1
|
Nojiri M, Takata T, Sasaki A, Tamari Y, Matsubayashi N, Hu N, Sakurai Y, Suzuki M, Tanaka H. Evaluation of dose calculation method with a combination of Monte Carlo method and removal-diffusion equation in heterogeneous geometry for boron neutron capture therapy. Biomed Phys Eng Express 2025; 11:025045. [PMID: 39787622 DOI: 10.1088/2057-1976/ada7fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Clinical research in boron neutron capture therapy (BNCT) has been conducted worldwide. Currently, the Monte Carlo (MC) method is the only dose calculation algorithm implemented in the treatment planning system for the clinical treatment of BNCT. We previously developed the MC-RD calculation method, which combines the MC method and the removal-diffusion (RD) equation, for fast dose calculation in BNCT. This study aimed to verify the partial-MC-RD calculation method, which utilizes the MC-RD calculation method for a portion of the entire neutron energy range, in terms of calculation accuracy and time as the dose calculation method. We applied the partial-MC-RD calculation method to calculate the total dose for head phantom, comprising soft tissue, brain tissue, and bone. The calculation time and accuracy were evaluated based on the full-MC method. Our accuracy verifications indicated that the partial-MC-RD calculation was mostly comparable with full-MC calculation in the accuracy. However, the assumptions and approximation used in the RD calculation mainly occurred the discrepancy from the full-MC calculation result. Additionally, the partial-MC-RD calculation reduced the time required to approximately 45% for the irradiation to the top and cheek region of head phantom, compared to the full-MC calculation. In conclusion, the MC-RD calculation method can be the basis of a fast dose calculation method in BNCT.
Collapse
Affiliation(s)
- Mai Nojiri
- Department of Nuclear Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8530, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Akinori Sasaki
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Yuki Tamari
- School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake-shi, Aichi, 470-1192, Japan
| | - Nishiki Matsubayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Naonori Hu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| |
Collapse
|
2
|
Mima A, Matsuki T, Nakamoto T, Saito Y, Morikawa T, Kure S, Lee S. Acute Kidney Injury Due to Ureteral Damage by Needle-Shaped Crystals Associated With Boron Neutron Capture Therapy. Cureus 2024; 16:e76094. [PMID: 39834996 PMCID: PMC11743920 DOI: 10.7759/cureus.76094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
A 77-year-old man was referred to our department because of macrohematuria, oliguria, and a serum creatinine level of 2.47 mg/dL during boron neutron capture therapy (BNCT) for oropharyngeal cancer. At baseline, his creatinine level had been 0.98 mg/dL. The vital signs and physical examination were normal. A urinalysis showed protein and numerous red cells per high-power field, and needle-shaped crystals were observed. A plane computed tomography showed hematoma within the extensive ureter. However, hydronephrosis was not recognized. Immediate discontinuation of BNCT and supplemental fluids reduced gross hematuria, increased urine, and creatinine decreased to 0.97 mg/dL. BNCT is an innovative radiation therapy that targets tumor cells by inducing a nuclear reaction between 10B and neutrons within the tumor. However, there have been no reported cases of treatment-related boron crystals causing ureteral injury that leads to acute kidney injury, and oncologists should be aware of this potential risk.
Collapse
Affiliation(s)
- Akira Mima
- Nephrology, Osaka Medical and Pharmaceutical University, Takatsuki, JPN
| | - Tatsumasa Matsuki
- Nephrology, Osaka Medical and Pharmaceutical University, Takatsuki, JPN
| | - Takahiro Nakamoto
- Nephrology, Osaka Medical and Pharmaceutical University, Takatsuki, JPN
| | - Yuta Saito
- Nephrology, Osaka Medical and Pharmaceutical University, Takatsuki, JPN
| | - Takaaki Morikawa
- Nephrology, Osaka Medical and Pharmaceutical University, Takatsuki, JPN
| | - Sakura Kure
- Nephrology, Osaka Medical and Pharmaceutical University, Takatsuki, JPN
| | - Shinji Lee
- Nephrology, Osaka Medical and Pharmaceutical University, Takatsuki, JPN
| |
Collapse
|
3
|
Komori S, Takeuchi A, Kato R, Yamazaki Y, Motoyanagi T, Narita Y, Kato T, Takai Y. Long-term beam output stability of an accelerator-based boron neutron capture therapy system. Med Phys 2024; 51:9250-9263. [PMID: 39293470 DOI: 10.1002/mp.17426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Accelerator-based boron neutron capture therapy (AB-BNCT) systems are becoming commercially available and are expected to be widely used in hospitals. To ensure the safety of BNCT, establishing a quality assurance (QA) program and properly managing the stability of the system are necessary. In particular, a high level of beam output stability is required to avoid accidents because beam output is a major factor in patient dose. However, no studies have analyzed the long-term beam output stability of AB-BNCT systems. PURPOSE This study aimed to retrospectively analyze the long-term stability of the beam output by statistical process control (SPC) based on the QA results over 3 years. METHODS The data analyzed are the results of daily QA (DQA) and weekly QA (WQA) in an AB-BNCT system and were taken between June 2020 and September 2023. The evaluation of the stability of the beam output was based on the reaction rate between gold and neutrons calculated using the activation foil method using a gold foil. In DQA, which can be performed in a short time, the gold foil was applied directly to the beam irradiation aperture in air. In WQA, measurements were performed at the phantom surface, 2-cm depth, and 6-cm depth using a dedicated water phantom. The acquired data were retrospectively analyzed by individuals and a moving range chart (I-MR chart), exponentially weighted moving average control chart (EWMA chart), and several process capability indexes (PCIs). RESULTS Over 99% of the DQA I-MR chart results were within control limits, whereas the WQA I-MR chart results showed that 1.8%, 4.1%, and 2.0% of the measurements exceeded the control limits at the surface, 2-cm depth, and 6-cm depth, respectively. The variation in the reaction rate of the gold foil before and after the replacement of the target was <0.5%. The EWMA chart results revealed no significant beam output drift for either DQA or WQA. Most measured data were normal based on the results of the Anderson-Darling test and met the requirements for PCI evaluation; most PCI values were >1.0; however, the Cpmk of DQA and the 2- and 6-cm depth WQAs between August 2021 and November 2022 in treatment course 2 were 0.83, 0.77, and 0.87, respectively, which were <1.0. CONCLUSIONS The long-term stability of beam output was confirmed using SPC in an AB-BNCT system. The results of the control chart revealed no significant variation or drift in the beam output, and the quantitative evaluation using PCI revealed high stability. A routine QA program will enable us to provide safe BNCT.
Collapse
Affiliation(s)
- Shinya Komori
- Department of Radiation Physics and Technology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan
| | - Akihiko Takeuchi
- Department of Radiation Physics and Technology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan
| | - Ryohei Kato
- Department of Radiation Physics and Technology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan
| | - Yuhei Yamazaki
- Department of Radiation Physics and Technology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan
| | - Tomoaki Motoyanagi
- Department of Radiation Physics and Technology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan
| | - Yuki Narita
- Department of Radiation Physics and Technology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan
| | - Takahiro Kato
- School of Health Sciences, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Yoshihiro Takai
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima, Japan
| |
Collapse
|
4
|
Younous K, El Kafhali M, Bouadel I, Biyi A, Sebihi R. Efficacy and safety of Boron Neutron Capture Therapy: a systematic review. Int J Radiat Biol 2024; 100:1611-1621. [PMID: 39401330 DOI: 10.1080/09553002.2024.2413583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Boron Neutron Capture Therapy (BNCT) is an innovative radiation therapy with significant potential in cancer treatment. This systematic review aimed to comprehensively evaluate the efficacy, safety, and applicability of BNCT across various cancer types. METHODS AND MATERIALS Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we conducted a systematic search in PubMed, Scopus, Cochrane CENTRAL, ClinicalTrials.gov, and ICTRP from inception until May 27, 2023. Eligible studies were selected based on predefined criteria, and statistical analyses were performed using IBM SPSS (Statistical Package for the Social Sciences) to assess correlations between histological factors, treatment outcomes, and adverse effects. RESULTS The initial search identified 925 studies (498 from Scopus, 333 from PubMed, 16 from ClinicalTrials.gov, 41 from ICTRP, and 30 from Cochrane CENTRAL). After removing duplicates and applying selection criteria, 121 full-text articles were assessed, with 39 studies meeting the inclusion criteria. An additional study published in 2024 was included during the peer review process, bringing the total to 40 studies. The analysis revealed that BNCT demonstrates promising efficacy across various cancers, with a manageable safety profile. However, outcome variability and adverse effects were noted among the studies. CONCLUSIONS BNCT shows substantial promise as a treatment modality for multiple cancer types, offering potential benefits with acceptable safety profiles. Nonetheless, further research is essential to refine its clinical application and ensure consistent safety and efficacy.
