1
|
Winslow N, Himstead A, Vadera S. Revision LITT for Epilepsy: How likely are patients to get a second treatment if the first fails? J Clin Neurosci 2025; 136:111235. [PMID: 40286393 DOI: 10.1016/j.jocn.2025.111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
AIMS Medically-refractory epilepsy is a serious neurological problem. Surgical resection may offer the greatest chance of seizure freedom, but is underutilized. Laser interstitial thermal therapy (LITT) has minimal incision size and variable efficacy by pathology. LITT can be repeated to provide seizure freedom, however, the number of patients who receive subsequent LITT treatments after a failed first attempt is unknown. We aimed to review the literature on this potential patient population who might benefit most from multiple surgical treatments. METHODS We performed a record review of multiple medical databases for studies treating 5 or more epilepsy patients with LITT utilizing the PRISMA guidelines. From the search, we reviewed 55 articles with a total of 1734 patients with at least six months of follow up. We recorded clinical variables, rates of seizure control after LITT, and details of follow up treatments. RESULTS Of 1734 total epilepsy patients treated with LITT, 46.4 % were listed as seizure free at last follow up. Out of 850 patients with data on additional procedural treatment, 40.5 % were seizure free and 59.5 % had persistent seizures. Of these, 29.1 % received subsequent intervention for continued seizures. These included additional LITT (55.4 %), surgical resections (41.9 %), and neurostimulator placement (2.0 %). Seizure freedom was achieved in 51.20 % of patients undergoing additional LITT, 62.9 % of patients undergoing subsequent surgical resection, and no patient undergoing neurostimulation. Lesions more likely to achieve seizure freedom with LITT were cavernous malformations (66.7 %) and hypothalamic hamartoma (66.4 %). Lesions less likely to achieve seizure freedom with LITT were temporal lobe epilepsy (43.6 %), focal cortical dysplasia (45.5 %), and periventricular nodular heterotopia (35 %). CONCLUSION Though LITT has respectable efficacy in epilepsy, not all patients may be participating in subsequent procedures after a failed first treatment. Patients should be advised that repeat LITT or subsequent surgical resection may be necessary for best chance of seizure freedom.
Collapse
Affiliation(s)
- Nolan Winslow
- University of California Irvine, 101 The City Drive, Orange, CA 92868, United States.
| | - Alexander Himstead
- University of California Irvine, 101 The City Drive, Orange, CA 92868, United States
| | - Sumeet Vadera
- University of California Irvine, 101 The City Drive, Orange, CA 92868, United States
| |
Collapse
|
2
|
Ziechmann R, Galligan K, DiGiovine M, Marsh ED, Kennedy BC. Multiple subpial transections with concomitant responsive neurostimulation of the insula: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2025; 9:CASE24445. [PMID: 40163899 PMCID: PMC11959638 DOI: 10.3171/case24445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/16/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Focal epilepsy arising from the eloquent cortex can be treated with palliative surgical interventions such as multiple subpial transection (MST) or responsive neurostimulation (RNS). These techniques can be performed to reduce the burden of disabling seizures while avoiding disability associated with resection of the eloquent brain. OBSERVATIONS A 17-year-old girl with a history of complex, refractory multifocal epilepsy and previous right anterior temporal lobectomy and left temporal neocortical RNS presented with refractory status epilepticus. Scalp electroencephalography showed seizures that began prior to RNS detection, suggesting a focus outside of the left anterior temporal lobe. MRI showed new edema throughout the left insula. MST and concurrent insular RNS lead placement were performed. The patient was discharged 2 weeks later, and at the 6-month follow-up, she had a 100-fold reduction in clinical seizures and RNS detections. LESSONS This technical report is the first description of 1) concurrent MST and RNS, and 2) placement of a paddle electrode for the RNS over the surface of the insula using a transsylvian approach. Surgery in this case provided both immediate and sustained reduction in disabling seizures over several months. https://thejns.org/doi/10.3171/CASE24445.
Collapse
Affiliation(s)
- Robert Ziechmann
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurosurgery, Temple University Hospital, Philadelphia, Pennsylvania
| | - Kathleen Galligan
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marissa DiGiovine
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric D. Marsh
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin C. Kennedy
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Baumgartner ME, Tomlinson SB, Galligan K, Kennedy BC. Motor Outcome After Posterior Insular Resection for Pediatric Epilepsy. Brain Sci 2025; 15:177. [PMID: 40002511 PMCID: PMC11853241 DOI: 10.3390/brainsci15020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The increasingly widespread use of stereo-EEG in the pre-surgical evaluation has led to greater recognition of the insula as both a source and surgical target for drug-resistant epilepsy. Clinicians have long appreciated the challenges of diagnosing and treating seizures arising from the insula. Insular-onset seizures present with a wide variety of semiologies due to its dense and complex integration with other brain structures, resulting in the insula's reputation as the "great mimicker." Surgical access to the insula is guarded by the overlying frontal, temporal, and parietal opercula and requires careful negotiation of the Sylvian fissure, the vascular candelabra of the middle cerebral artery, and protection of crucial white matter structures (e.g., corona radiata). Despite these difficulties, open surgical intervention for insular epilepsy is associated with favorable seizure control rates, surpassing those achieved with less-invasive alternatives (e.g., laser ablation). Technical nuances that minimize the risk of adverse functional outcomes following open insular resection (especially hemiparesis) are of tremendous value to the epilepsy surgeon. Here, we review the literature on hemiparesis secondary to insular resection and detail strategies for achieving safe and thorough resection of the insula, with emphasis placed on the posterior insula. We supplement this review with four illustrative cases in which focal, drug-resistant epilepsy was managed via open insular resection with no resultant permanent hemiparesis. Technical insights accumulated through these cases are highlighted.
Collapse
Affiliation(s)
- Michael E. Baumgartner
- The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Samuel B. Tomlinson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kathleen Galligan
- Division of Neurosurgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Benjamin C. Kennedy
- The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Neurosurgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| |
Collapse
|
4
|
Ekman FR, González-Martínez JA. Insular Epilepsy: Functions, Diagnostic Approaches, and Surgical Interventions. J Integr Neurosci 2024; 23:209. [PMID: 39613468 DOI: 10.31083/j.jin2311209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 12/01/2024] Open
Abstract
Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects a significant portion of the global population, with drug-resistant epilepsy (DRE) presenting a major treatment challenge. Insular epilepsy, originating from this complex region, exhibits a broad range of symptoms, making diagnosis particularly difficult. Advanced imaging techniques and invasive procedures like stereoelectroencephalography (SEEG) are often crucial for accurately localizing the epileptogenic zone. Surgical resection remains the primary treatment for DRE, with recent advancements in microsurgical techniques and neuroimaging improving outcomes. Additionally, minimally invasive approaches like laser interstitial thermal therapy (LITT) and radiofrequency thermocoagulation (RFTC) offer promising alternatives.
Collapse
Affiliation(s)
- Felix R Ekman
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, 41390 Gothenburg, Sweden
| | | |
Collapse
|
5
|
Wong GM, McCray A, Hom K, Teti S, Cohen NT, Gaillard WD, Oluigbo CO. Outcomes of stereoelectroencephalography following failed epilepsy surgery in children. Childs Nerv Syst 2024; 40:2471-2482. [PMID: 38652142 DOI: 10.1007/s00381-024-06420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Stereoelectroencephalography (SEEG) is valuable for delineating the seizure onset zone (SOZ) in pharmacoresistant epilepsy when non-invasive presurgical techniques are inconclusive. Secondary epilepsy surgery after initial failure is challenging and there is limited research on SEEG following failed epilepsy surgery in children. OBJECTIVE The objective of this manuscript is to present the outcomes of children who underwent SEEG after failed epilepsy surgery. METHODS In this single-institution retrospective study, demographics, previous surgery data, SEEG characteristics, management, and follow-up were analyzed for pediatric patients who underwent SEEG after unsuccessful epilepsy surgery between August 2016 and February 2023. RESULTS Fifty three patients underwent SEEG investigation during this period. Of this, 13 patients were identified who had unsuccessful initial epilepsy surgery (24%). Of these 13 patients, six patients (46%) experienced unsuccessful resective epilepsy surgery that targeted the temporal lobe, six patients (46%) underwent surgery involving the frontal lobe, and one patient (8%) had laser interstitial thermal therapy (LITT) of the right insula. SEEG in two thirds of patients (4/6) with initial failed temporal resections revealed expanded SOZ to include the insula. All 13 patients (100%) had a subsequent surgery after SEEG which was either LITT (54%) or surgical resection (46%). After the subsequent surgery, a favorable outcome (Engel class I/II) was achieved by eight patients (62%), while five patients experienced an unfavorable outcome (Engel class III/IV, 38%). Of the six patients with secondary surgical resection, four patients (67%) had favorable outcomes, while of the seven patients with LITT, two patients (29%) had favorable outcomes (Engel I/II). Average follow-up after the subsequent surgery was 37 months ±23 months. CONCLUSION SEEG following initial failed resective epilepsy surgery may help guide next steps at identifying residual epileptogenic cortex and is associated with favorable seizure control outcomes.
Collapse
Affiliation(s)
- Georgia M Wong
- Department of Neurological Surgery, Georgetown University School of Medicine, Washington, DC, USA.
| | - Ashley McCray
- Department of Neurosurgery, Children's National Hospital, Washington, DC, 20012, USA
| | - Kara Hom
- Department of Neurology, George Washington University School of Medicine, Washington, DC, USA
| | - Saige Teti
- Department of Neurosurgery, Children's National Hospital, Washington, DC, 20012, USA
| | - Nathan T Cohen
- Department of Neurology, George Washington University School of Medicine, Washington, DC, USA
- Department of Neurology, Children's National Hospital, Washington, DC, USA
| | - William D Gaillard
- Department of Neurology, George Washington University School of Medicine, Washington, DC, USA
- Department of Neurology, Children's National Hospital, Washington, DC, USA
| | - Chima O Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, 20012, USA.
| |
Collapse
|
6
|
Lu VM, Wang S, Ragheb JR. Impact of Previous Surgery on Success of Magnetic Resonance-guided Laser Interstitial Thermal Therapy (MRgLITT) to Treat Pediatric Epilepsy: An Institutional Experience. World Neurosurg 2024; 186:e707-e712. [PMID: 38616023 DOI: 10.1016/j.wneu.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND There is an emerging role for minimally invasive magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) in the treatment of pediatric epilepsy refractory to medication. To date, predictors of MRgLITT success have not been established in a sizeable singular experience. Correspondingly, the aim of this study was to elucidate if previous surgical history predicts MRgLITT success in this setting. METHODS A retrospective review was conducted of our MRgLITT procedures for pediatric (patient age <19 years) epilepsy from 2011 to 2020 with documented seizure outcomes at 1 and 2 years after procedure. Categorical and continuous data were compared using χ2 and Student's t test, respectively. RESULTS A total of 41 patients satisfied all criteria with 16 (39%) female and 25 (61%) male patients. Following MRgLITT, seizure-freedom at 1-year was achieved in 15 (37%) patients. In the cohort, there were 14 (34%) patients who had undergone previous open surgery for epilepsy at mean age of 9.4 ± 5.5 years. Patients with a previous open surgery history were found to statistically experience longer length of hospitalization after MRgLITT (P = 0.04) with a statistically lower proportion of seizure-freedom at 1-year after MRgLITT (14% vs. 48%, P = 0.03). However, there was no difference in the rate of seizure-freedom at 2 years (29% vs. 41%, P = 0.44), as well as no difference in subsequent surgical interventions for seizure management between groups. CONCLUSIONS Based on our institutional experience, patients with previous open surgery history may experience longer length of hospitalization after MRgLITT for pediatric epilepsy and lesser response in seizure-freedom within the first year but with non-inferior seizure freedom by the second year.
