonstration of changes in the expression of cellular junction proteins. Other transgenic zebrafish visualizing the extravascular migration of neutrophils and macrophages have demonstrated a decrease in neutrophil numbers and an increased expression of an inflammatory gene, which replicates a phenomenon observed in humans in clinically encountered sepsis. The regenerative potential and the visibility of zebrafish organs also enabled clarification of important mechanisms in wound healing, angiogenesis, and neurogenesis. After spinal cord injury (SCI), a marker gene expressed in glial bridging was discovered. Furthermore, localized epithelial-to-mesenchymal transition (EMT) and molecular mechanisms leading to spinal cord repair were revealed. These translational studies using zebrafish show the potential of the model system for the treatment of acute critical illnesses such as sepsis, organ failure, and trauma.
Collapse
Affiliation(s)
- Kensuke Fujii
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan.
| | - Yuriko Takeda
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Natsuko Okuda
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Akira Takasu
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
7
|
Boerger TF, Pahapill P, Butts AM, Arocho-Quinones E, Raghavan M, Krucoff MO. Large-scale brain networks and intra-axial tumor surgery: a narrative review of functional mapping techniques, critical needs, and scientific opportunities. Front Hum Neurosci 2023; 17:1170419. [PMID: 37520929 PMCID: PMC10372448 DOI: 10.3389/fnhum.2023.1170419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, a paradigm shift in neuroscience has been occurring from "localizationism," or the idea that the brain is organized into separately functioning modules, toward "connectomics," or the idea that interconnected nodes form networks as the underlying substrates of behavior and thought. Accordingly, our understanding of mechanisms of neurological function, dysfunction, and recovery has evolved to include connections, disconnections, and reconnections. Brain tumors provide a unique opportunity to probe large-scale neural networks with focal and sometimes reversible lesions, allowing neuroscientists the unique opportunity to directly test newly formed hypotheses about underlying brain structural-functional relationships and network properties. Moreover, if a more complete model of neurological dysfunction is to be defined as a "disconnectome," potential avenues for recovery might be mapped through a "reconnectome." Such insight may open the door to novel therapeutic approaches where previous attempts have failed. In this review, we briefly delve into the most clinically relevant neural networks and brain mapping techniques, and we examine how they are being applied to modern neurosurgical brain tumor practices. We then explore how brain tumors might teach us more about mechanisms of global brain dysfunction and recovery through pre- and postoperative longitudinal connectomic and behavioral analyses.
Collapse
Affiliation(s)
- Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alissa M. Butts
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
- Mayo Clinic, Rochester, MN, United States
| | - Elsa Arocho-Quinones
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
8
|
Conway BJ, Taquet L, Boerger TF, Young SC, Krucoff KB, Schmit BD, Krucoff MO. Quantifying Hand Strength and Isometric Pinch Individuation Using a Flexible Pressure Sensor Grid. SENSORS (BASEL, SWITZERLAND) 2023; 23:5924. [PMID: 37447773 DOI: 10.3390/s23135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Modulating force between the thumb and another digit, or isometric pinch individuation, is critical for daily tasks and can be impaired due to central or peripheral nervous system injury. Because surgical and rehabilitative efforts often focus on regaining this dexterous ability, we need to be able to consistently quantify pinch individuation across time and facilities. Currently, a standardized metric for such an assessment does not exist. Therefore, we tested whether we could use a commercially available flexible pressure sensor grid (Tekscan F-Socket [Tekscan Inc., Norwood, MA, USA]) to repeatedly measure isometric pinch individuation and maximum voluntary contraction (MVC) in twenty right-handed healthy volunteers at two visits. We developed a novel equation informed by the prior literature to calculate isometric individuation scores that quantified percentage of force on the grid generated by the indicated digit. MVC intra-class correlation coefficients (ICCs) for the left and right hands were 0.86 (p < 0.0001) and 0.88 (p < 0.0001), respectively, suggesting MVC measurements were consistent over time. However, individuation score ICCs, were poorer (left index ICC 0.41, p = 0.28; right index ICC -0.02, p = 0.51), indicating that this protocol did not provide a sufficiently repeatable individuation assessment. These data support the need to develop novel platforms specifically for repeatable and objective isometric hand dexterity assessments.