Collapse
Affiliation(s)
- Khaoula Younous
- Department of Physics, High Energy Physics Laboratory - Modeling and Simulation (HEPL-MS), Mohammed V University, Rabat, Morocco
| | - Morad El Kafhali
- Physical Sciences and Engineering, Innovative Research and Applied Physics (IRAP), Moulay Ismail University, Meknes, Morocco
| | - Ikbal Bouadel
- Department of Physics, High Energy Physics Laboratory - Modeling and Simulation (HEPL-MS), Mohammed V University, Rabat, Morocco
| | - Abdelhamid Biyi
- Nuclear Medicine Department, Mohamed V University of Rabat, Rabat, Morocco
| | - Rajaa Sebihi
- Department of Physics, High Energy Physics Laboratory - Modeling and Simulation (HEPL-MS), Mohammed V University, Rabat, Morocco
| |
Collapse
|
5
|
Hu N, Nakao M, Ozawa S, Takata T, Tanaka H, Nihei K, Ono K, Suzuki M. Application of stoichiometric CT number calibration method for dose calculation of tissue heterogeneous volumes in boron neutron capture therapy. Med Phys 2024; 51:4413-4422. [PMID: 38669482 DOI: 10.1002/mp.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Monte Carlo simulation code is commonly used for the dose calculation of boron neutron capture therapy. In the past, dose calculation was performed assuming a homogeneous mass density and elemental composition inside the tissue, regardless of the patient's age or sex. Studies have shown that the mass density varies with patient to patient, particularly for those that have undergone surgery or radiotherapy. A method to convert computed tomography numbers into mass density and elemental weights of tissues has been developed and applied in the dose calculation process using Monte Carlo codes. A recent study has shown the variation in the computed tomography number between different scanners for low- and high-density materials. PURPOSE The aim of this study is to investigate the effect of the elemental composition inside each calculation voxel on the dose calculation and the application of the stoichiometric CT number calibration method for boron neutron capture therapy planning. METHODS Monte Carlo simulation package Particle and Heavy Ion Transport code System was used for the dose calculation. Firstly, a homogeneous cubic phantom with the material set to ICRU soft tissue (four component), muscle, fat, and brain was modelled and the NeuCure BNCT system accelerator-based neutron source was used. The central axis depth dose distribution was simulated and compared between the four materials. Secondly, a treatment plan of the brain and the head and neck region was simulated using a dummy patient dataset. Three models were generated; (1) a model where only the fundamental materials were considered (simple model), a model where each voxel was assigned a mass density and elemental weight using (2) the Nakao20 model, and (3) the Schneider00 model. The irradiation conditions were kept the same between the different models (irradiation time and irradiation field size) and the near maximum (D1%) and mean dose to the organs at risk were calculated and compared. RESULTS A maximum percentage difference of approximately 5% was observed between the different materials for the homogeneous phantom. With the dummy patient plan, a large dose difference in the bone (greater than 12%) and region near the low-density material (mucosal membrane, 7%-11%) was found between the different models. CONCLUSIONS A stoichiometric CT number calibration method using the newly developed Nakao20 model was applied to BNCT dose calculation. The results indicate the importance of calibrating the CT number to elemental composition for each individual CT scanner for the purpose of BNCT dose calculation along with the consideration of heterogeneity of the material composition inside the defined region of interest.
Collapse
Affiliation(s)
- Naonori Hu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennangun, Osaka, Japan
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Minoru Nakao
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Hiroshima University, Hiroshima, Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Hiroshima University, Hiroshima, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennangun, Osaka, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennangun, Osaka, Japan
| | - Keiji Nihei
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
- Department of Radiation Oncology, Osaka Medical and Pharmaceutical University Hospital, Takatsuki, Osaka, Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennangun, Osaka, Japan
| |
Collapse
|
6
|
Kondo N, Kinouchi T, Natsumeda M, Matsuzaki J, Hirata E, Sakurai Y, Okada M, Suzuki M. Profile of miRNAs in small extracellular vesicles released from glioblastoma cells treated by boron neutron capture therapy. J Neurooncol 2024; 168:91-97. [PMID: 38598087 DOI: 10.1007/s11060-024-04649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE Boron neutron capture therapy (BNCT) is a tumor cell-selective particle-radiation therapy. In BNCT, administered p-boronophenylalanine (BPA) is selectively taken up by tumor cells, and the tumor is irradiated with thermal neutrons. High-LET α-particles and recoil 7Li, which have a path length of 5-9 μm, are generated by the capture reaction between 10B and thermal neutrons and selectively kill tumor cells that have uptaken 10B. Although BNCT has prolonged the survival time of malignant glioma patients, recurrences are still to be resolved. miRNAs, that are encapsulated in small extracellular vesicles (sEVs) in body fluids and exist stably may serve critical role in recurrence. In this study, we comprehensively investigated microRNAs (miRNAs) in sEVs released from post-BNCT glioblastoma cells. METHOD Glioblastoma U87 MG cells were treated with 25 ppm of BPA in the culture media and irradiated with thermal neutrons. After irradiation, they were plated into dishes and cultured for 3 days in the 5% CO2 incubator. Then, sEVs released into the medium were collected by column chromatography, and miRNAs in sEVs were comprehensively investigated using microarrays. RESULT An increase in 20 individual miRNAs (ratio > 2) and a decrease in 2 individual miRNAs (ratio < 0.5) were detected in BNCT cells compared with non-irradiated cells. Among detected miRNAs, 20 miRNAs were associated with worse prognosis of glioma in Kaplan Meier Survival Analysis of overall survival in TCGA. CONCLUSION These miRNA after BNCT may proceed tumors, modulate radiation resistance, or inhibit invasion and affect the prognosis of glioma.
Collapse
Affiliation(s)
- Natsuko Kondo
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan.
| | - Tadatoshi Kinouchi
- Division of Radiation Biochemistry, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Eishu Hirata
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa, Japan
| | - Yoshinori Sakurai
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| |
Collapse
|
7
|
Kayama R, Tsujino K, Kawabata S, Fujikawa Y, Kashiwagi H, Fukuo Y, Hiramatsu R, Takata T, Tanaka H, Suzuki M, Hu N, Miyatake SI, Takami T, Wanibuchi M. Translational research of boron neutron capture therapy for spinal cord gliomas using rat model. Sci Rep 2024; 14:8265. [PMID: 38594281 PMCID: PMC11003979 DOI: 10.1038/s41598-024-58728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Boron neutron capture therapy (BNCT) is a type of targeted particle radiation therapy with potential applications at the cellular level. Spinal cord gliomas (SCGs) present a substantial challenge owing to their poor prognosis and the lack of effective postoperative treatments. This study evaluated the efficacy of BNCT in a rat SCGs model employing the Basso, Beattie, and Bresnahan (BBB) scale to assess postoperative locomotor activity. We confirmed the presence of adequate in vitro boron concentrations in F98 rat glioma and 9L rat gliosarcoma cells exposed to boronophenylalanine (BPA) and in vivo tumor boron concentration 2.5 h after intravenous BPA administration. In vivo neutron irradiation significantly enhanced survival in the BNCT group when compared with that in the untreated group, with a minimal BBB scale reduction in all sham-operated groups. These findings highlight the potential of BNCT as a promising treatment option for SCGs.
Collapse
Affiliation(s)
- Ryo Kayama
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, Japan
| | - Kohei Tsujino
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, Japan.
| | - Yoshiki Fujikawa
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, Japan
| | - Hideki Kashiwagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, Japan
| | - Yusuke Fukuo
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, Japan
| | - Takashi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-Cho, Sennan-Gun, Osaka, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-Cho, Sennan-Gun, Osaka, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-Cho, Sennan-Gun, Osaka, Japan
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki City, Osaka, Japan
| | - Shin-Ichi Miyatake
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki City, Osaka, Japan
| | - Toshihiro Takami
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki City, Osaka, Japan
| |
Collapse
|
8
|
Sakai M, Tamaki S, Murata I, Parajuli RK, Matsumura A, Kubo N, Tashiro M. Experimental study on Compton camera for boron neutron capture therapy applications. Sci Rep 2023; 13:22883. [PMID: 38129553 PMCID: PMC10739814 DOI: 10.1038/s41598-023-49955-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a high-dose-intensive radiation therapy that has gained popularity due to advancements in accelerator neutron sources. To determine the dose for BNCT, it is necessary to know the difficult-to-determine boron concentration and neutron fluence. To estimate this dose, we propose a method of measuring the prompt γ-rays (PGs) from the boron neutron capture reaction (BNCR) using a Compton camera. We performed a fundamental experiment to verify basic imaging performance and the ability to discern the PGs from 511 keV annihilation γ-rays. A Si/CdTe Compton camera was used to image the BNCR and showed an energy peak of 478 keV PGs, separate from the annihilation γ-ray peak. The Compton camera could visualize the boron target with low neutron intensity and high boron concentration. This study experimentally confirms the ability of Si/CdTe Compton cameras to image BNCRs.
Collapse
Affiliation(s)
- M Sakai
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - S Tamaki
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - I Murata
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - R K Parajuli
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Sydney Imaging Core Research Facility, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - A Matsumura
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - N Kubo
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - M Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
9
|
Järvinen J, Pulkkinen H, Rautio J, Timonen JM. Amino Acid-Based Boron Carriers in Boron Neutron Capture Therapy (BNCT). Pharmaceutics 2023; 15:2663. [PMID: 38140004 PMCID: PMC10748186 DOI: 10.3390/pharmaceutics15122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Interest in the design of boronated amino acids has emerged, partly due to the utilization of boronophenylalanine (BPA), one of the two agents employed in clinical Boron Neutron Capture Therapy (BNCT). The boronated amino acids synthesized thus far for BNCT investigations can be classified into two categories based on the source of boron: boronic acids or carboranes. Amino acid-based boron carriers, employed in the context of BNCT treatment, demonstrate significant potential in the treatment of challenging tumors, such as those located in the brain. This review aims to shed light on the developmental journey and challenges encountered over the years in the field of amino acid-based boron delivery compound development. The primary focus centers on the utilization of the large amino acid transporter 1 (LAT1) as a target for boron carriers in BNCT. The development of efficient carriers remains a critical objective, addressing challenges related to tumor specificity, effective boron delivery, and rapid clearance from normal tissue and blood. LAT1 presents an intriguing and promising target for boron delivery, given its numerous characteristics that make it well suited for drug delivery into tumor tissues, particularly in the case of brain tumors.