Collapse
Affiliation(s)
- Victor M Lu
- Department of Neurological Surgery, University of Miami, Jackson Memorial Hospital, Miami, Florida, USA; Department of Neurological Surgery, Nicklaus Children's Hospital, Miami, Florida, USA.
| | - Shelly Wang
- Department of Neurological Surgery, University of Miami, Jackson Memorial Hospital, Miami, Florida, USA; Department of Neurological Surgery, Nicklaus Children's Hospital, Miami, Florida, USA
| | - John R Ragheb
- Department of Neurological Surgery, University of Miami, Jackson Memorial Hospital, Miami, Florida, USA; Department of Neurological Surgery, Nicklaus Children's Hospital, Miami, Florida, USA
| |
Collapse
|
7
|
Ikegaya N, Hayashi T, Higashijima T, Takayama Y, Sonoda M, Iwasaki M, Miyake Y, Sato M, Tateishi K, Suenaga J, Yamamoto T. Arteries Around the Superior Limiting Sulcus: Motor Complication Avoidance in Insular and Insulo-Opercular Surgery. Oper Neurosurg (Hagerstown) 2023; 25:e308-e314. [PMID: 37966479 DOI: 10.1227/ons.0000000000000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Insulo-opercular surgery can cause ischemic motor complications. A source of this is the arteries around the superior limiting sulcus (SLS), which reach the corona radiata, but the detailed anatomy remains unclear. To characterize arteries around the SLS including the long insular arteries (LIAs) and long medullary arteries, we classified them and examined their distribution in relation to the SLS, which helps reduce the risk of ischemia. METHODS Twenty adult cadaveric hemispheres were studied. Coronal brain slices were created perpendicular to the SLS representing insular gyri (anterior short, middle short, posterior short, anterior long, and posterior long). The arteries within 10-mm proximity of the SLS that reached the corona radiata were excavated and classified by the entry point. RESULTS A total of 122 arteries were identified. Sixty-three (52%), 20 (16%), and 39 (32%) arteries penetrated the insula (LIAs), peak of the SLS, and operculum (long medullary arteries), respectively. 100 and six (87%) arteries penetrated within 5 mm of the peak of the SLS. The arteries were distributed in the anterior short gyrus (19%), middle short gyrus (17%), posterior short gyrus (20%), anterior long gyrus (19%), and posterior long gyrus (25%). Seven arteries (5.7%) had anastomoses after they penetrated the parenchyma. CONCLUSION Approximately 90% of the arteries that entered the parenchyma and reached the corona radiata were within a 5-mm radius of the SLS in both the insula and operculum side. This suggests that using the SLS as a landmark during insulo-opercular surgery can decrease the chance of ischemia.
Collapse
Affiliation(s)
- Naoki Ikegaya
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Takefumi Higashijima
- Department of Neurosurgery, Yokohama City University Medical center, Yokohama , Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Masaki Sonoda
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira , Japan
| | - Yohei Miyake
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Mitsuru Sato
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Jun Suenaga
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| |
Collapse
|
8
|
Aung T, Grinenko O, Li J, Mosher JC, Chauvel P, Gonzalez-Martinez J. Stereoelectroencephalography-guided laser ablation in neocortical epilepsy: Electrophysiological correlations and outcome. Epilepsia 2023; 64:2993-3012. [PMID: 37545378 DOI: 10.1111/epi.17739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE We aimed to study the correlation between seizure outcomes in patients with drug-resistant epilepsy (DRE) who underwent laser interstitial thermal therapy (LITT) and stereoelectroencephalographic electrophysiologic patterns with respect to the extent of laser ablation. METHODS We retrospectively analyzed 16 consecutive DRE patients who underwent LITT. A seizure onset zone (SOZ) was obtained from multidisciplinary patient management conferences and again was confirmed independently by two epileptologists based on conventional analysis. SOZs were retrospectively divided into localized, lobar and multilobar, and nonlocalized onset types. A posteriori-predicted epileptogenic zone (PEZ) was identified using the previously developed "EZ fingerprint" pipeline. The completeness of the SOZ and PEZ ablation was compared and correlated with the duration of seizure freedom (SF). RESULTS Of 16 patients, 11 had an a posteriori-identified PEZ. Three patients underwent complete ablation of SOZ with curative intent, and the other 13 with palliative intent. Of three patients with complete ablation of the SOZ, two had concordant PEZ and SOZ and achieved 40- and 46-month SF without seizure recurrence. The remaining patient, without any PEZ identified, had seizure recurrence within 1 month. Six of 13 patients with partial ablation of the SOZ and PEZ achieved mean seizure freedom of 19.8 months (range = 1-44) with subsequent seizure recurrence. The remaining seven patients had partial ablation of the SOZ without the PEZ identified or ablation outside the PEZ with seizure recurrence within 1-2 months, except one patient who had 40-month seizure freedom after ablation of periventricular heterotopia. SIGNIFICANCE Only complete ablation of the well-restricted SOZ concordant with the PEZ was associated with long-term SF, whereas partial ablation of the PEZ might lead to SF with eventual seizure recurrence. Failure to identify PEZ and ablation limited to the SOZ often led to 1-2 months of SF.
Collapse
Affiliation(s)
- Thandar Aung
- Department of Neurology, Epilepsy Center, Cleveland Clinic, Ohio, Cleveland, USA
- Department of Neurology, Epilepsy Center, University of Pittsburgh Medical Center, Pennsylvania, Pittsburgh, USA
| | - Olesya Grinenko
- Department of Neurology, Epilepsy Center, Cleveland Clinic, Ohio, Cleveland, USA
- Mercy Health Grand Rapids Medical Education, Michigan, Grand Rapids, USA
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Massachusetts, Charlestown, USA
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Massachusetts, Boston, USA
| | - John C Mosher
- Department of Neurology, Texas Institute for Restorative Neurotechnologies, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, Houston, USA
| | - Patrick Chauvel
- Department of Neurology, Epilepsy Center, Cleveland Clinic, Ohio, Cleveland, USA
- Department of Neurology, Epilepsy Center, University of Pittsburgh Medical Center, Pennsylvania, Pittsburgh, USA
| | - Jorge Gonzalez-Martinez
- Department of Neurology, Epilepsy Center, Cleveland Clinic, Ohio, Cleveland, USA
- Department of Neurology, Epilepsy Center, University of Pittsburgh Medical Center, Pennsylvania, Pittsburgh, USA
- Department of Neurosurgery, Epilepsy Center, University of Pittsburgh Medical Center, Pennsylvania, Pittsburgh, USA
| |
Collapse
|
9
|
Arocho-Quinones EV, Lew SM, Handler MH, Tovar-Spinoza Z, Smyth MD, Bollo RJ, Donahue D, Perry MS, Levy M, Gonda D, Mangano FT, Kennedy BC, Storm PB, Price AV, Couture DE, Oluigbo C, Duhaime AC, Barnett GH, Muh CR, Sather MD, Fallah A, Wang AC, Bhatia S, Eastwood D, Tarima S, Graber S, Huckins S, Hafez D, Rumalla K, Bailey L, Shandley S, Roach A, Alexander E, Jenkins W, Tsering D, Price G, Meola A, Evanoff W, Thompson EM, Brandmeir N. Magnetic resonance imaging-guided stereotactic laser ablation therapy for the treatment of pediatric epilepsy: a retrospective multiinstitutional study. J Neurosurg Pediatr 2023:1-14. [PMID: 36883640 PMCID: PMC10193482 DOI: 10.3171/2022.12.peds22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/30/2022] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The authors of this study evaluated the safety and efficacy of stereotactic laser ablation (SLA) for the treatment of drug-resistant epilepsy (DRE) in children. METHODS Seventeen North American centers were enrolled in the study. Data for pediatric patients with DRE who had been treated with SLA between 2008 and 2018 were retrospectively reviewed. RESULTS A total of 225 patients, mean age 12.8 ± 5.8 years, were identified. Target-of-interest (TOI) locations included extratemporal (44.4%), temporal neocortical (8.4%), mesiotemporal (23.1%), hypothalamic (14.2%), and callosal (9.8%). Visualase and NeuroBlate SLA systems were used in 199 and 26 cases, respectively. Procedure goals included ablation (149 cases), disconnection (63), or both (13). The mean follow-up was 27 ± 20.4 months. Improvement in targeted seizure type (TST) was seen in 179 (84.0%) patients. Engel classification was reported for 167 (74.2%) patients; excluding the palliative cases, 74 (49.7%), 35 (23.5%), 10 (6.7%), and 30 (20.1%) patients had Engel class I, II, III, and IV outcomes, respectively. For patients with a follow-up ≥ 12 months, 25 (51.0%), 18 (36.7%), 3 (6.1%), and 3 (6.1%) had Engel class I, II, III, and IV outcomes, respectively. Patients with a history of pre-SLA surgery related to the TOI, a pathology of malformation of cortical development, and 2+ trajectories per TOI were more likely to experience no improvement in seizure frequency and/or to have an unfavorable outcome. A greater number of smaller thermal lesions was associated with greater improvement in TST. Thirty (13.3%) patients experienced 51 short-term complications including malpositioned catheter (3 cases), intracranial hemorrhage (2), transient neurological deficit (19), permanent neurological deficit (3), symptomatic perilesional edema (6), hydrocephalus (1), CSF leakage (1), wound infection (2), unplanned ICU stay (5), and unplanned 30-day readmission (9). The relative incidence of complications was higher in the hypothalamic target location. Target volume, number of laser trajectories, number or size of thermal lesions, or use of perioperative steroids did not have a significant effect on short-term complications. CONCLUSIONS SLA appears to be an effective and well-tolerated treatment option for children with DRE. Large-volume prospective studies are needed to better understand the indications for treatment and demonstrate the long-term efficacy of SLA in this population.