Collapse
Affiliation(s)
| | - Léon Taquet
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Timothy F Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sarah C Young
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kate B Krucoff
- Department of Plastic & Reconstructive Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Conway BJ, Taquet L, Boerger TF, Young SC, Krucoff KB, Schmit BD, Krucoff MO. Quantitative assessments of finger individuation with an instrumented glove. J Neuroeng Rehabil 2023; 20:48. [PMID: 37081513 PMCID: PMC10120262 DOI: 10.1186/s12984-023-01173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND In clinical and research settings, hand dexterity is often assessed as finger individuation, or the ability to move one finger at a time. Despite its clinical importance, there is currently no standardized, sufficiently sensitive, or fully objective platform for these evaluations. METHODS Here we developed two novel individuation scores and tested them against a previously developed score using a commercially available instrumented glove and data collected from 20 healthy adults. Participants performed individuation for each finger of each hand as well as whole hand open-close at two study visits separated by several weeks. Using the three individuation scores, intra-class correlation coefficients (ICC) and minimal detectable changes (MDC) were calculated. Individuation scores were further correlated with subjective assessments to assess validity. RESULTS We found that each score emphasized different aspects of individuation performance while generating scores on the same scale (0 [poor] to 1 [ideal]). These scores were repeatable, but the quality of the metrics varied by both equation and finger of interest. For example, index finger intra-class correlation coefficients (ICC's) were 0.90 (< 0.0001), 0.77 (< 0.001), and 0.83 (p < 0.0001), while pinky finger ICC's were 0.96 (p < 0.0001), 0.88 (p < 0.0001), and 0.81 (p < 0.001) for each score. Similarly, MDCs also varied by both finger and equation. In particular, thumb MDCs were 0.068, 0.14, and 0.045, while index MDCs were 0.041, 0.066, and 0.078. Furthermore, objective measurements correlated with subjective assessments of finger individuation quality for all three equations (ρ = - 0.45, p < 0.0001; ρ = - 0.53, p < 0.0001; ρ = - 0.40, p < 0.0001). CONCLUSIONS Here we provide a set of normative values for three separate finger individuation scores in healthy adults with a commercially available instrumented glove. Each score emphasizes a different aspect of finger individuation performance and may be more uniquely applicable to certain clinical scenarios. We hope for this platform to be used within and across centers wishing to share objective data in the physiological study of hand dexterity. In sum, this work represents the first healthy participant data set for this platform and may inform future translational applications into motor physiology and rehabilitation labs, orthopedic hand and neurosurgery clinics, and even operating rooms.
Collapse
Affiliation(s)
- Brian J Conway
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Léon Taquet
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy F Boerger
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sarah C Young
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kate B Krucoff
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Max O Krucoff
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
10
|
Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery. Neurosci Bull 2022; 38:1569-1587. [DOI: 10.1007/s12264-022-00959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCentral nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain–computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.
Collapse
|
11
|
Nout-Lomas YS. Traumatic Nervous System Injury. Vet Clin North Am Equine Pract 2022; 38:363-377. [PMID: 35810150 DOI: 10.1016/j.cveq.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Mechanisms of traumatic nervous system injury to a degree are similar, but differences exist in etiology, pathophysiology, and treatment of brain, spinal cord, and peripheral nerve injury. The most common clinical abnormalities seen in the horse are abnormal level of consciousness, abnormal behavior, seizures, cranial nerve deficits, vestibular disease, tetra- and paraparesis or paraplegia, cauda equina syndrome, specific gait deficits, and muscle atrophy. Treatments are directed toward reducing inflammation and swelling, halting secondary injury, and promoting mechanisms of neuroregeneration and plasticity. Prognosis depends on the severity of primary injury and the neuroanatomic location and extent of nervous tissue damage.
Collapse
Affiliation(s)
- Yvette S Nout-Lomas
- Department of Clinical Sciences, Johnson Family Equine Hospital, Colorado State University, 2230 Gillette Drive, Fort Collins, CO 80523-1678, USA.