Collapse
Affiliation(s)
- Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Herkko Pulkkinen
- Department of Technical Physics, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juri M. Timonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther 2023; 251:108548. [PMID: 37858628 DOI: 10.1016/j.pharmthera.2023.108548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Boron has become a crucial weapon in anticancer research due to its significant intervention in cell proliferation. Being an excellent bio-isosteric replacement of carbon, it has modulated the anticancer efficacy of various molecules in the development pipeline. It has elicited promising results through interactions with various therapeutic targets such as HIF-1α, steroid sulfatase, arginase, proteasome, etc. Since boron liberates alpha particles, it has a wide-scale application in Boron Neutron Capture therapy (BNCT), a radiotherapy that demonstrates selectivity towards cancer cells due to high boron uptake capacity. Significant advances in the medicinal chemistry of boronated compounds, such as boronated sugars, natural/unnatural amino acids, boronated DNA binders, etc., have been reported over the past few years as BNCT agents. In addition, boronated nanoparticles have assisted the field of bio-nano medicines by their usage in radiotherapy. This review exclusively focuses on the medicinal chemistry aspects, radiotherapeutic, and chemotherapeutic aspects of boron in cancer therapeutics. Emphasis is also given on the mechanism of action along with advantages over conventional therapies.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Dyuti Bhandary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
11
|
Zhang X, Lin Y, Hosmane NS, Zhu Y. Nanostructured boron agents for boron neutron capture therapy: a review of recent patents. MEDICAL REVIEW (2021) 2023; 3:425-443. [PMID: 38283251 PMCID: PMC10811353 DOI: 10.1515/mr-2023-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/16/2023] [Indexed: 01/30/2024]
Abstract
Boron neutron capture therapy (BNCT) is a potential radiation therapy modality for cancer, and tumor-targeted stable boron-10 (10B) delivery agents are an important component of BNCT. Currently, two low-molecular-weight boron-containing compounds, sodium mercaptoundecahydro-closo-dodecaborate (BSH) and boronophenylalanine (BPA), are mainly used in BNCT. Although both have suboptimal tumor selectivity, they have shown some therapeutic benefit in patients with high-grade glioma and several other tumors. To improve the efficacy of BNCT, great efforts have been devoted for the development of new boron delivery agents with better uptake and favorable pharmacokinetic profiles. This article reviews the application and research progress of boron nanomaterials as boron carriers in boron neutron capture therapy and hopes to stimulate people's interest in nanomaterial-based delivery agents by summarizing various kinds of boron nanomaterial patents disclosed in the past decade.
Collapse
Affiliation(s)
- Xiyin Zhang
- Shenzhen HEC Industrial Development Co., Ltd., Shenzhen, Guangdong Province, China
| | - Yusheng Lin
- Shenzhen HEC Industrial Development Co., Ltd., Shenzhen, Guangdong Province, China
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Yinghuai Zhu
- Sunshine Lake Pharma Co. Ltd, Dongguan, Guangdong Province, China
| |
Collapse
|
12
|
Zhong WB, Chen J, Teng YC, Liu YH. Introduction to the Monte Carlo dose engine COMPASS for BNCT. Sci Rep 2023; 13:11965. [PMID: 37488142 PMCID: PMC10366114 DOI: 10.1038/s41598-023-38648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
The Monte Carlo method is the most commonly used dose calculation method in the field of boron neutron capture therapy (BNCT). General-purpose Monte Carlo (MC) code (e.g., MCNP) has been used in most treatment planning systems (TPS) to calculate dose distribution, which takes overmuch time in radiotherapy planning. Based on this, we developed COMPASS (COMpact PArticle Simulation System), an MC engine specifically for BNCT dose calculation. Several optimization algorithms are used in COMPASS to make it faster than general-purpose MC code. The parallel computation of COMPASS is performed by the message passing interface (MPI) library and OpenMP commands, which allows the user to increase computational speed by increasing the computer configurations. The physical dose of each voxel is calculated for developing a treatment plan. Comparison results show that the computed dose distribution of COMPASS is in good agreement with MCNP, and the computational efficiency is better than MCNP. These results validate that COMPASS has better performance than MCNP in BNCT dose calculation.
Collapse
Affiliation(s)
- Wan-Bing Zhong
- Neuboron Therapy System Ltd., Xiamen, Fujian Province, People's Republic of China
| | - Jiang Chen
- Neuboron Therapy System Ltd., Xiamen, Fujian Province, People's Republic of China
| | - Yi-Chiao Teng
- Neuboron Therapy System Ltd., Xiamen, Fujian Province, People's Republic of China
- National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd., Xiamen, Fujian Province, People's Republic of China.
- Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province, People's Republic of China.
- Neuboron Medtech Ltd., Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
13
|
Portu AM, Espain MS, Thorp SI, Trivillin VA, Curotto P, Monti Hughes A, Pozzi ECC, Garabalino MA, Palmieri MA, Granell PN, Golmar F, Schwint AE, Saint Martin G. Enhanced Resolution of Neutron Autoradiography with UV-C Sensitization to Study Boron Microdistribution in Animal Models. Life (Basel) 2023; 13:1578. [PMID: 37511953 PMCID: PMC10381447 DOI: 10.3390/life13071578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The assessment of boron microdistribution is essential to evaluate the suitability of boron neutron capture therapy (BNCT) in different biological models. In our laboratory, we have reported a methodology to produce cell imprints on polycarbonate through UV-C sensitization. The aim of this work is to extend the technique to tissue samples in order to enhance spatial resolution. As tissue structure largely differs from cultured cells, several aspects must be considered. We studied the influence of the parameters involved in the imprint and nuclear track formation, such as neutron fluence, different NTDs, etching and UV-C exposure times, tissue absorbance, thickness, and staining, among others. Samples from different biological models of interest for BNCT were used, exhibiting homogeneous and heterogeneous histology and boron microdistribution. The optimal conditions will depend on the animal model under study and the resolution requirements. Both the imprint sharpness and the fading effect depend on tissue thickness. While 6 h of UV-C was necessary to yield an imprint in CR-39, only 5 min was enough to observe clear imprints on Lexan. The information related to microdistribution of boron obtained with neutron autoradiography is of great relevance when assessing new boron compounds and administration protocols and also contributes to the study of the radiobiology of BNCT.
Collapse
Affiliation(s)
- Agustina Mariana Portu
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- School of Science & Technology, National University of San Martín (UNSAM), San Martín B1650JKA, Argentina
| | - María Sol Espain
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- School of Science & Technology, National University of San Martín (UNSAM), San Martín B1650JKA, Argentina
| | - Silvia Inés Thorp
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Verónica Andrea Trivillin
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Paula Curotto
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
| | - Andrea Monti Hughes
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | | | | | - Mónica Alejandra Palmieri
- Department of Biodiversity and Experimental Biology, Faculty of Exact and Natural Sciences, University of Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Pablo Nicolás Granell
- Micro and Nanotechnology Centre of the Bicentennial (CNMB), National Institute of Industrial Technology (INTI), San Martín B1650JKA, Argentina
| | - Federico Golmar
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- School of Science & Technology, National University of San Martín (UNSAM), San Martín B1650JKA, Argentina
- Micro and Nanotechnology Centre of the Bicentennial (CNMB), National Institute of Industrial Technology (INTI), San Martín B1650JKA, Argentina
| | - Amanda Elena Schwint
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | | |
Collapse
|
14
|
Fukumura M, Nonoguchi N, Kawabata S, Hiramatsu R, Futamura G, Takeuchi K, Kanemitsu T, Takata T, Tanaka H, Suzuki M, Sampetrean O, Ikeda N, Kuroiwa T, Saya H, Nakano I, Wanibuchi M. 5-Aminolevulinic acid increases boronophenylalanine uptake into glioma stem cells and may sensitize malignant glioma to boron neutron capture therapy. Sci Rep 2023; 13:10173. [PMID: 37349515 PMCID: PMC10287723 DOI: 10.1038/s41598-023-37296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a high-LET particle radiotherapy clinically tested for treating malignant gliomas. Boronophenylalanine (BPA), a boron-containing phenylalanine derivative, is selectively transported into tumor cells by amino acid transporters, making it an ideal agent for BNCT. In this study, we investigated whether the amino acid 5-aminolevulinic acid (ALA) could sensitize glioma stem cells (GSCs) to BNCT by enhancing the uptake of BPA. Using human and mouse GSC lines, pre-incubation with ALA increased the intracellular accumulation of BPA dose-dependent. We also conducted in vivo experiments by intracerebrally implanting HGG13 cells in mice and administering ALA orally 24 h before BPA administration (ALA + BPA-BNCT). The ALA preloading group increased the tumor boron concentration and improved the tumor/blood boron concentration ratio, resulting in improved survival compared to the BPA-BNCT group. Furthermore, we found that the expression of amino acid transporters was upregulated following ALA treatment both in vitro and in vivo, particularly for ATB0,+. This suggests that ALA may sensitize GSCs to BNCT by upregulating the expression of amino acid transporters, thereby enhancing the uptake of BPA and improving the effectiveness of BNCT. These findings have important implications for strategies to improve the sensitivity of malignant gliomas to BPA-BNCT.