Collapse
Affiliation(s)
- Elsa V. Arocho-Quinones
- Departments of Neurosurgery and
- Department of Neurosurgery, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Sean M. Lew
- Departments of Neurosurgery and
- Department of Neurosurgery, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Michael H. Handler
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
| | - Zulma Tovar-Spinoza
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Matthew D. Smyth
- Division of Neurosurgery, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
| | - Robert J. Bollo
- Department of Neurosurgery, Primary Children’s Hospital, Salt Lake City, Utah
| | | | - M. Scott Perry
- Neurology, Cook Children’s Medical Center, Fort Worth, Texas
| | - Michael Levy
- Department of Neurosurgery, Rady Children’s Hospital San Diego, San Diego, California
| | - David Gonda
- Department of Neurosurgery, Rady Children’s Hospital San Diego, San Diego, California
| | | | - Benjamin C. Kennedy
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Phillip B. Storm
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Angela V. Price
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel E. Couture
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Chima Oluigbo
- Department of Neurosurgery, Children’s National Health System, Washington, DC
| | | | - Gene H. Barnett
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Carrie R. Muh
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Maria Fareri Children’s Hospital, Valhalla, New York
| | - Michael D. Sather
- Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania
| | - Aria Fallah
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
| | - Anthony C. Wang
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
| | - Sanjiv Bhatia
- Department of Neurosurgery, Nicklaus Children’s Hospital, Miami, Florida
| | - Daniel Eastwood
- Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sergey Tarima
- Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sarah Graber
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
| | - Sean Huckins
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel Hafez
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri; and
| | - Kavelin Rumalla
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri; and
| | | | | | - Ashton Roach
- Department of Neurosurgery, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | - Erin Alexander
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Wendy Jenkins
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Deki Tsering
- Department of Neurosurgery, Children’s National Health System, Washington, DC
| | - George Price
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Antonio Meola
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Wendi Evanoff
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
| | - Eric M. Thompson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | | | - for the Pediatric Stereotactic Laser Ablation Workgroup
- Departments of Neurosurgery and
- Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Neurosurgery, University of Texas at Austin/Dell Medical School, Austin, Texas
- Department of Neurosurgery, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin
- Department of Neurosurgery, Children’s Hospital Colorado, Aurora, Colorado
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York
- Division of Neurosurgery, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
- Department of Neurosurgery, Primary Children’s Hospital, Salt Lake City, Utah
- Departments of Neurosurgery and
- Neurology, Cook Children’s Medical Center, Fort Worth, Texas
- Department of Neurosurgery, Rady Children’s Hospital San Diego, San Diego, California
- Department of Neurosurgery, Cincinnati Children’s Hospital, Cincinnati, Ohio
- Department of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurosurgery, Wake Forest Baptist Health, Winston-Salem, North Carolina
- Department of Neurosurgery, Children’s National Health System, Washington, DC
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Cleveland Clinic Children’s, Cleveland, Ohio
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Penn State Health, Hershey, Pennsylvania
- Department of Neurosurgery, UCLA Mattel Children’s Hospital, Los Angeles, California
- Department of Neurosurgery, Nicklaus Children’s Hospital, Miami, Florida
- Department of Neurosurgery, St. Louis Children’s Hospital, St. Louis, Missouri; and
- Department of Neurosurgery, Maria Fareri Children’s Hospital, Valhalla, New York
| |
Collapse
|
10
|
Slingerland AL, Chua MMJ, Bolton J, Staffa SJ, Tsuboyama M, Prabhu SP, Pearl PL, Madsen JR, Stone SSD. Stereoelectroencephalography followed by combined electrode removal and MRI-guided laser interstitial thermal therapy or open resection: a single-center series in pediatric patients with medically refractory epilepsy. J Neurosurg Pediatr 2023; 31:206-211. [PMID: 36681974 DOI: 10.3171/2022.11.peds22262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) and MRI-guided laser interstitial thermal therapy (MRgLITT) have emerged as safe, effective, and less invasive alternatives to subdural grid placement and open resection, respectively, for the localization and treatment of medically refractory epilepsy (MRE) in children. Reported pediatric experience combining these complementary techniques is limited, with traditional workflows separating electrode removal and ablation/resection. The authors describe the largest reported series of pediatric epilepsy patients who underwent MRgLITT following SEEG contrasted with a cohort that underwent craniotomy following SEEG, combining ablation/resection with electrode explantation as standard practice. METHODS The medical records of all patients with MRE who had undergone SEEG followed by MRgLITT or open resection/disconnection at Boston Children's Hospital between November 2015 and December 2020 were retrospectively reviewed. Primary outcome variables included surgical complication rates, length of hospital stay following treatment, and Engel classification at the last follow-up. RESULTS Of 74 SEEG patients, 27 (median age 12.1 years, 63% female) underwent MRgLITT and 47 (median age 12.1 years, 49% female) underwent craniotomy. Seventy patients (95%) underwent SEEG followed by combined electrode removal and treatment. Eight MRgLITT cases (30%) and no open cases targeted the insula (p < 0.001). Complication rates did not differ, although trends toward more subdural/epidural hematomas, infarcts, and permanent unanticipated neurological deficits were evident following craniotomy, whereas a trend toward more temporary unanticipated neurological deficits was seen following MRgLITT. The median duration of hospitalization after treatment was 3 and 5 days for MRgLITT and open cases, respectively (p = 0.078). Seizure outcomes were similar between the cohorts, with 74% of MRgLITT and craniotomy patients attaining Engel class I or II outcomes (p = 0.386) at the last follow-up (median 1.1 and 1.9 years, respectively). CONCLUSIONS MRgLITT and open resection following SEEG can both effectively treat MRE in pediatric patients and generally can be performed in a two-surgery workflow during a single hospitalization. In appropriately selected patients, MRgLITT tended to be associated with shorter hospitalizations and fewer complications following treatment and may be best suited for focal deep-seated targets associated with relatively challenging open surgical approaches.
Collapse
Affiliation(s)
| | | | | | - Steven J Staffa
- 3Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital
| | | | - Sanjay P Prabhu
- 4Department of Radiology, Division of Neuroradiology, Boston Children's Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
11
|
Obaid S, Chen JS, Ibrahim GM, Bouthillier A, Dimentberg E, Surbeck W, Guadagno E, Brunette-Clément T, Shlobin NA, Shulkin A, Hale AT, Tomycz LD, Von Lehe M, Perry MS, Chassoux F, Bouilleret V, Taussig D, Fohlen M, Dorfmuller G, Hagiwara K, Isnard J, Oluigbo CO, Ikegaya N, Nguyen DK, Fallah A, Weil AG. Predictors of outcomes after surgery for medically intractable insular epilepsy: A systematic review and individual participant data meta-analysis. Epilepsia Open 2023; 8:12-31. [PMID: 36263454 PMCID: PMC9978079 DOI: 10.1002/epi4.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022] Open
Abstract
Insular epilepsy (IE) is an increasingly recognized cause of drug-resistant epilepsy amenable to surgery. However, concerns of suboptimal seizure control and permanent neurological morbidity hamper widespread adoption of surgery for IE. We performed a systematic review and individual participant data meta-analysis to determine the efficacy and safety profile of surgery for IE and identify predictors of outcomes. Of 2483 unique citations, 24 retrospective studies reporting on 312 participants were eligible for inclusion. The median follow-up duration was 2.58 years (range, 0-17 years), and 206 (66.7%) patients were seizure-free at last follow-up. Younger age at surgery (≤18 years; HR = 1.70, 95% CI = 1.09-2.66, P = .022) and invasive EEG monitoring (HR = 1.97, 95% CI = 1.04-3.74, P = .039) were significantly associated with shorter time to seizure recurrence. Performing MR-guided laser ablation or radiofrequency ablation instead of open resection (OR = 2.05, 95% CI = 1.08-3.89, P = .028) was independently associated with suboptimal or poor seizure outcome (Engel II-IV) at last follow-up. Postoperative neurological complications occurred in 42.5% of patients, most commonly motor deficits (29.9%). Permanent neurological complications occurred in 7.8% of surgeries, including 5% and 1.4% rate of permanent motor deficits and dysphasia, respectively. Resection of the frontal operculum was independently associated with greater odds of motor deficits (OR = 2.75, 95% CI = 1.46-5.15, P = .002). Dominant-hemisphere resections were independently associated with dysphasia (OR = 13.09, 95% CI = 2.22-77.14, P = .005) albeit none of the observed language deficits were permanent. Surgery for IE is associated with a good efficacy/safety profile. Most patients experience seizure freedom, and neurological deficits are predominantly transient. Pediatric patients and those requiring invasive monitoring or undergoing stereotactic ablation procedures experience lower rates of seizure freedom. Transgression of the frontal operculum should be avoided if it is not deemed part of the epileptogenic zone. Well-selected candidates undergoing dominant-hemisphere resection are more likely to exhibit transient language deficits; however, the risk of permanent deficit is very low.
Collapse
Affiliation(s)
- Sami Obaid
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Jia-Shu Chen
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - George M Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Evan Dimentberg
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Werner Surbeck
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Elena Guadagno
- Harvey E. Beardmore Division of Pediatric Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tristan Brunette-Clément
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Nathan A Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aidan Shulkin
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada
| | - Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luke D Tomycz
- The Epilepsy Institute of New Jersey, Jersey City, New Jersey, USA
| | - Marec Von Lehe
- Department of Neurosurgery, Brandenburg Medical School, Neuruppin, Germany
| | - Michael Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neuroscience Center, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Francine Chassoux
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Université Paris-Descartes Paris, Paris, France
| | - Viviane Bouilleret
- Université Paris Saclay-APHP, Unité de Neurophysiologie Clinique et d'Épileptologie(UNCE), Le Kremlin Bicêtre, France
| | - Delphine Taussig
- Université Paris Saclay-APHP, Unité de Neurophysiologie Clinique et d'Épileptologie(UNCE), Le Kremlin Bicêtre, France.,Pediatric Neurosurgery Department, Rothschild Foundation Hospital, Paris, France
| | - Martine Fohlen
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, Paris, France
| | - Georg Dorfmuller
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, Paris, France
| | - Koichi Hagiwara
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Jean Isnard
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Hospital for Neurology and Neurosurgery, Lyon, France
| | - Chima O Oluigbo
- Department of Neurosurgery, Children's National Medical Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Naoki Ikegaya
- Departments of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Dang K Nguyen
- Division of Neurology, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Aria Fallah
- Department of Neurosurgery and Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Alexander G Weil
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada.,Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Treiber JM, Bayley JC, Curry D. Minimally Invasive Destructive, Ablative, and Disconnective Epilepsy Surgery. JOURNAL OF PEDIATRIC EPILEPSY 2023. [DOI: 10.1055/s-0042-1760106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractConventional epilepsy surgery performed by microsurgical dissection typically requires large cranial working windows created with high-speed drills and lengthy incisions. In the past few decades, minimally invasive techniques have been developed with smaller incisions, comparable efficacy, shorter hospitalizations, and better safety profiles. These minimally invasive alternatives utilize stereotactic, ultrasonic, radiotherapeutic, and endoscopic techniques. Although not able to completely replace conventional surgery for all etiologies of epilepsy, these minimally invasive techniques have revolutionized modern epilepsy surgery and have been an invaluable asset to the neurosurgeon's repertoire. The endoscope has allowed for surgeons to have adequate visualization during resective and disconnective epilepsy surgeries using keyhole or miniature craniotomies. Modern stereotactic techniques such as laser interstitial thermal therapy and radiofrequency ablation can be used as viable alternatives for mesial temporal lobe epilepsy and can destroy lesional tissue deep areas without the approach-related morbidity of microsurgery such as with hypothalamic hamartomas. These stereotactic techniques do not preclude future surgery in the settings of treatment failure and have been used successfully after failed conventional surgery. Multiple ablation corridors can be performed in a single procedure that can be used for lesioning of large targets or to simplify treating multifocal epilepsies. These stereotactic techniques have even been used successfully to perform disconnective procedures such as hemispherotomies and corpus callosotomies. In patients unable to tolerate surgery, stereotactic radiosurgery is a minimally invasive option that can result in improved seizure control with minimal procedural risks. Advances in minimally invasive neurosurgery provide viable treatment options for drug-resistant epilepsy with quicker recovery, less injury to functional brain, and for patients that may otherwise not choose conventional surgery.
Collapse
Affiliation(s)
- Jeffrey M. Treiber
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, United States
| | - James C. Bayley
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, United States
| | - Daniel Curry
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, United States
| |
Collapse
|
13
|
Vetkas A, Germann J, Boutet A, Samuel N, Sarica C, Yamamoto K, Santyr B, Cheyuo C, Conner CR, Lang SM, Lozano AM, Ibrahim GM, Valiante T, Kongkham PN, Kalia SK. Laser interstitial thermal therapy for the treatment of insular lesions: A systematic review. Front Neurol 2023; 13:1024075. [PMID: 36686528 PMCID: PMC9845884 DOI: 10.3389/fneur.2022.1024075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Background The surgical treatment of insular lesions has been historically associated with high morbidity. Laser interstitial thermal therapy (LITT) has been increasingly used in the treatment of insular lesions, commonly neoplastic or epileptogenic. Stereotaxis is used to guide laser probes to the insula where real-time magnetic resonance thermometry defines lesion creation. There is an absence of previously published reviews on insular LITT, despite a rapid uptake in use, making further study imperative. Methods Here we present a systematic review of the PubMed and Scopus databases, examining the reported clinical indications, outcomes, and adverse effects of insular LITT. Results A review of the literature revealed 10 retrospective studies reporting on 53 patients (43 pediatric and 10 adults) that were treated with insular LITT. 87% of cases were for the treatment of epilepsy, with 89% of patients achieving seizure outcomes of Engle I-III following treatment. The other 13% of cases reported on insular tumors and radiological improvement was seen in all cases following treatment. All but one study reported adverse events following LITT with a rate of 37%. The most common adverse events were transient hemiparesis (29%) and transient aphasia (6%). One patient experienced an intracerebral hemorrhage, which required a decompressive hemicraniectomy, with subsequent full recovery. Conclusion This systematic review highlights the suitability of LITT for the treatment of both insular seizure foci and insular tumors. Despite the growing use of this technique, prospective studies remain absent in the literature. Future work should directly evaluate the efficacy of LITT with randomized and controlled trials.