| |
Collapse
|
12
|
Krucoff MO, Cajigas I, Lavrov I. Editorial: Neuroplasticity in Rehabilitation. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:916174. [PMID: 36189079 PMCID: PMC9397734 DOI: 10.3389/fresc.2022.916174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin Graduate School of Biomedical Sciences and Marquette University, Milwaukee, WI, United States
- *Correspondence: Max O. Krucoff
| | - Iahn Cajigas
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, United States
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MI, United States
| |
Collapse
|
13
|
Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 2022; 139:43-64. [PMID: 33326879 DOI: 10.1016/j.actbio.2020.12.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The individual approaches of regenerative medicine efforts alone and rehabilitation efforts alone have not yet fully restored function after severe spinal cord injury (SCI). Regenerative rehabilitation may be leveraged to promote regeneration of the spinal cord tissue, and promote reorganization of the regenerated neural pathways and intact spinal circuits for better functional recovery for SCI. Conductive biomaterials may be a linchpin that empowers the synergy between regenerative medicine and rehabilitation approaches, as electrical stimulation applied to the spinal cord could facilitate neural reorganization. In this review, we discuss current regenerative medicine approaches in clinical trials and the rehabilitation, or neuromodulation, approaches for SCI, along with their respective translational limitations. Furthermore, we review the translational potential, in a surgical context, of conductive biomaterials (e.g., conductive polymers, carbon-based materials, metallic nanoparticle-based materials) as they pertain to SCI. While pre-formed scaffolds may be difficult to translate to human contusion SCIs, injectable composites that contain blended conductive components and can form within the injury may be more translational. However, given that there are currently no in vivo SCI studies that evaluated conductive materials combined with rehabilitation approaches, we discuss several limitations of conductive biomaterials, including demonstrating safety and efficacy, that will need to be addressed in the future for conductive biomaterials to become SCI therapeutics. Even so, the use of conductive biomaterials creates a synergistic opportunity to merge the fields of regenerative medicine and rehabilitation and redefine what regenerative rehabilitation means for the spinal cord. STATEMENT OF SIGNIFICANCE: For spinal cord injury (SCI), the individual approaches of regenerative medicine and rehabilitation are insufficient to fully restore functional recovery; however, the goal of regenerative rehabilitation is to combine these two disparate fields to maximize the functional outcomes. Concepts similar to regenerative rehabilitation for SCI have been discussed in several reviews, but for the first time, this review considers how conductive biomaterials may synergize the two approaches. We cover current regenerative medicine and rehabilitation approaches for SCI, and the translational advantages and disadvantages, in a surgical context, of conductive biomaterials used in biomedical applications that may be additionally applied to SCI. Furthermore, we identify the current limitations and translational challenges for conductive biomaterials before they may become therapeutics for SCI.
Collapse
|
14
|
Manousiouthakis E, Park J, Hardy JG, Lee JY, Schmidt CE. Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomater 2022; 139:22-42. [PMID: 34339871 DOI: 10.1016/j.actbio.2021.07.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use in a broad range of applications. These materials have electrical properties comparable to those of commonly used metals, while providing other benefits such as flexibility in processing and modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with biomimetic mechanical and chemical properties. In this review, we focus on the uses of these electroconductive materials in the context of the central and peripheral nervous system, specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of electroconductive materials (e.g., biodegradable materials). We believe such specialized electrically conductive biomaterials will clinically impact the field of tissue regeneration in the foreseeable future. STATEMENT OF SIGNIFICANCE: This review addresses the use of conductive and electroactive materials for neural tissue regeneration, which is of significant interest to a broad readership, and of particular relevance to the growing community of scientists, engineers and clinicians in academia and industry who develop novel medical devices for tissue engineering and regenerative medicine. The review covers the materials that may be employed (primarily focusing on derivatives of fullerenes, graphene and conjugated polymers) and techniques used to analyze materials composed thereof, followed by sections on the application of these materials to nervous tissues (i.e., peripheral nerve, spinal cord, brain, optical, and auditory tissues) throughout the body.
Collapse
Affiliation(s)
- Eleana Manousiouthakis
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Christine E Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States.
| |
Collapse
|
15
|
A Time-Course Study of the Expression Level of Synaptic Plasticity-Associated Genes in Un-Lesioned Spinal Cord and Brain Areas in a Rat Model of Spinal Cord Injury: A Bioinformatic Approach. Int J Mol Sci 2021; 22:ijms22168606. [PMID: 34445312 PMCID: PMC8395345 DOI: 10.3390/ijms22168606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
"Neuroplasticity" is often evoked to explain adaptation and compensation after acute lesions of the Central Nervous System (CNS). In this study, we investigated the modification of 80 genes involved in synaptic plasticity at different times (24 h, 8 and 45 days) from the traumatic spinal cord injury (SCI), adopting a bioinformatic analysis. mRNA expression levels were analyzed in the motor cortex, basal ganglia, cerebellum and in the spinal segments rostral and caudal to the lesion. The main results are: (i) a different gene expression regulation is observed in the Spinal Cord (SC) segments rostral and caudal to the lesion; (ii) long lasting changes in the SC includes the extracellular matrix (ECM) enzymes Timp1, transcription regulators (Egr, Nr4a1), second messenger associated proteins (Gna1, Ywhaq); (iii) long-lasting changes in the Motor Cortex includes transcription regulators (Cebpd), neurotransmitters/neuromodulators and receptors (Cnr1, Gria1, Nos1), growth factors and related receptors (Igf1, Ntf3, Ntrk2), second messenger associated proteins (Mapk1); long lasting changes in Basal Ganglia and Cerebellum include ECM protein (Reln), growth factors (Ngf, Bdnf), transcription regulators (Egr, Cebpd), neurotransmitter receptors (Grin2c). These data suggest the molecular mapping as a useful tool to investigate the brain and SC reorganization after SCI.