Collapse
Affiliation(s)
- Masao Fukumura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan.
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Gen Futamura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Koji Takeuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Takuya Kanemitsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Naokado Ikeda
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Tesseikai Neurosurgical Hospital, Shijonawate, Osaka, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
15
|
Sasaki A, Hu N, Matsubayashi N, Takata T, Sakurai Y, Suzuki M, Tanaka H. Development of optimization method for uniform dose distribution on superficial tumor in an accelerator-based boron neutron capture therapy system. JOURNAL OF RADIATION RESEARCH 2023; 64:602-611. [PMID: 37100599 PMCID: PMC10214997 DOI: 10.1093/jrr/rrad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Indexed: 05/27/2023]
Abstract
To treat superficial tumors using accelerator-based boron neutron capture therapy (ABBNCT), a technique was investigated, based on which, a single-neutron modulator was placed inside a collimator and was irradiated with thermal neutrons. In large tumors, the dose was reduced at their edges. The objective was to generate a uniform and therapeutic intensity dose distribution. In this study, we developed a method for optimizing the shape of the intensity modulator and irradiation time ratio to generate a uniform dose distribution to treat superficial tumors of various shapes. A computational tool was developed, which performed Monte Carlo simulations using 424 different source combinations. We determined the shape of the intensity modulator with the highest minimum tumor dose. The homogeneity index (HI), which evaluates uniformity, was also derived. To evaluate the efficacy of this method, the dose distribution of a tumor with a diameter of 100 mm and thickness of 10 mm was evaluated. Furthermore, irradiation experiments were conducted using an ABBNCT system. The thermal neutron flux distribution outcomes that have considerable impacts on the tumor's dose confirmed a good agreement between experiments and calculations. Moreover, the minimum tumor dose and HI improved by 20 and 36%, respectively, compared with the irradiation case wherein a single-neutron modulator was used. The proposed method improves the minimum tumor volume and uniformity. The results demonstrate the method's efficacy in ABBNCT for the treatment of superficial tumors.
Collapse
Affiliation(s)
- Akinori Sasaki
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura Campus, Kyoto Nishikyo-ku, Kyoto 615-8246, Japan
| | - Naonori Hu
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
- Kansai BNCT Medical Center, Educational Foundation of Osaka Medical and Pharmaceutical University, Daigakumachi, Takatsuki, Osaka 569-0801, Japan
| | - Nishiki Matsubayashi
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura Campus, Kyoto Nishikyo-ku, Kyoto 615-8246, Japan
| | - Takushi Takata
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yoshinori Sakurai
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
16
|
Espector N, Portu AM, Espain MS, Leyva G, Saint Martin G. Measurement of an evaporation coefficient in tissue sections as a correction factor for 10B determination. Histochem Cell Biol 2023:10.1007/s00418-023-02200-w. [PMID: 37126141 DOI: 10.1007/s00418-023-02200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Boron neutron capture therapy (BNCT) is a cancer treatment option that combines preferential uptake of a boron compound in tumors and irradiation with thermal neutrons. For treatment planning, the boron concentration in different tissues must be considered. Neutron autoradiography using nuclear track detectors (NTD) can be applied to study both the concentration and microdistribution of boron in tissue samples. Histological sections are obtained from frozen tissue by cryosectioning. When the samples reach room temperature, they undergo an evaporation process, which leads to an increase in the boron concentration. To take this effect into account, certain correction factors (evaporation coefficients, CEv) must be applied. With this aim, a protocol was established to register and analyze mass variation of tissue sections, measured with a semimicro scale. Values of ambient temperature, pressure, and humidity were simultaneously recorded. Reproducible results of evaporation curves and CEv values were obtained for different tissue samples, which allowed the systematization of the procedure. This study could contribute to a more precise determination of boron concentration in tissue samples through the neutron autoradiography technique, which is of great relevance to make dosimetric calculations in BNCT.
Collapse
Affiliation(s)
- Natalia Espector
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
| | - Agustina Mariana Portu
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina.
- Comisión Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Buenos Aires, Argentina.
| | - María Sol Espain
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
- Comisión Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Buenos Aires, Argentina
| | - Gabriela Leyva
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
| | - Gisela Saint Martin
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, San Martin, B1650KNA, Buenos Aires, Argentina
| |
Collapse
|
17
|
Kanygin V, Zaboronok A, Kichigin A, Petrova E, Guselnikova T, Kozlov A, Lukichev D, Mathis BJ, Taskaev S. Gadolinium Neutron Capture Therapy for Cats and Dogs with Spontaneous Tumors Using Gd-DTPA. Vet Sci 2023; 10:vetsci10040274. [PMID: 37104429 PMCID: PMC10142813 DOI: 10.3390/vetsci10040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
We conducted a clinical veterinary study on neutron capture therapy (NCT) at a neutron-producing accelerator with seven incurable pets with spontaneous tumors and gadolinium as a neutron capture agent (gadolinium neutron capture therapy, or GdNCT). Gadolinium-containing dimeglumine gadopentetate, or Gd-DTPA (Magnevist®, 0.6 mL/kg b.w.), was used. We observed mild and reversible toxicity related to the treatment. However, no significant tumor regression in response to the treatment was observed. In most cases, there was continued tumor growth. Overall clinical improvement after treatment was only temporary. The use of Gd-DTPA for NCT had no significant effects on the life expectancy and quality of life of animals with spontaneous tumors. Further experiments using more advanced gadolinium compounds are needed to improve the effect of GdNCT so that it can become an alternative to boron neutron capture therapy. Such studies are also necessary for further NCT implementation in clinical practice as well as in veterinary medicine.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| | - Aleksandr Kichigin
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Elena Petrova
- Veterinary Clinic “Best”, Frunze str., 57, 630005 Novosibirsk, Russia
| | - Tatyana Guselnikova
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 3, 630090 Novosibirsk, Russia
| | - Andrey Kozlov
- Clinical Hospital “Avicenna”, Uritskogo str., 2, 630007 Novosibirsk, Russia
| | - Dmitriy Lukichev
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Amakubo 2-1-1, Tsukuba 305-8576, Ibaraki, Japan
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Improved Boron Neutron Capture Therapy Using Integrin αvβ3-Targeted Long-Retention-Type Boron Carrier in a F98 Rat Glioma Model. BIOLOGY 2023; 12:biology12030377. [PMID: 36979069 PMCID: PMC10045558 DOI: 10.3390/biology12030377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Integrin αvβ3 is more highly expressed in high-grade glioma cells than in normal tissues. In this study, a novel boron-10 carrier containing maleimide-functionalized closo-dodecaborate (MID), serum albumin as a drug delivery system, and cyclic arginine-glycine-aspartate (cRGD) that can target integrin αvβ3 was developed. The efficacy of boron neutron capture therapy (BNCT) targeting integrin αvβ3 in glioma cells in the brain of rats using a cRGD-functionalized MID-albumin conjugate (cRGD-MID-AC) was evaluated. F98 glioma cells exposed to boronophenylalanine (BPA), cRGD-MID-AC, and cRGD + MID were used for cellular uptake and neutron-irradiation experiments. An F98 glioma-bearing rat brain tumor model was used for biodistribution and neutron-irradiation experiments after BPA or cRGD-MID-AC administration. BNCT using cRGD-MID-AC had a sufficient cell-killing effect in vitro, similar to that with BNCT using BPA. In biodistribution experiments, cRGD-MID-AC accumulated in the brain tumor, with the highest boron concentration observed 8 h after administration. Significant differences were observed between the untreated group and BNCT using cRGD-MID-AC groups in the in vivo neutron-irradiation experiments through the log-rank test. Long-term survivors were observed only in BNCT using cRGD-MID-AC groups 8 h after intravenous administration. These findings suggest that BNCT with cRGD-MID-AC is highly selective against gliomas through a mechanism that is different from that of BNCT with BPA.
Collapse
|
19
|
Multi-Targeted Neutron Capture Therapy Combined with an 18 kDa Translocator Protein-Targeted Boron Compound Is an Effective Strategy in a Rat Brain Tumor Model. Cancers (Basel) 2023; 15:cancers15041034. [PMID: 36831378 PMCID: PMC9953932 DOI: 10.3390/cancers15041034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) has been adapted to high-grade gliomas (HG); however, some gliomas are refractory to BNCT using boronophenylalanine (BPA). In this study, the feasibility of BNCT targeting the 18 kDa translocator protein (TSPO) expressed in glioblastoma and surrounding environmental cells was investigated. METHODS Three rat glioma cell lines, an F98 rat glioma bearing brain tumor model, DPA-BSTPG which is a boron-10 compound targeting TSPO, BPA, and sodium borocaptate (BSH) were used. TSPO expression was evaluated in the F98 rat glioma model. Boron uptake was assessed in three rat glioma cell lines and in the F98 rat glioma model. In vitro and in vivo neutron irradiation experiments were performed. RESULTS DPA-BSTPG was efficiently taken up in vitro. The brain tumor has 16-fold higher TSPO expressions than its brain tissue. The compound biological effectiveness value of DPA-BSTPG was 8.43 to F98 rat glioma cells. The boron concentration in the tumor using DPA-BSTPG convection-enhanced delivery (CED) administration was approximately twice as high as using BPA intravenous administration. BNCT using DPA-BSTPG has significant efficacy over the untreated group. BNCT using a combination of BPA and DPA-BSTPG gained significantly longer survival times than using BPA alone. CONCLUSION DPA-BSTPG in combination with BPA may provide the multi-targeted neutron capture therapy against HG.