Collapse
Affiliation(s)
- Artur Vetkas
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Neurology Clinic, Department of Neurosurgery, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Christopher R. Conner
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Stefan M. Lang
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | - George M. Ibrahim
- Division of Pediatric Neurosurgery, Sick Kids Toronto, University of Toronto, Toronto, ON, Canada
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, Canada
| | - Paul N. Kongkham
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, ON, Canada
- The KITE Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
14
|
Dai Y, Zhang H, Fan X, Wei P, Shan Y, Zhao G. Optimized SEEG-guided three-dimensional radiofrequency thermocoagulation for insular epilepsy. Acta Neurochir (Wien) 2023; 165:249-258. [PMID: 36342542 DOI: 10.1007/s00701-022-05401-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE The high risk of resection surgery for drug-resistant insular epilepsy has driven interest in new treatment techniques. Stereo-electroencephalography-guided three-dimensional radiofrequency thermocoagulation (SEEG-3D RFTC) offers an alternative option. Herein, we present the detailed protocol and investigation of the efficacy and safety of a preliminary observational study. METHODS From February 2017 to April 2021, ten patients diagnosed with insular epilepsy were enrolled in the study. They underwent implantation of a combination of SEEG electrodes to form a high-density focal stereo-array in insula, including oblique electrodes through the long axis of insula and orthogonal electrodes to widely cover the medial and lateral insula. SEEG-3D RFTC was performed between two contiguous contacts of the same electrode, or between two adjacent contacts of different electrodes. RESULTS Surgical procedures were well tolerated, with no related long-term complications. Seizure-free outcome was achieved in seven patients (70%), including ILAE I in four and ILAE II in three. Two other (20%) patients had rare seizures (ILAE III). One (10%) patient experienced an ILAE IV outcome (follow-up = 12--63 months). The responder rate (including ILAE I-IV) was 100%. CONCLUSION The optimized SEEG-3D RFTC is an effective and safe option for the treatment of drug-resistant insular epilepsy.
Collapse
Affiliation(s)
- Yang Dai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
| | - Huaqiang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China.
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China.
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
15
|
Yossofzai O, Stone S, Madsen J, Moineddin R, Wang S, Ragheb J, Mohamed I, Bollo R, Clarke D, Perry MS, Weil AG, Raskin J, Pindrik J, Ahmed R, Lam S, Fallah A, Maniquis C, Andrade A, Ibrahim GM, Drake J, Rutka J, Tailor J, Mitsakakis N, Puka K, Widjaja E. Seizure outcome of pediatric magnetic resonance-guided laser interstitial thermal therapy versus open surgery: A matched noninferiority cohort study. Epilepsia 2023; 64:114-126. [PMID: 36318088 DOI: 10.1111/epi.17451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Minimally invasive magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has been proposed as an alternative to open epilepsy surgery, to address concerns regarding the risk of open surgery. Our primary hypothesis was that seizure freedom at 1 year after MRgLITT is noninferior to open surgery in children with drug-resistant epilepsy (DRE). The secondary hypothesis was that MRgLITT has fewer complications and shorter hospitalization than surgery. The primary objective was to compare seizure outcome of MRgLITT to open surgery in children with DRE. The secondary objective was to compare complications and length of hospitalization of the two treatments. METHODS This retrospective multicenter cohort study included children with DRE treated with MRgLITT or open surgery with 1-year follow-up. Exclusion criteria were corpus callosotomy, neurostimulation, multilobar or hemispheric surgery, and lesion with maximal dimension > 60 mm. MRgLITT patients were propensity matched to open surgery patients. The primary outcome was seizure freedom at 1 year posttreatment. The difference in seizure freedom was compared using noninferiority test, with noninferiority margin of -10%. The secondary outcomes were complications and length of hospitalization. RESULTS One hundred eighty-five MRgLITT patients were matched to 185 open surgery patients. Seizure freedom at 1 year follow-up was observed in 89 of 185 (48.1%) MRgLITT and 114 of 185 (61.6%) open surgery patients (difference = -13.5%, one-sided 97.5% confidence interval = -23.8% to ∞, pNoninferiority = .79). The lower confidence interval boundary of -23.8% was below the prespecified noninferiority margin of -10%. Overall complications were lower in MRgLITT compared to open surgery (10.8% vs. 29.2%, respectively, p < .001). Hospitalization was shorter for MRgLITT than open surgery (3.1 ± 2.9 vs. 7.2 ± 6.1 days, p < .001). SIGNIFICANCE Seizure outcome of MRgLITT at 1 year posttreatment was inferior to open surgery. However, MRgLITT has the advantage of better safety profile and shorter hospitalization. The findings will help counsel children and parents on the benefits and risks of MRgLITT and contribute to informed decision-making on treatment options.
Collapse
Affiliation(s)
- Omar Yossofzai
- Department of Diagnostic Imaging, Hospital for Sick Children Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Scellig Stone
- Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joseph Madsen
- Department of Neurosurgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rahim Moineddin
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shelly Wang
- Department of Neurosurgery, Nicklaus Children's Hospital, Miami, Florida, USA
| | - John Ragheb
- Department of Neurosurgery, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Ismail Mohamed
- Division of Pediatric Neurology, University of Alabama, Birmingham, Alabama, USA
| | - Robert Bollo
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Dave Clarke
- Department of Neurology, Dell Medical School, Austin, Texas, USA
| | - M Scott Perry
- Justin Neurosciences Center, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Alexander G Weil
- Department of Neurosurgery, Saint Justine University Hospital Center, Montreal, Quebec, Canada
| | - Jeffrey Raskin
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA.,Division of Neurosurgery, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Jonathan Pindrik
- Division of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Raheel Ahmed
- Department of Neurosurgery, University of Wisconsin, Madison, Wisconsin, USA
| | - Sandi Lam
- Division of Neurosurgery, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, California, USA
| | - Cassia Maniquis
- Department of Neurosurgery, University of California, Los Angeles Mattel Children's Hospital, Los Angeles, California, USA
| | - Andrea Andrade
- Department of Paediatrics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - George M Ibrahim
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James Drake
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James Rutka
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jignesh Tailor
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Nicholas Mitsakakis
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Klajdi Puka
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Elysa Widjaja
- Department of Diagnostic Imaging, Hospital for Sick Children Toronto, Toronto, Ontario, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Takayama Y, Kimura Y, Iijima K, Yokosako S, Kosugi K, Yamamoto K, Shimizu-Motohashi Y, Kaneko Y, Yamamoto T, Iwasaki M. Volume-Based Radiofrequency Thermocoagulation for Pediatric Insulo-Opercular Epilepsy: A Feasibility Study. Oper Neurosurg (Hagerstown) 2022; 23:241-249. [PMID: 35972088 DOI: 10.1227/ons.0000000000000294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Stereotactic ablation surgeries including radiofrequency thermocoagulation (RFTC) and laser interstitial thermal therapy are recent less invasive treatment methods for insular epilepsy. Volume-based RFTC after stereoelectroencephalography was first proposed by a French group as a more effective method for seizure relief in insular epilepsy patients than stereoelectroencephalography-guided RFTC. OBJECTIVE To describe the feasibility and technical details about volume-based RFTC in patients with insulo-opercular epilepsy. METHODS We successfully treated 3- and 6-year-old patients with medically refractory insulo-opercular epilepsy with volume-based RFTC, in which the target volume of coagulation was flexibly designed by combining multiple spherical models of 5-mm diameter which is smaller than reported previously. RESULTS The insula was targeted by oblique trajectory from the frontoparietal area in one case, and the opercular cortex was targeted by perpendicular trajectories from the perisylvian cortex in the other case. The use of the small sphere model required more trajectories and manipulations but enabled more exhaustive coagulation of the epileptogenic zone, with 70% to 78% of the planned target volume coagulated without complications, and daily seizures disappeared after RFTC in both patients. CONCLUSION Volume-based RFTC planned with small multiple sphere models may improve the completeness of lesioning for patients with insulo-opercular epilepsy. Careful planning is necessary to reduce the risks of vascular injuries.
Collapse
Affiliation(s)
- Yutaro Takayama
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuiko Kimura
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Suguru Yokosako
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kenzo Kosugi
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kaoru Yamamoto
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
17
|
Hubbard ME, Yaghi NK, Selden NR. Technical challenges to anterior temporal lobectomy after laser interstitial thermal therapy for mesial temporal lobe epilepsy: technical note. J Neurosurg Pediatr 2022; 30:128-131. [PMID: 35364573 DOI: 10.3171/2022.2.peds21564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
Abstract
Mesial temporal sclerosis (MTS) is a frequent cause of medically refractory epilepsy, for which laser interstitial thermal therapy (LITT) is an effective treatment. However, experience with the technical considerations posed by additional surgery after an initial LITT procedure is lacking. The authors present the case of a 12-year-old female with medically refractory temporal lobe epilepsy and left MTS who underwent LITT at a separate institution prior to referral. This patient had no change in early postoperative seizure control (Engel class IVB) and then her seizures worsened despite ongoing medical treatment (Engel class IVC). Post-LITT MRI revealed sparing of the mesial hippocampus head, a poor prognostic factor. The authors describe the technical details illustrated by this case of secondary, stereotactic electroencephalography-guided mesial temporal resection following LITT. The case was managed with anterior temporal lobectomy including the resection of residual hippocampus and amygdala.
Collapse
|
18
|
Passos GAR, Silvado CES, Borba LAB. Drug resistant epilepsy of the insular lobe: A review and update article. Surg Neurol Int 2022; 13:197. [PMID: 35673654 PMCID: PMC9168288 DOI: 10.25259/sni_58_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Epilepsy is a chronic disease that affects millions of people around the world generating great expenses and psychosocial problems burdening the public health in different ways. A considerable number of patients are refractory to the drug treatment requiring a more detailed and specialized investigation to establish the most appropriate therapeutic option. Insular epilepsy is a rare form of focal epilepsy commonly drug resistant and has much of its investigation and treatment involved with the surgical management at some point. The insula or the insular lobe is a portion of the cerebral cortex located in the depth of the lateral sulcus of the brain; its triangular in shape and connects with the other adjacent lobes. The insular lobe is a very interesting and complex portion of the brain related with different functions. Insula in Latin means Island and was initially described in the 18th century but its relation with epilepsy was first reported in the 1940–1950s. Insular lobe epilepsy is generally difficult to identify and confirm due to its depth and interconnections. Initial non-invasive studies generally demonstrate frustrating or incoherent information about the origin of the ictal event. Technological evolution made this pathology to be progressively better recognized and understood enabling professionals to perform the correct diagnosis and choose the ideal treatment for the affected population. Methods: A literature review was performed using MEDLINE/PubMed, Scopus, and Web of Science databases. The terms epilepsy/epileptic seizure of the insula and surgical treatment was used in various combinations. We included studies that were published in English, French, or Portuguese; performed in humans with insular epilepsy who underwent some surgical treatment (microsurgery, laser ablation, or radiofrequency thermocoagulation). Results: Initial search results in 1267 articles. After removing the duplicates 710 remaining articles were analyzed for titles and abstracts applying the inclusion and exclusion criteria. 70 studies met all inclusion criteria and were selected. Conclusion: At present, the main interests and efforts are in the attempt to achieve and standardize the adequate management of the patient with refractory epilepsy of the insular lobe and for that purpose several forms of investigation and treatment were developed. In this paper, we will discuss the characteristics and information regarding the pathology and gather data to identify and choose the best therapeutic option for each case.