Collapse
|
16
|
Cajigas I, Vedantam A. Brain-Computer Interface, Neuromodulation, and Neurorehabilitation Strategies for Spinal Cord Injury. Neurosurg Clin N Am 2021; 32:407-417. [PMID: 34053728 DOI: 10.1016/j.nec.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As neural bypass interfacing, neuromodulation, and neurorehabilitation continue to evolve, there is growing recognition that combination therapies may achieve superior results. This article briefly introduces these broad areas of active research and lays out some of the current evidence for their use for patients with spinal cord injury.
Collapse
Affiliation(s)
- Iahn Cajigas
- Department of Neurosurgery, University of Miami, 1095 Northwest 14th Terrace (D4-6), Miami, FL 33136, USA.
| | - Aditya Vedantam
- Department of Neurosurgery, University of Miami, 1095 Northwest 14th Terrace (D4-6), Miami, FL 33136, USA
| |
Collapse
|
17
|
Spinal cord stimulation and rehabilitation in an individual with chronic complete L1 paraplegia due to a conus medullaris injury: motor and functional outcomes at 18 months. Spinal Cord Ser Cases 2020; 6:96. [PMID: 33067413 DOI: 10.1038/s41394-020-00345-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Epidural electrical stimulation of the conus medullaris has helped facilitate native motor recovery in individuals with complete cervicothoracic spinal cord injuries (SCI). A theorized mechanism of clinical improvement includes supporting central pattern generators intrinsic to the conus medullaris. Because spinal cord stimulators (SCS) are approved for the treatment of neuropathic pain, we were able to test this experimental therapy in a subject with complete L1 paraplegia and neuropathic genital pain due to a traumatic conus injury. CASE PRESENTATION An otherwise healthy 48-year-old male with chronic complete L1 paraplegia with no zones of partial preservation (ZPP) and intractable neuropathic genital pain presented to our group seeking nonmedical pain relief and any possible help with functional restoration. After extensive evaluation, discussion, and consent, we proceeded with SCS implantation at the conus and an intensive outpatient physical therapy regimen consistent with the recent SCI rehabilitation literature. DISCUSSION Intraoperatively, no electromyography (EMG) could be elicited with epidural conus stimulation. At 18 months after implantation, his motor ZPPs had advanced from L1 to L5 on the left and from L1 to L3 on the right. Qualitative increases in lower extremity resting state EMG amplitudes were noted, although there was no consistent evidence of voluntary EMG or rhythmic locomotive leg movements. Three validated functional and quality of life (QoL) surveys demonstrated substantial improvements. The modest motor response compared to the literature suggests likely critical differences in the anatomy of such a low injury. However, the change in ZPPs and QoL suggest potential for neuroplasticity even in this patient population.
Collapse
|
18
|
Scivoletto G, Torre M, Mammone A, Maier DD, Weidner N, Schubert M, Rupp R, Abel R, Yorck-Bernhard K, Jiri K, Curt A, Molinari M. Acute Traumatic and Ischemic Spinal Cord Injuries Have a Comparable Course of Recovery. Neurorehabil Neural Repair 2020; 34:723-732. [DOI: 10.1177/1545968320939569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background. The relative rarity of ischemic compared with traumatic spinal cord injury (SCI) has limited a comparison of the outcomes of these conditions. Objective. To investigate the neurological and functional recovery of ischemic compared with traumatic acute SCI. Methods. Data were derived from the European Multicenter Study Spinal Cord Injury database. Patients with ischemic (iSCI) or traumatic SCI (tSCI), aged 18 years or older were evaluated at different time points from incidence: at about 1 month, 3 months, and 6 months. The neurological status was assessed at each time point by the International Standards for Neurological Classification of Spinal Cord Injury and the functional status by the Spinal Cord Independence Measure. Walking ability was evaluated by Walking Index for Spinal Cord Injury, 10-Meter Walk Test, and 6-Minute Walk Test. Because of the imbalances of the 2 groups in respect to size and lesion severity, a matching procedure according to age, neurological level, and severity of injury was performed. Outcomes evaluation was performed by means of a 2-way repeated-measures ANOVA. Results. The matching procedure resulted in 191 pairs. Both groups significantly improved from about 15 days after the lesion to 6 months. No differences were found in the course of neurological and functional recovery of iSCI compared with tSCI. Conclusions. This analysis from a representative cohort of participants revealed that from 15 days following the cord damage onward, the outcomes after iSCI and tSCI are comparable. This finding supports the potential enrolment of patients with acute iSCI into clinical trials from that point in time after the event and an evaluation up to 6 months afterward.
Collapse
Affiliation(s)
| | | | | | - Doris D. Maier
- Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany
| | | | | | | | - Rainer Abel
- Spinal Cord Injury Center, Bayreuth, Germany
| | | | - Kriz Jiri
- University Hospital Motol, Prague, Czech Republic
| | | | | |
Collapse
|