Collapse
|
20
|
Pineda E, Domenech M, Hernández A, Comas S, Balaña C. Recurrent Glioblastoma: Ongoing Clinical Challenges and Future Prospects. Onco Targets Ther 2023; 16:71-86. [PMID: 36721854 PMCID: PMC9884437 DOI: 10.2147/ott.s366371] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Virtually all glioblastomas treated in the first-line setting will recur in a short period of time, and the search for alternative effective treatments has so far been unsuccessful. Various obstacles remain unresolved, and no effective salvage therapy for recurrent glioblastoma can be envisaged in the short term. One of the main impediments to progress is the low incidence of the disease itself in comparison with other pathologies, which will be made even lower by the recent WHO classification of gliomas, which includes molecular alterations. This new classification helps refine patient prognosis but does not clarify the most appropriate treatment. Other impediments are related to clinical trials: glioblastoma patients are often excluded from trials due to their advanced age and limiting neurological symptoms; there is also the question of how best to measure treatment efficacy, which conditions the design of trials and can affect the acceptance of results by oncologists and medicine agencies. Other obstacles are related to the drugs themselves: most treatments cannot cross the blood-brain-barrier or the brain-to-tumor barrier to reach therapeutic drug levels in the tumor without producing toxicity; the drugs under study may have adverse metabolic interactions with those required for symptom control; identifying the target of the drug can be a complex issue. Additionally, the optimal method of treatment - local vs systemic therapy, the choice of chemotherapy, irradiation, targeted therapy, immunotherapy, or a combination thereof - is not yet clear in glioblastoma in comparison with other cancers. Finally, in addition to curing or stabilizing the disease, glioblastoma therapy should aim at maintaining the neurological status of the patients to enable them to return to their previous lifestyle. Here we review currently available treatments, obstacles in the search for new treatments, and novel lines of research that show promise for the future.
Collapse
Affiliation(s)
- Estela Pineda
- Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Ainhoa Hernández
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Silvia Comas
- Radiation Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona, Spain
| | - Carmen Balaña
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain,Correspondence: Carmen Balaña, Institut Catala d’Oncologia (ICO) Badalona, Carretera Canyet s/n, Badalona, 08916, Spain, Tel +34 497 89 25, Fax +34 497 89 50, Email
| |
Collapse
|
21
|
Watanabe T, Sanada Y, Hattori Y, Suzuki M. Correlation between the expression of LAT1 in cancer cells and the potential efficacy of boron neutron capture therapy. JOURNAL OF RADIATION RESEARCH 2023; 64:91-98. [PMID: 36371738 PMCID: PMC9855323 DOI: 10.1093/jrr/rrac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Boron neutron capture therapy (BNCT) is a binary cancer therapy that involves boron administration and neutron irradiation. The nuclear reaction caused by the interaction of boron atom and neutron produces heavy particles with highly cytocidal effects and destruct tumor cells, which uptake the boron drug. p-Boronophenylalanine (BPA), an amino acid derivative, is used in BNCT. Tumor cells with increased nutrient requirements take up more BPA than normal tissues via the enhanced expression of LAT1, an amino acid transporter. The current study aimed to assess the correlation between the expression of LAT1 and the uptake capacity of BPA using genetically modified LAT1-deficient/enhanced cell lines. We conducted an in vitro study, SCC7 tumor cells wherein LAT1 expression was altered using CRISPR/Cas9 were used to assess BPA uptake capacity. Data from The Cancer Genome Atlas (TCGA) were used to examine the expression status of LAT1 in human tumor tissues, the potential impact of LAT1 expression on cancer prognosis and the potential cancer indications for BPA-based BNCT. We discovered that the strength of LAT1 expression strongly affected the BPA uptake ability of tumor cells. Among the histologic types, squamous cell carcinomas express high levels of LAT1 regardless of the primary tumor site. The higher LAT1 expression in tumors was associated with a higher expression of cell proliferation markers and poorer patient prognosis. Considering that BPA concentrate more in tumors with high LAT1 expression, the results suggest that BNCT is effective for cancers having poor prognosis with higher proliferative potential and nutritional requirements.
Collapse
Affiliation(s)
- Tsubasa Watanabe
- Corresponding author. Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 Japan. Tel: +81-72-451-2407; Fax: +81-72-451-2627;
| | | | - Yoshihide Hattori
- Research Center for Boron Neutron Capture Therapy, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| |
Collapse
|
22
|
Tian F, Zhao S, Geng C, Guo C, Wu R, Tang X. Use of a neural network-based prediction method to calculate the therapeutic dose in boron neutron capture therapy of patients with glioblastoma. Med Phys 2023; 50:3008-3018. [PMID: 36647729 DOI: 10.1002/mp.16215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is a binary radiotherapy based on the 10 B(n, α)7 Li capture reaction. Nonradioactive isotope 10 B atoms which selectively concentrated in tumor cells will react with low energy neutrons (mainly thermal neutrons) to produce secondary particles with high linear energy transfer, thus depositing dose in tumor cells. In clinical practice, an appropriate treatment plan needs to be set on the basis of the treatment planning system (TPS). Existing BNCT TPSs usually use the Monte Carlo method to determine the three-dimensional (3D) therapeutic dose distribution, which often requires a lot of calculation time due to the complexity of simulating neutron transportation. PURPOSE A neural network-based BNCT dose prediction method is proposed to achieve the rapid and accurate acquisition of BNCT 3D therapeutic dose distribution for patients with glioblastoma to solve the time-consuming problem of BNCT dose calculation in clinic. METHODS The clinical data of 122 patients with glioblastoma are collected. Eighteen patients are used as a test set, and the rest are used as a training set. The 3D-UNET is constructed through the design optimization of input and output data sets based on radiation field information and patient CT information to enable the prediction of 3D dose distribution of BNCT. RESULTS The average mean absolute error of the predicted and simulated equivalent doses of each organ are all less than 1 Gy. For the dose to 95% of the GTV volume (D95 ), the relative deviation between predicted and simulated results are all less than 2%. The average 2 mm/2% gamma index is 89.67%, and the average 3 mm/3% gamma index is 96.78%. The calculation takes about 6 h to simulate the 3D therapeutic dose distribution of a patient with glioblastoma by Monte Carlo method using Intel Xeon E5-2699 v4, whereas the time required by the method proposed in this study is almost less than 1 s using a Titan-V graphics card. CONCLUSIONS This study proposes a 3D dose prediction method based on 3D-UNET architecture in BNCT, and the feasibility of this method is demonstrated. Results indicate that the method can remarkably reduce the time required for calculation and ensure the accuracy of the predicted 3D therapeutic dose-effect. This work is expected to promote the clinical development of BNCT in the future.
Collapse
Affiliation(s)
- Feng Tian
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Sheng Zhao
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.,Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Chang Guo
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing, People's Republic of China
| | - Renyao Wu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.,Joint International Research Laboratory on Advanced Particle Therapy, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Hu N, Tanaka H, Akita K, Kakino R, Aihara T, Nihei K, Ono K. Accelerator based epithermal neutron source for clinical boron neutron capture therapy. JOURNAL OF NEUTRON RESEARCH 2022. [DOI: 10.3233/jnr-220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The world’s first accelerator based epithermal neutron source for clinical boron neutron capture therapy (BNCT) was designed, developed, and commissioned between 2008 and 2010 by Sumitomo Heavy Industries in collaboration with Kyoto University at the Kyoto University Institute for Integrated Radiation and Nuclear Science. The accelerator system is cyclotron-based and accelerates a proton up to an energy of approximately 30 MeV. The proton strikes a beryllium target, which produces fast neutrons that traverse a beam shaping assembly composed of a combination of lead, iron, aluminum, and calcium fluoride to reduce the neutron energy down to the epithermal range (∼10 keV) suitable for BNCT. The system is designed to produce an epithermal neutron flux of up to 1.4 × 10 9 n · cm − 2 · s − 1 (exiting from the moderator of a 12 cm diameter collimator) with a proton current of 1 mA. In 2017, the same type of accelerator was installed at the Kansai BNCT Medical Center and in March 2020 the system received medical device approval in Japan (Sumitomo Heavy Industries, NeuCure® BNCT system). Soon after, BNCT for unresectable, locally advanced, and recurrent carcinoma of the head and neck region was approved by the Japanese government for reimbursement covered by the national health insurance system.