Collapse
Affiliation(s)
- Gustavo A. R. Passos
- UFPR Post Graduate Program in Internal Medicine, Department of Neurosurgery, Mackenzie University Hospital,
| | - Carlos E. S. Silvado
- UFPR Post Graduate Program in Internal Medicine, Department of Neurology, Hospital de Clínicas da Universidade Federal do Paraná,
| | - Luis Alencar B. Borba
- Department of Neurosurgery, Hospital de Clínicas da Universidade Federal do Paraná/Mackenzie University Hospital, Curitiba, Brazil
| |
Collapse
|
19
|
Stereotactic laser interstitial thermal therapy for the treatment of pediatric drug-resistant epilepsy: indications, techniques, and safety. Childs Nerv Syst 2022; 38:961-970. [PMID: 35274185 DOI: 10.1007/s00381-022-05491-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND MRI-guided laser interstitial thermal therapy (MRgLITT) is a promising alternative to open surgery for treatment of drug-resistant epilepsy, offering significant advantages over traditional approaches for candidate patients, including minimally invasive approach, shorter hospitalization, and decreased patient post-operative discomfort. LITT uses a stereotactically placed fiber optic laser probe to ablate tissue under real-time MR thermometry. METHODS Retrospective chart review of intraoperative and perioperative characteristics was performed for 28 cases of MRgLITT in 25 pediatric patients, ages 4-21 years old, at our institution between 2019 and 2021. MRgLITT ablation of the mesial temporal lobe was performed in 8 cases, extratemporal epileptogenic foci in 9 cases, and for corpus callosotomy in 11 cases. RESULTS At 1 year of follow-up, 53% of all patients experienced improvement in seizure frequency (Engel I or II) (class I: 38%, class II: 15%, class III: 17%, class IV: 31%), including 37% of MTL ablations and 80% extratemporal SOZ ablations. After MRgLITT corpus callosotomy, 71% of patients were free from atonic seizures at most recent follow-up. Median length of hospitalization was 2 days (1-3), including a median ICU stay of 1 day (1-2). CONCLUSION This series demonstrates the safety of MRgLITT as an approach for seizure control in drug-resistant epilepsy. We provide additional evidence that MRgLITT is an effective procedure that is well-tolerated by pediatric patients and is accompanied by an acceptable rate of complications and relatively short hospital stay.
Collapse
|
20
|
Candela-Cantó S, Muchart J, Ramírez-Camacho A, Becerra V, Alamar M, Pascual A, Forero C, Rebollo Polo M, Munuera J, Aparicio J, Rumià J, Hinojosa J. Robot-assisted, real-time, MRI-guided laser interstitial thermal therapy for pediatric patients with hypothalamic hamartoma: surgical technique, pitfalls, and initial results. J Neurosurg Pediatr 2022:1-12. [PMID: 35334464 DOI: 10.3171/2022.2.peds21516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/02/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Real-time, MRI-guided laser interstitial thermal therapy (MRgLITT) has been reported as a safe and effective technique for the treatment of epileptogenic foci in children and adults. After the recent approval of MRgLITT by the European Medicines Agency in April 2018, the authors began to use it for the treatment of hypothalamic hamartomas (HHs) in pediatric patients with the assistance of a robotic arm. In this study, the authors report their initial experience describing the surgical technique, accuracy of the robotic arm, safety, and efficacy. METHODS The laser fiber was placed with the assistance of the stereotactic robotic arm. The accuracy of the robotic arm for this procedure was calculated by comparing the intraoperative MRI to the preoperative plan. Common demographic and seizure characteristics of the patients, laser ablation details, complications, and short-term seizure outcomes were prospectively collected. RESULTS Sixteen procedures (11 first ablations and 5 reablations) were performed in 11 patients between 15 months and 17 years of age (mean age 6.4 years) with drug-resistant epilepsy related to HHs. The mean target point localization error was 1.69 mm. No laser fiber needed to be repositioned. The mean laser power used per procedure was 4.29 W. The trajectory of the laser fiber was accidentally ablated in 2 patients, provoking transient hemiparesis in one of these patients. One patient experienced postoperative somnolence and syndrome of inappropriate antidiuretic hormone secretion, and 2 patients had transient oculomotor (cranial nerve III) palsy. Fifty-four percent of the patients were seizure free after the first ablation (mean follow-up 22 months, range 15-33 months). All 5 patients who experienced an epilepsy relapse underwent a second treatment, and 4 remain seizure free at least 5 months after reablation. CONCLUSIONS In the authors' experience, the robotic arm was sufficiently accurate for laser fiber insertion, even in very young patients. MRgLITT appears to be an effective treatment for selected cases of HH. MRgLITT for HH is a minimally invasive procedure with appealing safety features, as it allows delivery of energy precisely under real-time MRI control. Nonetheless, complications may occur, especially in voluminous HHs. The amount of delivered energy and the catheter cooling system must be closely monitored during the procedure. A larger sample size and longer follow-up duration are needed to judge the efficacy and safety of MRgLITT for HH more rigorously. This initial experience was very promising.
Collapse
Affiliation(s)
- Santiago Candela-Cantó
- 1Neurosurgery Department.,4Epilepsy Surgery Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona, Spain
| | - Jordi Muchart
- 2Diagnostic Imaging Department.,4Epilepsy Surgery Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona, Spain
| | - Alia Ramírez-Camacho
- 4Epilepsy Surgery Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona, Spain
| | - Victoria Becerra
- 1Neurosurgery Department.,4Epilepsy Surgery Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona, Spain
| | - Mariana Alamar
- 1Neurosurgery Department.,4Epilepsy Surgery Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona, Spain
| | | | | | - Mónica Rebollo Polo
- 2Diagnostic Imaging Department.,4Epilepsy Surgery Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona, Spain
| | | | - Javier Aparicio
- 4Epilepsy Surgery Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona, Spain
| | - Jordi Rumià
- 1Neurosurgery Department.,4Epilepsy Surgery Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona, Spain
| | - José Hinojosa
- 1Neurosurgery Department.,4Epilepsy Surgery Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona, Spain
| |
Collapse
|
21
|
Wu C, Schwalb JM, Rosenow JM, McKhann GM, Neimat JS. The American Society for Stereotactic and Functional Neurosurgery Position Statement on Laser Interstitial Thermal Therapy for the Treatment of Drug-Resistant Epilepsy. Neurosurgery 2022; 90:155-160. [PMID: 34995216 DOI: 10.1227/neu.0000000000001799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetic resonance image-guided laser interstitial thermal therapy (MRgLITT) is a novel tool in the neurosurgical armamentarium for the management of drug-resistant epilepsy. Given the recent introduction of this technology, the American Society for Stereotactic and Functional Neurosurgery (ASSFN), which acts as the joint section representing the field of stereotactic and functional neurosurgery on behalf of the Congress of Neurological Surgeons and the American Association of Neurological Surgeons, provides here the expert consensus opinion on evidence-based best practices for the use and implementation of this treatment modality. Indications for treatment are outlined, consisting of failure to respond to, or intolerance of, at least 2 appropriately chosen medications at appropriate doses for disabling, localization-related epilepsy in the setting of well-defined epileptogenic foci, or critical pathways of seizure propagation accessible by MRgLITT. Applications of MRgLITT in mesial temporal lobe epilepsy and hypothalamic hamartoma, along with its contraindications in the treatment of epilepsy, are discussed based on current evidence. To put this position statement in perspective, we detail the evidence and authority on which this ASSFN position statement is based.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jason M Schwalb
- Department of Neurological Surgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Neurological Institute of New York, Columbia University Medical Center, New York, New York, USA
| | - Joseph S Neimat
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
22
|
Barot N, Batra K, Zhang J, Klem ML, Castellano J, Gonzalez-Martinez J, Bagic A. Surgical outcomes between temporal, extratemporal epilepsies and hypothalamic hamartoma: systematic review and meta-analysis of MRI-guided laser interstitial thermal therapy for drug-resistant epilepsy. J Neurol Neurosurg Psychiatry 2022; 93:133-143. [PMID: 34321344 DOI: 10.1136/jnnp-2021-326185] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/20/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Approximately 1/3 of patients with epilepsy have drug-resistant epilepsy (DRE) and require surgical interventions. This meta-analysis aimed to review the effectiveness of MRI-guided laser interstitial thermal therapy (MRgLITT) in DRE. METHODS The Population, Intervention, Comparator and Outcome approach and Preferred Reporting Items for Systematic Reviews and Meta-Analyses were followed. PubMed, MEDLINE and EMBASE databases were systematically searched for English language publications from 2012 to Nov 2020. Data on the prevalence outcome using the Engel Epilepsy Surgery Outcome Scale (Class I-IV), and postoperative complications were analysed with 95% CIs. RESULTS Twenty-eight studies that included a total of 559 patients with DRE were identified. The overall prevalence of Engel class I outcome was 56% (95% CI 0.52% to 0.60%). Hypothalamic hamartomas (HH) patients had the highest seizure freedom rate of 67% (95% CI 0.57% to 0.76%) and outcome was overall comparable between mesial temporal lobe epilepsy (mTLE) (56%, 95% CI 0.50% to 0.61%) and extratemporal epilepsy (50% 95% CI 0.40% to 0.59%). The mTLE cases with mesial temporal sclerosis had better outcome vs non-lesional cases of mTLE. The prevalence of postoperative adverse events was 19% (95% CI 0.14% to 0.25%) and the most common adverse event was visual field deficits. The reoperation rate was 9% (95% CI 0.05% to 0.14%), which included repeat ablation and open resection. CONCLUSION MRgLITT is an effective and safe intervention for DRE with different disease aetiologies. The seizure freedom outcome is overall comparable in between extratemporal and temporal lobe epilepsy; and highest with HH. TRAIL REGISTRATION NUMBER The study protocol was registered with the National Institute for Health Research (CRD42019126365), which serves as a prospective register of systematic reviews. It is an international database of prospectively registered systematic reviews with a focus on health-related outcomes. Details about the protocol can be found at https://wwwcrdyorkacuk/PROSPERO/.
Collapse
Affiliation(s)
- Niravkumar Barot
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kavita Batra
- Office of Research, University of Nevada, Las vegas, Nevada, USA
| | - Jerry Zhang
- University of Pittsburgh, Biostatistical Consulting Laboratory, Pittsburgh, Pennsylvania, USA
| | - Mary Lou Klem
- Library System, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James Castellano
- Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Anto Bagic
- Neurology, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Corpus Callosotomy in the Modern Era: Origins, Efficacy, Technical Variations, Complications, and Indications. World Neurosurg 2022; 159:146-155. [PMID: 35033693 DOI: 10.1016/j.wneu.2022.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
Corpus callosotomy is among the oldest surgeries performed for drug-resistant epilepsy (DRE). First performed in 1940, various studies have since assessed its outcomes in various patient populations in addition to describing different extents of sectioning and emerging technologies (i.e. endoscopic, laser interstitial thermal therapy, and radiosurgery). In order to capture the current state and offer a reappraisal, we comprehensively review corpus callosotomy's origins, efficacy for various seizure types, technical variations, complications, and indications and compare the procedure to vagus nerve stimulation therapy which has similar indications. We consider corpus callosotomy to be a safe and efficacious procedure that should be considered by clinicians when appropriate. Furthermore, it can also play an important role in treating patients with DRE in low-to-middle-income countries where resources are limited.