Collapse
Affiliation(s)
- Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Japan
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Japan
| | - Kazuhiko Akita
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Japan
| | - Ryo Kakino
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Japan
| | - Teruhito Aihara
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Japan
| | - Keiji Nihei
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Japan
| |
Collapse
|
24
|
Sasaki A, Hu N, Takata T, Matsubayashi N, Sakurai Y, Suzuki M, Tanaka H. Intensity-modulated irradiation for superficial tumors by overlapping irradiation fields using intensity modulators in accelerator-based BNCT. JOURNAL OF RADIATION RESEARCH 2022; 63:866-873. [PMID: 36149023 PMCID: PMC9726706 DOI: 10.1093/jrr/rrac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Indexed: 05/12/2023]
Abstract
The distribution of the thermal neutron flux has a significant impact on the treatment efficacy. We developed an irradiation method of overlapping irradiation fields using intensity modulators for the treatment of superficial tumors with the aim of expanding the indications for accelerator-based boron neutron capture therapy (BNCT). The shape of the intensity modulator was determined and Monte Carlo simulations were carried out to determine the uniformity of the resulting thermal neutron flux distribution. The intensity modulators were then fabricated and irradiation tests were conducted, which resulted in the formation of a uniform thermal neutron flux distribution. Finally, an evaluation of the tumor dose distribution showed that when two irradiation fields overlapped, the minimum tumor dose was 27.4 Gy-eq, which was higher than the tumor control dose of 20 Gy-eq. Furthermore, it was found that the uniformity of the treatment was improved 47% as compared to the treatment that uses a single irradiation field. This clearly demonstrates the effectiveness of this technique and the possibility of expanding the indications to superficially located tumors.
Collapse
Affiliation(s)
- Akinori Sasaki
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Kyoto Nishikyo-ku, Kyoto 615-8246, Japan
| | - Naonori Hu
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
- Kansai BNCT Medical Center, Educational Foundation of Osaka Medical and Pharmaceutical University, Daigakumachi, Takatsuki, Osaka 569-0801, Japan
| | - Takushi Takata
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Nishiki Matsubayashi
- Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Kyoto Nishikyo-ku, Kyoto 615-8246, Japan
| | - Yoshinori Sakurai
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Corresponding author. Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan, Tel: +81-72-451-2468;
| |
Collapse
|
25
|
Matsumura A, Asano T, Hirose K, Igaki H, Kawabata S, Kumada H. Initiatives Toward Clinical Boron Neutron Capture Therapy in Japan. Cancer Biother Radiopharm 2022; 38:201-207. [PMID: 36374236 PMCID: PMC10122211 DOI: 10.1089/cbr.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Boron neutron capture therapy (BNCT) has been performed at nuclear research reactors for many years. The development of accelerators for BNCT resulted in a paradigm shift from research to real clinical applications. In Japan, BNCT was approved as a clinical therapy covered by the National Health Insurance in 2020. In this article, the status of BNCT in Japan is briefly introduced.
Collapse
Affiliation(s)
- Akira Matsumura
- Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
- Proton Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | | | - Katsumi Hirose
- Department of Radiation Oncology, Southern Tohoku Hospital, Fukushima, Japan
| | - Hiroshi Igaki
- Division of Boron Neutron Capture Therapy Medical Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Hiroaki Kumada
- Proton Medical Research Center, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Porra L, Wendland L, Seppälä T, Koivunoro H, Revitzer H, Tervonen J, Kankaanranta L, Anttonen A, Tenhunen M, Joensuu H. From Nuclear Reactor-Based to Proton Accelerator-Based Therapy: The Finnish Boron Neutron Capture Therapy Experience. Cancer Biother Radiopharm 2022; 38:184-191. [PMID: 36269660 DOI: 10.1089/cbr.2022.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The authors review the results of 249 patients treated with boron neutron capture therapy (BNCT) at the Helsinki University Hospital, Helsinki, Finland, from May 1999 to January 2012 with neutrons obtained from a nuclear reactor source (FiR 1) and using l-boronophenylalanine-fructose (l-BPA-F) as the boron delivery agent. They also describe a new hospital BNCT facility that hosts a proton accelerator-based neutron source for BNCT. Most of the patients treated with nuclear reactor-derived neutrons had either inoperable, locally recurrent head and neck cancer or malignant glioma. In general, l-BPA-F-mediated BNCT was relatively well tolerated with adverse events usually similar to those of conventional radiotherapy. Twenty-eight (96.6%) out of the evaluable 29 patients with head and neck cancer and treated within a clinical trial either responded to BNCT or had tumor growth stabilization for at least 5 months, suggesting efficacy of BNCT in the treatment of this patient population. The new accelerator-based BNCT facility houses a nuBeam neutron source that consists of an electrostatic Cockcroft-Walton-type proton accelerator and a lithium target that converts the proton beam to neutrons. The proton beam energy is 2.6 MeV operating with a current of 30 mA. Treatment planning is based on Monte Carlo simulation and the RayStation treatment planning system. Patient positioning is performed with a 6-axis robotic image-guided system, and in-room imaging is done with a rail-mounted computed tomography scanner. Under normal circumstances, the personnel can enter the treatment room almost immediately after shutting down the proton beam, which improves the unit capacity. ClinicalTrials.gov ID: NCT00114790.
Collapse
Affiliation(s)
- Liisa Porra
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lauri Wendland
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Seppälä
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Hannu Revitzer
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Tervonen
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Kankaanranta
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anu Anttonen
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mikko Tenhunen
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Comprehensive Cancer Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Cheng X, Li F, Liang L. Boron Neutron Capture Therapy: Clinical Application and Research Progress. Curr Oncol 2022; 29:7868-7886. [PMID: 36290899 PMCID: PMC9601095 DOI: 10.3390/curroncol29100622] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary modality that is used to treat a variety of malignancies, using neutrons to irradiate boron-10 (10B) nuclei that have entered tumor cells to produce highly linear energy transfer (LET) alpha particles and recoil 7Li nuclei (10B [n, α] 7Li). Therefore, the most important part in BNCT is to selectively deliver a large number of 10B to tumor cells and only a small amount to normal tissue. So far, BNCT has been used in more than 2000 cases worldwide, and the efficacy of BNCT in the treatment of head and neck cancer, malignant meningioma, melanoma and hepatocellular carcinoma has been confirmed. We collected and collated clinical studies of second-generation boron delivery agents. The combination of different drugs, the mode of administration, and the combination of multiple treatments have an important impact on patient survival. We summarized the critical issues that must be addressed, with the hope that the next generation of boron delivery agents will overcome these challenges.
Collapse
Affiliation(s)
- Xiang Cheng
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
| | - Fanfan Li
- Oncology Department, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei Economic and Technological Development Zone, Hefei 230601, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| | - Lizhen Liang
- Hefei Comprehensive National Science Center, Institute of Energy, Building 9, Binhu Excellence City Phase I, 16 Huayuan Avenue, Baohe District, Hefei 230031, China
- Correspondence: (F.L.); (L.L.); Tel.: +86-13855137365 (F.L.); +86-15905602477 (L.L.)
| |
Collapse
|
28
|
Hu N, Tanaka H, Ono K. Design of a filtration system to improve the dose distribution of an accelerator-based neutron capture therapy system. Med Phys 2022; 49:6609-6621. [PMID: 35941788 PMCID: PMC9804710 DOI: 10.1002/mp.15864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The aim of this study is to design and evaluate a neutron filtration system to improve the dose distribution of an accelerator-based neutron capture therapy system. METHODS An LiF-sintered plate composed of 99%-enriched 6 Li was utilized to filter out low-energy neutrons to increase the average neutron energy at the beam exit. A 5-mm thick filter to fit inside a 12-cm diameter circular collimator was manufactured, and experimental measurements were performed to measure the thermal neutron flux and gamma-ray dose rate inside a water phantom. The experimental measurements were compared with the Monte Carlo simulation, particle, and heavy ion transport code system. Following the experimental verification, three filter designs were modeled, and the thermal neutron flux and the biologically weighted dose distribution inside a phantom were simulated. Following the phantom simulation, a dummy patient CT dataset was used to simulate a boron neutron capture therapy (BNCT) irradiation of the brain. A mock tumor located at 4, 6, 8 cm along the central axis and 4-cm off-axis was set, and the dose distribution was simulated for a maximum total biologically weighted brain dose of 12.5 Gy with a beam entering from the vertex. RESULTS All three filters improved the beam penetration of the accelerator-based neutron source. Filter design C was found to be the most suitable filter, increasing the advantage depth from 9.1 to 9.9 cm. Compared with the unfiltered beam, the mean weighted dose in the tumor located at a depth of 8 cm along the beam axis was increased by ∼25%, and 34% for the tumor located at a depth of 8 cm and off-axis by 4 cm. CONCLUSION A neutron filtration system for an accelerator-based BNCT system was investigated using Monte Carlo simulation. The proposed filter design significantly improved the dose distribution for the treatment of deep targets in the brain.
Collapse
Affiliation(s)
- Naonori Hu
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan,Particle Radiation Oncology Research CenterKyoto UniversityInstitute for Integrated Radiation and Nuclear ScienceOsakaJapan
| | - Hiroki Tanaka
- Particle Radiation Oncology Research CenterKyoto UniversityInstitute for Integrated Radiation and Nuclear ScienceOsakaJapan
| | - Koji Ono
- Kansai BNCT Joint Clinical InstituteOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐8686Japan
| |
Collapse
|
29
|
Kondo N, Masutani M, Imamichi S, Matsumoto Y, Nakai K. Strategies for Preclinical Studies Evaluating the Biological Effects of an Accelerator-Based Boron Neutron Capture Therapy System. Cancer Biother Radiopharm 2022; 38:173-183. [PMID: 36154293 DOI: 10.1089/cbr.2022.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review discusses the strategies of preclinical studies intended for accelerator-based (AB)-boron neutron capture therapy (BNCT) clinical trials, which were presented at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy held from April 20 to 22, 2022. Clinical studies of BNCT have been conducted worldwide using reactor neutron sources, with most targeting malignant brain tumors, melanoma, or head and neck cancer. Recently, small accelerator-based neutron sources that can be installed in hospitals have been developed. AB-BNCT clinical trials for recurrent malignant glioma, head and neck cancers, high-grade meningioma, melanoma, and angiosarcoma have all been conducted in Japan. The necessary methods, equipment, and facilities for preclinical studies to evaluate the biological effects of AB-BNCT systems in terms of safety and efficacy are described, with reference to two examples from Japan. The first is the National Cancer Center, which is equipped with a vertical downward neutron beam, and the other is the University of Tsukuba, which has a horizontal neutron beam. The preclinical studies discussed include cell-based assays to evaluate cytotoxicity and genotoxicity, in vivo cytotoxicity and efficacy of BNCT, and radioactivation measurements.
Collapse
Affiliation(s)
- Natsuko Kondo
- Particle Radiation Oncology Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-Nishi, Osaka, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine School of Medicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan.,Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan
| | - Shoji Imamichi
- Department of Molecular and Genomic Biomedicine School of Medicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan.,Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kei Nakai
- Department of Radiation Oncology, Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
30
|
Jin WH, Seldon C, Butkus M, Sauerwein W, Giap HB. A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. Int J Part Ther 2022; 9:71-82. [PMID: 35774489 PMCID: PMC9238127 DOI: 10.14338/ijpt-22-00002.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mechanism of Action External beam, whether with photons or particles, remains as the most common type of radiation therapy. The main drawback is that radiation deposits dose in healthy tissue before reaching its target. Boron neutron capture therapy (BNCT) is based on the nuclear capture and fission reactions that occur when 10B is irradiated with low-energy (0.0025 eV) thermal neutrons. The resulting 10B(n,α)7Li capture reaction produces high linear energy transfer (LET) α particles, helium nuclei (4He), and recoiling lithium-7 (7Li) atoms. The short range (5-9 μm) of the α particles limits the destructive effects within the boron-containing cells. In theory, BNCT can selectively destroy malignant cells while sparing adjacent normal tissue at the cellular levels by delivering a single fraction of radiation with high LET particles. History BNCT has been around for many decades. Early studies were promising for patients with malignant brain tumors, recurrent tumors of the head and neck, and cutaneous melanomas; however, there were certain limitations to its widespread adoption and use. Current Limitations and Prospects Recently, BNCT re-emerged owing to several developments: (1) small footprint accelerator-based neutron sources; (2) high specificity third-generation boron carriers based on monoclonal antibodies, nanoparticles, among others; and (3) treatment planning software and patient positioning devices that optimize treatment delivery and consistency.
Collapse
Affiliation(s)
- Will H Jin
- Department of Radiation Oncology, Jackson Memorial Hospital/Sylvester Comprehensive Cancer Center, University of Miami Health Systems, Miami, FL, USA
| | - Crystal Seldon
- Department of Radiation Oncology, Jackson Memorial Hospital/Sylvester Comprehensive Cancer Center, University of Miami Health Systems, Miami, FL, USA
| | - Michael Butkus
- Department of Radiation Oncology, Jackson Memorial Hospital/Sylvester Comprehensive Cancer Center, University of Miami Health Systems, Miami, FL, USA
| | - Wolfgang Sauerwein
- Deutsche Gesellschaft für Bor-Neutroneneinfangtherapie (DGBNCT), Universitätsklinikum Essen, Essen, Germany
| | - Huan B Giap
- Department of Radiation Oncology, Nancy N. and J. C. Lewis Cancer & Research Pavilion, Savannah, GA, USA
| |
Collapse
|
31
|
Sahu U, Barth RF, Otani Y, McCormack R, Kaur B. Rat and Mouse Brain Tumor Models for Experimental Neuro-Oncology Research. J Neuropathol Exp Neurol 2022; 81:312-329. [PMID: 35446393 PMCID: PMC9113334 DOI: 10.1093/jnen/nlac021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rodent brain tumor models have been useful for developing effective therapies for glioblastomas (GBMs). In this review, we first discuss the 3 most commonly used rat brain tumor models, the C6, 9L, and F98 gliomas, which are all induced by repeated injections of nitrosourea to adult rats. The C6 glioma arose in an outbred Wistar rat and its potential to evoke an alloimmune response is a serious limitation. The 9L gliosarcoma arose in a Fischer rat and is strongly immunogenic, which must be taken into consideration when using it for therapy studies. The F98 glioma may be the best of the 3 but it does not fully recapitulate human GBMs because it is weakly immunogenic. Next, we discuss a number of mouse models. The first are human patient-derived xenograft gliomas in immunodeficient mice. These have failed to reproduce the tumor-host interactions and microenvironment of human GBMs. Genetically engineered mouse models recapitulate the molecular alterations of GBMs in an immunocompetent environment and “humanized” mouse models repopulate with human immune cells. While the latter are rarely isogenic, expensive to produce, and challenging to use, they represent an important advance. The advantages and limitations of each of these brain tumor models are discussed. This information will assist investigators in selecting the most appropriate model for the specific focus of their research.
Collapse
Affiliation(s)
- Upasana Sahu
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Yoshihiro Otani
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ryan McCormack
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Balveen Kaur
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Kashiwagi H, Kawabata S, Yoshimura K, Fukuo Y, Kanemitsu T, Takeuchi K, Hiramatsu R, Nishimura K, Kawai K, Takata T, Tanaka H, Watanabe T, Suzuki M, Miyatake SI, Nakamura H, Wanibuchi M. Boron neutron capture therapy using dodecaborated albumin conjugates with maleimide is effective in a rat glioma model. Invest New Drugs 2022; 40:255-264. [PMID: 34816337 DOI: 10.1007/s10637-021-01201-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023]
Abstract
Introduction Boron neutron capture therapy (BNCT) is a biologically targeted, cell-selective particle irradiation therapy that utilizes the nuclear capture reaction of boron and neutron. Recently, accelerator neutron generators have been used in clinical settings, and expectations for developing new boron compounds are growing. Methods and Results In this study, we focused on serum albumin, a well-known drug delivery system, and developed maleimide-functionalized closo-dodecaborate albumin conjugate (MID-AC) as a boron carrying system for BNCT. Our biodistribution experiment involved F98 glioma-bearing rat brain tumor models systemically administered with MID-AC and demonstrated accumulation and long retention of boron. Our BNCT study with MID-AC observed statistically significant prolongation of the survival rate compared to the control groups, with results comparable to BNCT study with boronophenylalanine (BPA) which is the standard use of in clinical settings. Each median survival time was as follows: untreated control group; 24.5 days, neutron-irradiated control group; 24.5 days, neutron irradiation following 2.5 h after termination of intravenous administration (i.v.) of BPA; 31.5 days, and neutron irradiation following 2.5 or 24 h after termination of i.v. of MID-AC; 33.5 or 33.0 days, respectively. The biological effectiveness factor of MID-AC for F98 rat glioma was estimated based on these survival times and found to be higher to 12. This tendency was confirmed in BNCT 24 h after MID-AC administration. Conclusion MID-AC induces an efficient boron neutron capture reaction because the albumin contained in MID-AC is retained in the tumor and has a considerable potential to become an effective delivery system for BNCT in treating high-grade gliomas.
Collapse
Affiliation(s)
- Hideki Kashiwagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan.
| | - Kohei Yoshimura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan
| | - Yusuke Fukuo
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan
| | - Takuya Kanemitsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan
| | - Koji Takeuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan
| | - Kai Nishimura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Kazuki Kawai
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Tsubasa Watanabe
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, Japan
| | - Shin-Ichi Miyatake
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki City, Osaka, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki City, Osaka, Japan
| |
Collapse
|
33
|
Importance of radiobiological studies for the advancement of boron neutron capture therapy (BNCT). Expert Rev Mol Med 2022; 24:e14. [PMID: 35357286 DOI: 10.1017/erm.2022.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.
Collapse
|
34
|
Furuse M, Kawabata S, Wanibuchi M, Shiba H, Takeuchi K, Kondo N, Tanaka H, Sakurai Y, Suzuki M, Ono K, Miyatake SI. Boron neutron capture therapy and add-on bevacizumab in patients with recurrent malignant glioma. Jpn J Clin Oncol 2022; 52:433-440. [PMID: 35079791 DOI: 10.1093/jjco/hyac004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Although boron neutron capture therapy has shown excellent survival data, previous studies have shown an increase in radiation necrosis against recurrent malignant glioma. Herein, we proposed that bevacizumab may reduce radiation injury from boron neutron capture therapy by re-irradiation. We evaluated the efficacy and safety of a boron neutron capture therapy and add-on bevacizumab combination therapy in patients with recurrent malignant glioma. METHODS Patients with recurrent malignant glioma were treated with reactor-based boron neutron capture therapy. Treatment with bevacizumab (10 mg/kg) was initiated 1-4 weeks after boron neutron capture therapy and was administered every 2-3 weeks until disease progression. Initially diagnosed glioblastomas were categorized as primary glioblastoma, whereas other forms of malignant glioma were categorized as non-primary glioblastoma. RESULTS Twenty-five patients (14 with primary glioblastoma and 11 with non-primary glioblastoma) were treated with boron neutron capture therapy and add-on bevacizumab. The 1-year survival rate for primary glioblastoma and non-primary glioblastoma was 63.5% (95% confidence interval: 33.1-83.0) and 81.8% (95% confidence interval: 44.7-95.1), respectively. The median overall survival was 21.4 months (95% confidence interval: 7.0-36.7) and 73.6 months (95% confidence interval: 11.4-77.2) for primary glioblastoma and non-primary glioblastoma, respectively. The median progression-free survival was 8.3 months (95% confidence interval: 4.2-12.1) and 15.6 months (95% confidence interval: 3.1-29.8) for primary glioblastoma and non-primary glioblastoma, respectively. Neither pseudoprogression nor radiation necrosis were identified during bevacizumab treatment. Alopecia occurred in all patients. Six patients experienced adverse events ≥grade 3. CONCLUSIONS Boron neutron capture therapy and add-on bevacizumab provided a long overall survival and a long progression-free survival in recurrent malignant glioma compared with previous studies on boron neutron capture therapy alone. The add-on bevacizumab may reduce the detrimental effects of boron neutron capture therapy, including pseudoprogression and radiation necrosis. Further studies of the combination therapy with a larger sample size and a randomized controlled design are warranted.