Collapse
|
24
|
Li M, Ma X, Mai C, Fan Z, Wang Y, Ren Y. Knowledge Atlas of Insular Epilepsy: A Bibliometric Analysis. Neuropsychiatr Dis Treat 2022; 18:2891-2903. [PMID: 36540673 PMCID: PMC9760072 DOI: 10.2147/ndt.s392953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE In order to determine research hotspots and prospective directions, this work used VOSviewer and CiteSpace to assess the current state of insular epilepsy research. METHODS We looked for pertinent research about insular epilepsy published between the first of January 2000 and the thirtieth of April 2022 in the Web of Science Core Collection (WoSCC) database. CiteSpace and VOSviewer were used to build a knowledge atlas by analyzing authors, institutions, countries, keywords with citation bursts, keyword clustering, keyword co-occurrence, publishing journals, reference co-citation patterns, and other factors. RESULTS A total of 305 publications on insular epilepsy were found. Nguyen DK had the most articles published (37), whereas Mauguière F and Isnard J had the highest average number of citations/publications (39.37 and 38.09, respectively). The leading countries and institutions in this field were the United States (82 papers) and Université de Montréal (40 papers). Authors, countries, and institutions appear to be actively collaborating. Hot topics and research frontiers included surgical treatment, functional network connectivity, and the application of neuroimaging methods to study insular epilepsy. CONCLUSION In summary, the most influential articles, authors, journals, organizations, and countries on the subject of insular epilepsy were determined by this analysis. This study investigated the area of insular epilepsy research and forecasted upcoming trends using co-occurrence and evolution methods.
Collapse
Affiliation(s)
- Manli Li
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xiaoli Ma
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Chendi Mai
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Zhiru Fan
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yankai Ren
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
25
|
Consales A, Cognolato E, Pacetti M, Mancardi MM, Tortora D, Di Perna G, Piatelli G, Nobili L. Magnetic Resonance-Guided Laser Interstitial Thermal Therapy (MR-gLiTT) in Pediatric Epilepsy Surgery: State of the Art and Presentation of Giannina Gaslini Children's Hospital (Genoa, Italy) Series. Front Neurol 2021; 12:739034. [PMID: 34764929 PMCID: PMC8577648 DOI: 10.3389/fneur.2021.739034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance-guided laser interstitial thermal therapy (MR-gLiTT) is a novel minimally invasive treatment approach for drug-resistant focal epilepsy and brain tumors. Using thermal ablation induced by a laser diode implanted intracranially in a stereotactic manner, the technique is highly effective and safe, reducing the risk associated with more traditional open surgical approaches that could lead to increased neurological morbidity. Indications for MR-gLiTT in pediatric epilepsy surgery include hypothalamic hamartoma, tuberous sclerosis complex, cavernoma-related epilepsy, SEEG-guided seizure onset zone ablation, corpus callosotomy, periventricular nodular heterotopia, mesial temporal lobe epilepsy, and insular epilepsy. We review the available literature on the topic and present our series of patients with drug-resistant epilepsy treated by MR-gLiTT. Our experience, represented by six cases of hypothalamic hamartomas, one case of tuberous sclerosis, and one case of dysembryoplastic neuroepithelial tumor, helps to confirm that MR-gLiTT is a highly safe and effective procedure for several epilepsy conditions in children.
Collapse
Affiliation(s)
- Alessandro Consales
- Unit of Neurosurgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Erica Cognolato
- DINOGMI, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Mattia Pacetti
- Unit of Neurosurgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy.,DINOGMI, University of Genoa, Genoa, Italy
| | - Maria Margherita Mancardi
- Unit of Child Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Domenico Tortora
- Unit of Neuroradiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Giuseppe Di Perna
- Unit of Neurosurgery, Azienda Ospedaliera Universitaria (AOU) Città della Scienza e della Salute, University of Turin, Turin, Italy
| | - Gianluca Piatelli
- Unit of Neurosurgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Lino Nobili
- DINOGMI, University of Genoa, Genoa, Italy.,Unit of Child Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
26
|
Belohlavkova A, Jahodova A, Kudr M, Benova B, Ebel M, Liby P, Taborsky J, Jezdik P, Janca R, Kyncl M, Tichy M, Krsek P. May intraoperative detection of stereotactically inserted intracerebral electrodes increase precision of resective epilepsy surgery? Eur J Paediatr Neurol 2021; 35:49-55. [PMID: 34610561 DOI: 10.1016/j.ejpn.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/13/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
OBJECT Epilepsy surgery is an effective treatment for selected patients with focal intractable epilepsy. Complete removal of the epileptogenic zone significantly increases the chances for postoperative seizure-freedom. In complex surgical candidates, delineation of the epileptogenic zone requires a long-term invasive video/EEG from intracranial electrodes. It is especially challenging to achieve a complete resection in deep brain structures such as opercular-insular cortex. We report a novel approach utilizing intraoperative visual detection of stereotactically implanted depth electrodes to inform and guide the extent of surgical resection. METHODS We retrospectively reviewed data of pediatric patients operated in Motol Epilepsy Center between October 2010 and June 2020 who underwent resections guided by intraoperative visual detection of depth electrodes following SEEG. The outcome in terms of seizure- and AED-freedom was assessed individually in each patient. RESULTS Nineteen patients (age at surgery 2.9-18.6 years, median 13 years) were included in the study. The epileptogenic zone involved opercular-insular cortex in eighteen patients. The intraoperative detection of the electrodes was successful in seventeen patients and the surgery was regarded complete in sixteen. Thirteen patients were seizure-free at final follow-up including six drug-free cases. The successful intraoperative detection of the electrodes was associated with favorable outcome in terms of achieving complete resection and seizure-freedom in most cases. On the contrary, the patients in whom the procedure failed had poor postsurgical outcome. CONCLUSION The reported technique helps to achieve the complete resection in challenging patients with the epileptogenic zone in deep brain structures.
Collapse
Affiliation(s)
- Anezka Belohlavkova
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Alena Jahodova
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Martin Kudr
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Barbora Benova
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Matyas Ebel
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic
| | - Petr Liby
- Department of Neurosurgery, Charles University, 2nd Faculty of Medicine and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jakub Taborsky
- Department of Neurosurgery, Charles University, 2nd Faculty of Medicine and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| | - Petr Jezdik
- Faculty of Electrical Engineering, Department of Circuit Theory, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic
| | - Radek Janca
- Faculty of Electrical Engineering, Department of Circuit Theory, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic
| | - Martin Kyncl
- Department of Radiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| | - Michal Tichy
- Department of Neurosurgery, Charles University, 2nd Faculty of Medicine and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| | - Pavel Krsek
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Motol Epilepsy Centre, Full Member of the ERN EpiCARE, V Uvalu 84, 15006, Prague, Czech Republic.
| |
Collapse
|
27
|
Guglielmi G, Eschbach KL, Alexander AL. Smaller Knife, Fewer Seizures? Recent Advances in Minimally Invasive Techniques in Pediatric Epilepsy Surgery. Semin Pediatr Neurol 2021; 39:100913. [PMID: 34620456 DOI: 10.1016/j.spen.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023]
Abstract
Children with drug-resistant epilepsy are at high risk for developmental delay, increased mortality, psychiatric comorbidities, and requiring assistance with activities of daily living. Despite the advent of new and effective pharmacologic therapies, about one in 5 children will develop drug-resistant epilepsy, and most of these children continue to have seizures despite trials of other medication. Epilepsy surgery is often a safe and effective option which may offer seizure freedom or at least a significant reduction in seizure burden in many children. However, despite published evidence of safety and efficacy, epilepsy surgery remains underutilized in the pediatric population. Patient and family fears about the risks of surgery may contribute to this gap. Less invasive surgical techniques may be more palatable to children with epilepsy and their caregivers. In this review, we present recent advances in minimally invasive techniques for the surgical treatment of epilepsy as well as intriguing possibilities for the future. We describe the indications for, benefits of, and limits to minimally-invasive techniques including Stereo-encephalography, laser interstitial thermal ablation, deep brain stimulation, focused ultrasound, stereo-encephalography-guided radiofrequency ablation, endoscopic disconnections, and responsive neurostimulation.
Collapse
Affiliation(s)
- Gina Guglielmi
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Krista L Eschbach
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Allyson L Alexander
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO.
| |
Collapse
|
28
|
Gireesh ED, Lee K, Skinner H, Seo J, Chen PC, Westerveld M, Beegle RD, Castillo E, Baumgartner J. Intracranial EEG and laser interstitial thermal therapy in MRI-negative insular and/or cingulate epilepsy: case series. J Neurosurg 2021; 135:751-759. [PMID: 33307521 DOI: 10.3171/2020.7.jns201912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to assess the success rate and complications of stereo-electroencephalogra-phy (sEEG) and laser interstitial thermal therapy (LITT) in the treatment of nonlesional refractory epilepsy in cingulate and insular cortex. METHODS The authors retrospectively analyzed the treatment response in 9 successive patients who underwent insular or cingulate LITT for nonlesional refractory epilepsy at their center between 2011 and 2019. Localization of seizures was based on inpatient video-EEG monitoring, neuropsychological testing, 3-T MRI, PET scan, magnetoencephalography scan, and/or ictal SPECT scan. Eight patients underwent sEEG, and 1 patient had implantation of both sEEG electrodes and subdural grids for localization of epileptogenic zones. LITT was performed in 5 insular cases (4 left and 1 right) and 3 cingulate cases (all left-sided). One patient also underwent both insular and cingulate LITT on the left side. All of the patients who underwent insular LITT as well as 2 of the 3 who underwent cingulate LITT were right-hand dominant. The patient who underwent insular plus cingulate LITT was also right-hand dominant. RESULTS Following LITT, 67% of the patients were seizure free (Engel class I) at follow-up (mean 1.35 years, range 0.6-2.8 years). All patients responded favorably to treatment (Engel class I-III). Two patients developed small intracranial hemorrhages during the sEEG implantation that did not require surgical management. One patient developed a large intracranial hemorrhage during an insular LITT procedure that did require surgical management. That patient experienced aphasia, incoordination, and hemiparesis, which resolved with inpatient rehabilitation. No permanent neurological deficits were noted in any of the patients at last follow-up. Neuropsychological status was stable in this cohort before and after LITT. CONCLUSIONS sEEG can be safely used to localize seizures originating from insular and cingulate cortex. LITT can successfully treat seizures arising from these deep-seated structures. The insula and cingulum should be evaluated more frequently for seizure onset zones.
Collapse
Affiliation(s)
| | - Kihyeong Lee
- 1Epilepsy Center, Neuroscience Institute, AdventHealth
| | - Holly Skinner
- 1Epilepsy Center, Neuroscience Institute, AdventHealth
| | - Joohee Seo
- 1Epilepsy Center, Neuroscience Institute, AdventHealth
| | - Po-Ching Chen
- 1Epilepsy Center, Neuroscience Institute, AdventHealth
- 4MEG Center, Neuroscience Institute, AdventHealth; and
| | | | | | | | | |
Collapse
|
29
|
Kerezoudis P, Singh R, Goyal A, Worrell GA, Marsh WR, Van Gompel JJ, Miller KJ. Insular epilepsy surgery: lessons learned from institutional review and patient-level meta-analysis. J Neurosurg 2021; 136:523-535. [PMID: 34450581 DOI: 10.3171/2021.1.jns203104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Insular lobe epilepsy is a challenging condition to diagnose and treat. Due to anatomical intricacy and proximity to eloquent brain regions, resection of epileptic foci in that region can be associated with significant postoperative morbidity. The aim of this study was to review available evidence on postoperative outcomes following insular epilepsy surgery. METHODS A comprehensive literature search (PubMed/MEDLINE, Scopus, Cochrane) was conducted for studies investigating the postoperative outcomes for seizures originating in the insula. Seizure freedom at last follow-up (at least 12 months) comprised the primary endpoint. The authors also present their institutional experience with 8 patients (4 pediatric, 4 adult). RESULTS A total of 19 studies with 204 cases (90 pediatric, 114 adult) were identified. The median age at surgery was 23 years, and 48% were males. The median epilepsy duration was 8 years, and 17% of patients had undergone prior epilepsy surgery. Epilepsy was lesional in 67%. The most common approach was transsylvian (60%). The most commonly resected area was the anterior insular region (n = 42, 21%), whereas radical insulectomy was performed in 13% of cases (n = 27). The most common pathology was cortical dysplasia (n = 68, 51%), followed by low-grade neoplasm (n = 16, 12%). In the literature, seizure freedom was noted in 60% of pediatric and 69% of adult patients at a median follow-up of 29 months (75% and 50%, respectively, in the current series). A neurological deficit occurred in 43% of cases (10% permanent), with extremity paresis comprising the most common deficit (n = 35, 21%), followed by facial paresis (n = 32, 19%). Language deficits were more common in left-sided approaches (24% vs 2%, p < 0.001). Univariate analysis for seizure freedom revealed a significantly higher proportion of patients with lesional epilepsy among those with at least 12 months of follow-up (77% vs 59%, p = 0.032). CONCLUSIONS These findings may serve as a benchmark when tailoring decision-making for insular epilepsy, and may assist surgeons in their preoperative discussions with patients. Although seizure freedom rates are quite high with insular epilepsy treatment, the associated morbidity needs to be weighed against the potential for seizure freedom.
Collapse
Affiliation(s)
| | - Rohin Singh
- 2Mayo Clinic Alix School of Medicine, Scottsdale, Arizona; and
| | - Anshit Goyal
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - W Richard Marsh
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Kai J Miller
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
30
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
31
|
Remick M, McDowell MM, Gupta K, Felker J, Abel TJ. Emerging indications for stereotactic laser interstitial thermal therapy in pediatric neurosurgery. Int J Hyperthermia 2021; 37:84-93. [PMID: 32672117 DOI: 10.1080/02656736.2020.1769868] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Surgical treatment of deep or difficult to access lesions represents a unique and significant challenge for pediatric neurosurgeons. The introduction of stereotactic magnetic resonance-guided laser interstitial thermal therapy (LITT) over the last decade has had a dramatic impact on the landscape of pediatric neurosurgery. LITT provides a safe and effective option for children with epilepsy from hypothalamic hamartoma that represents a ground-breaking new therapy for a condition which was historically very difficult to treat with previous neurosurgical techniques. LITT has also been used as an alternative surgical technique for mesial temporal sclerosis, focal cortical dysplasia, MR-negative epilepsy, cavernoma-related epilepsy, insular epilepsy, and corpus callosotomy among other epilepsy etiologies. In some cases, LITT has been associated with improved cognitive outcomes compared to standard techniques, as in mesial temporal lobe epilepsy. Initial experiences with LITT for neuro-oncologic processes are also promising. LITT is often attractive to patients and providers as a minimally invasive approach, but the differences in safety and clinical outcome between LITT and traditional approaches are still being studied. In this review, we examine the emerging indications and clinical evidence for LITT in pediatric neurosurgery.
Collapse
Affiliation(s)
- Madison Remick
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael M McDowell
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kanupriya Gupta
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James Felker
- Department of Pediatric Neuro-Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Avecillas-Chasin JM, Atik A, Mohammadi AM, Barnett GH. Laser thermal therapy in the management of high-grade gliomas. Int J Hyperthermia 2021; 37:44-52. [PMID: 32672121 DOI: 10.1080/02656736.2020.1767807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Laser interstitial thermal therapy (LITT) is a minimally invasive therapy that have been used for brain tumors, epilepsy, chronic pain, and other spine pathologies. This therapy is performed under imaging and stereotactic guidance to precisely direct the probe and ablate the area of interest using real-time magnetic resonance (MR) thermography. LITT has gained popularity as a treatment for glioma because of its minimally invasive nature, small skin incision, repeatability, shorter hospital stay, and the possibility of receiving adjuvant therapy shortly after surgery instead of several weeks as required after open surgical resection. Several reports have demonstrated the usefulness of LITT in the treatment of newly-diagnosed and recurrent gliomas. In this review, we will summarize the recent evidence of this therapy in the field of glioma surgery and the future perspectives of the use of LITT combined with other treatment strategies for this devastating disease.
Collapse
Affiliation(s)
- Josue M Avecillas-Chasin
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmet Atik
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alireza M Mohammadi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gene H Barnett
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
33
|
Kaufmann TJ, Lehman VT, Wong-Kisiel LC, Kerezoudis P, Miller KJ. The utility of diffusion tractography for speech preservation in laser ablation of the dominant insula: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 1:CASE21113. [PMID: 35854831 PMCID: PMC9245765 DOI: 10.3171/case21113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Open surgical treatment of insular epilepsy holds particular risk of injury to middle cerebral artery branches, the operculum (through retraction), and adjacent language-related white matter tracts in the language-dominant hemisphere. Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (LITT) is a surgical alternative that allows precise lesioning with potentially less operative risk. The authors presented the case of a 13-year-old girl with intractable, MRI-negative, left (dominant hemisphere) insular epilepsy that was treated with LITT. Diffusion tensor imaging (DTI) tractography was used to aid full posterior insular lesioning in the region of stereo electroencephalography–determined seizure onset while avoiding thermal injury to the language-related superior longitudinal fasciculus (SLF)/arcuate fasciculus (AF) and inferior fronto-occipital fasciculus (IFOF). OBSERVATIONS DTI tractography was used successfully in planning insular LITT and facilitated a robust insular ablation with sharp margins at the interfaces with the SLF/AF and IFOF. These tracts were spared, and no neurological deficits were induced through LITT. LESSONS Although it is technically demanding and has important limitations that must be understood, clinically available DTI tractography adds precision and confidence to insular laser ablation when used to protect important language-related white matter tracts.
Collapse
Affiliation(s)
| | | | | | | | - Kai J. Miller
- Pediatric and Adolescent Medicine,
- Neurologic Surgery, and
- Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The increased identification of seizures with insular ictal onset, promoted by the international development of stereo-electroencephalography (SEEG), has led to the recent description of larger cohorts of patients with insular or insulo-opercular epilepsies than those previously available. These new series have consolidated and extended our knowledge of the rich ictal semiology and diverse anatomo-clinical correlations that characterized insular seizures. In parallel, some experiences have been gained in the surgical treatment of insular epilepsies using minimal invasive procedures. RECENT FINDINGS The large majority of patients present with auras (mostly somatosensory and laryngeal) and motor signs (predominantly elementary and orofacial), an underlying focal cortical dysplasia, and an excellent postoperative seizure outcome. Many other subjective and objective ictal signs, known to occur in other forms of epilepsies, are also observed and clustered in five patterns, reflecting the functional anatomy of the insula and its overlying opercula, as well as preferential propagation pathways to frontal or temporal brain regions. A nocturnal predominance of seizure is frequently reported, whereas secondary generalization is infrequent. Some rare ictal signs are highly suggestive of an insular origin, including somatic pain, reflex seizures, choking spells, and vomiting. Minimal invasive surgical techniques have been applied to the treatment of insular epilepsies, including Magnetic Resonance Imaging-guided laser ablation (laser interstitial thermal therapy (LITT)), radiofrequency thermocoagulation (RFTC), gamma knife radiosurgery, and responsive neurostimulation. Rates of seizure freedom (about 50%) appear lower than that reported with open-surgery (about 80%) with yet a significant proportion of transient neurological deficit for LITT and RFTC. SUMMARY Significant progress has been made in the identification and surgical treatment of insular and insulo-opercular epilepsies, including more precise anatomo-clinical correlations to optimally plan SEEG investigations, and experience in using minimal invasive surgery to reduce peri-operative morbidity.
Collapse
|
35
|
Youngerman BE, Save AV, McKhann GM. Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy for Epilepsy: Systematic Review of Technique, Indications, and Outcomes. Neurosurgery 2020; 86:E366-E382. [PMID: 31980831 DOI: 10.1093/neuros/nyz556] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND For patients with focal drug-resistant epilepsy (DRE), surgical resection of the epileptogenic zone (EZ) may offer seizure freedom and benefits for quality of life. Yet, concerns remain regarding invasiveness, morbidity, and neurocognitive side effects. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has emerged as a less invasive option for stereotactic ablation rather than resection of the EZ. OBJECTIVE To provide an introduction to MRgLITT for epilepsy, including historical development, surgical technique, and role in therapy. METHODS The development of MRgLITT is briefly recounted. A systematic review identified reported techniques and indication-specific outcomes of MRgLITT for DRE in human studies regardless of sample size or follow-up duration. Potential advantages and disadvantages compared to available alternatives for each indication are assessed in an unstructured review. RESULTS Techniques and outcomes are reported for mesial temporal lobe epilepsy, hypothalamic hamartoma, focal cortical dysplasia, nonlesional epilepsy, tuberous sclerosis, periventricular nodular heterotopia, cerebral cavernous malformations, poststroke epilepsy, temporal encephalocele, and corpus callosotomy. CONCLUSION MRgLITT offers access to foci virtually anywhere in the brain with minimal disruption of the overlying cortex and white matter, promising fewer neurological side effects and less surgical morbidity and pain. Compared to other ablative techniques, MRgLITT offers immediate, discrete lesions with real-time monitoring of temperature beyond the fiber tip for damage estimates and off-target injury prevention. Applications of MRgLITT for epilepsy are growing rapidly and, although more evidence of safety and efficacy is needed, there are potential advantages for some patients.
Collapse
Affiliation(s)
- Brett E Youngerman
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Akshay V Save
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
36
|
Treiber JM, Curry DJ, Weiner HL, Roth J. Epilepsy surgery in tuberous sclerosis complex (TSC): emerging techniques and redefinition of treatment goals. Childs Nerv Syst 2020; 36:2519-2525. [PMID: 32535771 DOI: 10.1007/s00381-020-04715-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 01/21/2023]
Abstract
Epilepsy occurs in nearly all patients with tuberous sclerosis and is often refractory to medical treatment. The definition of surgical candidacy in these patients has broadened in recent years due to philosophical and technological advances. The goals of surgery have shifted to focusing on quality of life and maximizing neurodevelopmental potential in patients unable to obtain seizure freedom. Novel diagnostic, ablative, and neuromodulatory techniques have been developed that may help patients that were previously considered inoperable to have an improved quality of life. In the coming years, it is expected that these techniques will be further refined and lead to an improvement of neurological prognosis in patients with tuberous sclerosis.