Collapse
Affiliation(s)
- Motomasa Furuse
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Hiroyuki Shiba
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Koji Takeuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
- Cerebrospinal center, Shiroyama Hospital, Habikino, Osaka 583-0872, Japan
| | - Natsuko Kondo
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Cerebrospinal center, Shiroyama Hospital, Habikino, Osaka 583-0872, Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Shin-Ichi Miyatake
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
35
|
Kanygin V, Kichigin A, Zaboronok A, Kasatova A, Petrova E, Tsygankova A, Zavjalov E, Mathis BJ, Taskaev S. In Vivo Accelerator-Based Boron Neutron Capture Therapy for Spontaneous Tumors in Large Animals: Case Series. BIOLOGY 2022; 11:138. [PMID: 35053138 PMCID: PMC8773183 DOI: 10.3390/biology11010138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
(1) Background: accelerator-based neutron sources are a new frontier for BNCT but many technical issues remain. We aimed to study such issues and results in larger-animal BNCT (cats and dogs) with naturally occurring, malignant tumors in different locations as an intermediate step in translating current research into clinical practice. (2) Methods: 10 pet cats and dogs with incurable, malignant tumors that had no treatment alternatives were included in this study. A tandem accelerator with vacuum insulation was used as a neutron source. As a boron-containing agent, 10B-enriched sodium borocaptate (BSH) was used at a dose of 100 mg/kg. Animal condition as well as tumor progression/regression were monitored. (3) Results: regression of tumors in response to treatment, improvements in the overall clinical picture, and an increase in the estimated duration and quality of life were observed. Treatment-related toxicity was mild and reversible. (4) Conclusions: our study contributes to preparations for human BNCT clinical trials and suggests utility for veterinary oncology.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
| | - Aleksandr Kichigin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
| | - Alexander Zaboronok
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.K.); (S.T.)
| | - Elena Petrova
- Veterinary Clinic “Best”, 57 Frunze Str., 630005 Novosibirsk, Russia;
| | - Alphiya Tsygankova
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Evgenii Zavjalov
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, 10, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba 305-8576, Ibaraki, Japan;
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.K.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia
| |
Collapse
|
36
|
Xu J, Wang J, Wei Q. Boron neutron capture therapy in clinical application:Progress and prospect. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Bikchurina M, Bykov T, Kasatov D, Kolesnikov I, Makarov A, Shchudlo I, Sokolova E, Taskaev S. The Measurement of the Neutron Yield of the 7Li(p,n) 7Be Reaction in Lithium Targets. BIOLOGY 2021; 10:biology10090824. [PMID: 34571701 PMCID: PMC8465961 DOI: 10.3390/biology10090824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary A compact neutron source has been proposed and created at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. The source comprises an original design tandem accelerator, solid lithium target, and a neutron beam shaping assembly. The neutron source is capable of producing the high neutron flux for boron neutron capture therapy (BNCT). Currently, the BNCT technique has entered into clinical practice in the world: two clinics began treating patients, and four more BNCT clinics are ready to start operating. The neutron source proposed at the Budker Institute served as a prototype for a facility created for a clinic in Xiamen (China). It is planned to equip the National Medical Research Center of Oncology (Moscow, Russia) and National Oncological Hadron Therapy Center (Pavia, Italy) with the same neutron sources. Due to the impending use of an accelerator neutron source for treating patients, the validation of the neutron yield of the 7Li(p,n)7Be reaction in lithium metal targets is required. The theoretical neutron yield has not been evaluated experimentally so far. Abstract A compact accelerator-based neutron source has been proposed and created at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. An original design tandem accelerator is used to provide a proton beam. The neutron flux is generated as a result of the 7Li(p,n)7Be threshold reaction using the solid lithium target. A beam shaping assembly is applied to convert this flux into a beam of epithermal neutrons with characteristics suitable for BNCT. The BNCT technique is being tested in in vitro and in vivo studies, and dosimetry methods are being developed. Currently, the BNCT technique has entered into clinical practice in the world: after successful clinical trials, two clinics in Japan began treating patients, and four more BNCT clinics are ready to start operating. The neutron source proposed at the Budker Institute of Nuclear Physics served as a prototype for a facility created for a clinic in Xiamen (China). It is planned to equip the National Medical Research Center of Oncology (Moscow, Russia) and National Oncological Hadron Therapy Center (Pavia, Italy) with the same neutron sources. Due to the impending use of an accelerator neutron source for treating patients, the validation of the neutron yield of the 7Li(p,n)7Be reaction in lithium metal targets is required. The theoretical neutron yield has not been evaluated experimentally so far.
Collapse
Affiliation(s)
- Marina Bikchurina
- Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.B.); (T.B.); (D.K.); (I.K.); (A.M.); (I.S.); (E.S.)
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
| | - Timofey Bykov
- Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.B.); (T.B.); (D.K.); (I.K.); (A.M.); (I.S.); (E.S.)
| | - Dmitrii Kasatov
- Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.B.); (T.B.); (D.K.); (I.K.); (A.M.); (I.S.); (E.S.)
| | - Iaroslav Kolesnikov
- Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.B.); (T.B.); (D.K.); (I.K.); (A.M.); (I.S.); (E.S.)
| | - Aleksandr Makarov
- Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.B.); (T.B.); (D.K.); (I.K.); (A.M.); (I.S.); (E.S.)
| | - Ivan Shchudlo
- Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.B.); (T.B.); (D.K.); (I.K.); (A.M.); (I.S.); (E.S.)
| | - Evgeniia Sokolova
- Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.B.); (T.B.); (D.K.); (I.K.); (A.M.); (I.S.); (E.S.)
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.B.); (T.B.); (D.K.); (I.K.); (A.M.); (I.S.); (E.S.)
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-329-4121
| |
Collapse
|
38
|
Yu LS, Jhunjhunwala M, Hong SY, Yu LY, Lin WR, Chen CS. Tissue Architecture Influences the Biological Effectiveness of Boron Neutron Capture Therapy in In Vitro/In Silico Three-Dimensional Self-Assembly Cell Models of Pancreatic Cancers. Cancers (Basel) 2021; 13:4058. [PMID: 34439214 PMCID: PMC8394840 DOI: 10.3390/cancers13164058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is a leading cause of cancer death, and boron neutron capture therapy (BNCT) is one of the promising radiotherapy techniques for patients with pancreatic cancer. In this study, we evaluated the biological effectiveness of BNCT at multicellular levels using in vitro and in silico models. To recapture the phenotypic characteristic of pancreatic tumors, we developed a cell self-assembly approach with human pancreatic cancer cells Panc-1 and BxPC-3 cocultured with MRC-5 fibroblasts. On substrate with physiological stiffness, tumor cells self-assembled into 3D spheroids, and the cocultured fibroblasts further facilitated the assembly process, which recapture the influence of tumor stroma. Interestingly, after 1.2 MW neutron irradiation, lower survival rates and higher apoptosis (increasing by 4-fold for Panc-1 and 1.5-fold for BxPC-3) were observed in 3D spheroids, instead of in 2D monolayers. The unexpected low tolerance of 3D spheroids to BNCT highlights the unique characteristics of BNCT over conventional radiotherapy. The uptake of boron-containing compound boronophenylalanine (BPA) and the alteration of E-cadherin can partially contribute to the observed susceptibility. In addition to biological effects, the probability of induced α-particle exposure correlated to the multicellular organization was speculated to affect the cellular responses to BNCT. A Monte Carlo (MC) simulation was also established to further interpret the observed survival. Intracellular boron distribution in the multicellular structure and related treatment resistance were reconstructed in silico. Simulation results demonstrated that the physical architecture is one of the essential factors for biological effectiveness in BNCT, which supports our in vitro findings. In summary, we developed in vitro and in silico self-assembly 3D models to evaluate the effectiveness of BNCT on pancreatic tumors. Considering the easy-access of this 3D cell-assembly platform, this study may not only contribute to the current understanding of BNCT but is also expected to be applied to evaluate the BNCT efficacy for individualized treatment plans in the future.
Collapse
Affiliation(s)
- Lin-Sheng Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; (L.-S.Y.); (M.J.); (L.-Y.Y.)
| | - Megha Jhunjhunwala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; (L.-S.Y.); (M.J.); (L.-Y.Y.)
| | - Shiao-Ya Hong
- Medical Research Center, Cardinal Tien Hospital, New Taipei City 23148, Taiwan;
| | - Lin-Yen Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; (L.-S.Y.); (M.J.); (L.-Y.Y.)
| | - Wey-Ran Lin
- Department of Gastroenterology & Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; (L.-S.Y.); (M.J.); (L.-Y.Y.)
| |
Collapse
|