Collapse
Affiliation(s)
- Jeffrey M Treiber
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Daniel J Curry
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA. .,Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
| | - Jonathan Roth
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
37
|
Wang Y, Xu J, Liu T, Chen F, Chen S, Xie Z, Fang T, Liang S. Magnetic resonance–guided laser interstitial thermal therapy versus stereoelectroencephalography-guided radiofrequency thermocoagulation for drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsy Res 2020; 166:106397. [DOI: 10.1016/j.eplepsyres.2020.106397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
|
38
|
De Barros A, Zaldivar-Jolissaint JF, Hoffmann D, Job-Chapron AS, Minotti L, Kahane P, De Schlichting E, Chabardès S. Indications, Techniques, and Outcomes of Robot-Assisted Insular Stereo-Electro-Encephalography: A Review. Front Neurol 2020; 11:1033. [PMID: 33041978 PMCID: PMC7527495 DOI: 10.3389/fneur.2020.01033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Stereo-electro-encephalography (SEEG) is an invasive, surgical, and electrophysiological method for three-dimensional registration and mapping of seizure activity in drug-resistant epilepsy. It allows the accurate analysis of spatio-temporal seizure activity by multiple intraparenchymal depth electrodes. The technique requires rigorous non-invasive pre-SEEG evaluation (clinical, video-EEG, and neuroimaging investigations) in order to plan the insertion of the SEEG electrodes with minimal risk and maximal recording accuracy. The resulting recordings are used to precisely define the surgical limits of resection of the epileptogenic zone in relation to adjacent eloquent structures. Since the initial description of the technique by Talairach and Bancaud in the 1950's, several techniques of electrode insertion have been used with accuracy and relatively few complications. In the last decade, robot-assisted surgery has emerged as a safe, accurate, and time-saving electrode insertion technique due to its unparalleled potential for orthogonal and oblique insertion trajectories, guided by rigorous computer-assisted planning. SEEG exploration of the insular cortex remains difficult due to its anatomical location, hidden by the temporal and frontoparietal opercula. Furthermore, the close vicinity of Sylvian vessels makes surgical electrode insertion challenging. Some epilepsy surgery teams remain cautious about insular exploration due to the potential of neurovascular injury. However, several authors have published encouraging results regarding the technique's accuracy and safety in both children and adults. We will review the indications, techniques, and outcomes of insular SEEG exploration with emphasis on robot-assisted implantation.
Collapse
Affiliation(s)
- Amaury De Barros
- Department of Neurosurgery, Toulouse University Hospital, Toulouse, France
| | | | - Dominique Hoffmann
- CHU Grenoble Alpes, Clinical University of Neurosurgery, Grenoble, France
| | | | - Lorella Minotti
- CHU Grenoble Alpes, Clinical University of Neurology, Grenoble, France
| | - Philippe Kahane
- CHU Grenoble Alpes, Clinical University of Neurology, Grenoble, France
| | | | - Stephan Chabardès
- CHU Grenoble Alpes, Clinical University of Neurosurgery, Grenoble, France
| |
Collapse
|
39
|
Gupta K, Cabaniss B, Kheder A, Gedela S, Koch P, Hewitt KC, Alwaki A, Rich C, Ramesha S, Hu R, Drane DL, Gross RE, Willie JT. Stereotactic MRI-guided laser interstitial thermal therapy for extratemporal lobe epilepsy. Epilepsia 2020; 61:1723-1734. [PMID: 32777090 PMCID: PMC8019400 DOI: 10.1111/epi.16614] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI)-guided laser interstitial thermal therapy (MRg-LITT) is an alternative to open epilepsy surgery. We assess safety and effectiveness of MRg-LITT for extratemporal lobe epilepsy (ETLE) in patients who are considered less favorable for open resection. METHODS We retrospectively reviewed sequential cases of patients with focal ETLE who underwent MRg-LITT between 2012 and 2019. Epileptogenic zones were determined from standard clinical and imaging data ± stereoelectroencephalography (SEEG). Standard stereotactic techniques, MRI thermometry, and a commercial laser thermal therapy system were used for ablations. Anatomic MRI was used to calculate ablation volumes. Clinical outcomes were determined longitudinally. RESULTS Thirty-five patients with mean epilepsy duration of 21.3 ± 12.2 years underwent MRg-LITT for focal ETLE at a mean age 36.4 ± 12.7 years. A mean 2.59 ± 1.45 trajectories per patient were used to obtain ablation volumes of 8.8 ± 7.5 cm3 . Mean follow-up was 27.3 ± 19.5 months. Of 32 patients with >12 months of follow-up, 17 (53%) achieved good outcomes (Engel class I + II) of whom 14 (44%) were Engel class I. Subgroup analysis revealed better outcomes for patients with lesional ETLE than for those who were nonlesional, multifocal, or who had failed prior interventions (P = .02). Of 13 patients showing favorable seizure-onset patterns (localized low voltage fast activity or rhythmic spiking on SEEG) prior to ablation, 9 (69%) achieved good outcomes, whereas only 3 of 11 (27%) who show other slower onset patterns achieved good outcomes. Minor adverse events included six patients with transient sensorimotor neurologic deficits and four patients with asymptomatic hemorrhages along the fiber tract. Major adverse events included one patient with a brain abscess that required stereotactic drainage and one patient with persistent hypothalamic obesity. Three deaths-two seizure-associated and one suicide-were unrelated to surgical procedures. SIGNIFICANCE MRI-guided laser interstitial thermal therapy (or MRg-LITT) was well-tolerated and yielded good outcomes in a heterogeneous group of ETLE patients. Lesional epilepsy and favorable seizure-onset patterns on SEEG predicted higher likelihoods of success.
Collapse
Affiliation(s)
- Kunal Gupta
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brian Cabaniss
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ammar Kheder
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Satyanarayana Gedela
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Paul Koch
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kelsey C Hewitt
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Abdulrahman Alwaki
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher Rich
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Supriya Ramesha
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ranliang Hu
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jon T Willie
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
40
|
Srinivasan ES, Sankey EW, Grabowski MM, Chongsathidkiet P, Fecci PE. The intersection between immunotherapy and laser interstitial thermal therapy: a multipronged future of neuro-oncology. Int J Hyperthermia 2020; 37:27-34. [PMID: 32672126 PMCID: PMC11229985 DOI: 10.1080/02656736.2020.1746413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 10/23/2022] Open
Abstract
The rise of immunotherapy (IT) in oncological treatment has greatly improved outcomes in a number of disease states. However, its use in tumors of the central nervous system (CNS) remains limited for multiple reasons related to the unique immunologic tumor microenvironment. As such, it is valuable to consider the intersection of IT with additional treatment methods that may improve access to the CNS and effectiveness of existing IT modalities. One such combination is the pairing of IT with localized hyperthermia (HT) generated through technologies such as laser interstitial thermal therapy (LITT). The wide-ranging immunomodulatory effects of localized and whole-body HT have been investigated for some time. Hyperthermia has demonstrated immunostimulatory effects at the level of tumor cells, immune cells, and the broader environment governing potential immune surveillance. A thorough understanding of these effects as well as the current and upcoming investigations of such in combination with IT is important in considering the future directions of neuro-oncology.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Eric W Sankey
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
41
|
Foundations of the Diagnosis and Surgical Treatment of Epilepsy. World Neurosurg 2020; 139:750-761. [DOI: 10.1016/j.wneu.2020.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/02/2020] [Indexed: 12/29/2022]
|
42
|
Highly realistic simulation for robot-assisted hypothalamic hamartoma real-time MRI-guided laser interstitial thermal therapy (LITT). Childs Nerv Syst 2020; 36:1131-1142. [PMID: 32166344 DOI: 10.1007/s00381-020-04563-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Real-time MRI-guided laser interstitial thermal therapy (LITT) is a challenging procedure due to its technical complexity, as well as the need for efficient multidisciplinary teamwork and transfer of an anesthetized patient between operating room (OR) and magnetic resonance (MR). A highly realistic simulation was developed to design the safest process before being applied to real patients. In this report, authors address the description of the methodology used for this simulation and its purposefulness. METHODS The entire image planning, anesthetic, and surgical process were performed on a modified pediatric simulation mannequin with a brain made of medical grade silicone including a hypothalamic hamartoma. Preoperative CT and MR were acquired. Stereotactic insertion of the optical fiber was assisted by the Neuromate® stereotactic robot. Laser ablation was performed with the Medtronic Visualase® MRI-guided system in a 3T Phillips Ingenia® MR scanner. All the stages of the process, participants, and equipment were the same as planned for a real surgery. RESULTS No critical errors were found in the process design that prevented the procedure from being performed with adequate safety. Specific proposals for team positioning and interaction in patient transfers and in MR room were validated. Some specific elements that could improve safety were identified. CONCLUSION Highly realistic simulation has been an extremely useful tool for safely planning LITT, because professionals were able to take actions in the workflow based not on ideas but on lived experiences. It contributed definitively to build a well-coordinated surgical team that worked safely and more efficiently.
Collapse
|
43
|
Dorfer C, Rydenhag B, Baltuch G, Buch V, Blount J, Bollo R, Gerrard J, Nilsson D, Roessler K, Rutka J, Sharan A, Spencer D, Cukiert A. How technology is driving the landscape of epilepsy surgery. Epilepsia 2020; 61:841-855. [PMID: 32227349 PMCID: PMC7317716 DOI: 10.1111/epi.16489] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
This article emphasizes the role of the technological progress in changing the landscape of epilepsy surgery and provides a critical appraisal of robotic applications, laser interstitial thermal therapy, intraoperative imaging, wireless recording, new neuromodulation techniques, and high-intensity focused ultrasound. Specifically, (a) it relativizes the current hype in using robots for stereo-electroencephalography (SEEG) to increase the accuracy of depth electrode placement and save operating time; (b) discusses the drawback of laser interstitial thermal therapy (LITT) when it comes to the need for adequate histopathologic specimen and the fact that the concept of stereotactic disconnection is not new; (c) addresses the ratio between the benefits and expenditure of using intraoperative magnetic resonance imaging (MRI), that is, the high technical and personnel expertise needed that might restrict its use to centers with a high case load, including those unrelated to epilepsy; (d) soberly reviews the advantages, disadvantages, and future potentials of neuromodulation techniques with special emphasis on the differences between closed and open-loop systems; and (e) provides a critical outlook on the clinical implications of focused ultrasound, wireless recording, and multipurpose electrodes that are already on the horizon. This outlook shows that although current ultrasonic systems do have some limitations in delivering the acoustic energy, further advance of this technique may lead to novel treatment paradigms. Furthermore, it highlights that new data streams from multipurpose electrodes and wireless transmission of intracranial recordings will become available soon once some critical developments will be achieved such as electrode fidelity, data processing and storage, heat conduction as well as rechargeable technology. A better understanding of modern epilepsy surgery will help to demystify epilepsy surgery for the patients and the treating physicians and thereby reduce the surgical treatment gap.
Collapse
Affiliation(s)
- Christian Dorfer
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Bertil Rydenhag
- Department of Clinical NeuroscienceInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of NeurosurgerySahlgrenska University HospitalGothenburgSweden
| | - Gordon Baltuch
- Center for Functional and Restorative NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vivek Buch
- Center for Functional and Restorative NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jeffrey Blount
- Division of NeurosurgeryUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - Robert Bollo
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Jason Gerrard
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | - Daniel Nilsson
- Department of Clinical NeuroscienceInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of NeurosurgerySahlgrenska University HospitalGothenburgSweden
| | - Karl Roessler
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- Department of NeurosurgeryUniversity of ErlangenErlangenGermany
| | - James Rutka
- Division of Pediatric NeurosurgeryThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Ashwini Sharan
- Department of Neurosurgery and NeurologyThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Dennis Spencer
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | - Arthur Cukiert
- Neurology and Neurosurgery Clinic Sao PauloClinica Neurologica CukiertSao PauloBrazil
| |
Collapse
|