1
|
Baxter SM, Bjørge T, Bjerkvig R, Cardwell C, Engeland A, Eriksson J, Habel L, Igland J, Klungsøyr K, Lunde A, Miletic H, Olesen M, Pottegård A, Reutfors J, Sharifian MJ, Linder M, Hicks B. Use of psychotropic medications among glioma patients in Denmark, Norway, Sweden, and Wales. J Neurooncol 2025; 173:383-395. [PMID: 40208515 DOI: 10.1007/s11060-025-04996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/01/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE Glioma patients often suffer from psychiatric and neurological conditions. However, little is known about the patterns of use of psychotropic drugs pre- and post-glioma diagnosis. Therefore, we assessed temporal patterns of psychotropic prescriptions among glioma patients, compared to an age and sex matched comparison cohort in four European countries. METHODS Incident gliomas were identified in Wales from the Secured Anonymized Information Linkage Databank (2005-2016) and population-based registries in Denmark (2001-2016), Norway (2006-2019), and Sweden (2008-2018). From each data source, a cancer-free comparison cohort was matched to the glioma cases by age and sex. We calculated rates of new psychotropic prescriptions and any psychotropic prescriptions during the 2 years prior to and post glioma diagnosis. Analyses were stratified by histological subtypes and subclasses of psychotropic medications. RESULTS We identified 16,007 glioma patients. The rate of new psychotropic drug use increased from 7 months before diagnosis, peaking around the month of glioma diagnosis (with peak rates ranging from 227 to 753 new psychotropic drugs per 1000 person-months). New use remained substantially higher among glioma patients than comparators throughout the 2-year follow-up period after glioma diagnosis, though rates of new use continued to decline throughout. New use was largely driven by antiepileptics, anxiolytics, hypnotics, and sedatives. Patterns were similar when analyses were stratified by histological subtype. CONCLUSION Psychotropic drug use among glioma patients was high, and elevations observed around the time of cancer diagnosis, largely driven by antiepileptics, anxiolytics, hypnotics, and sedatives, are likely associated with the consequences of the disease.
Collapse
Affiliation(s)
- Sarah M Baxter
- Centre for Public Health, Queen's University Belfast, Belfast, BT12 6BA, Northern Ireland
| | - Tone Bjørge
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
- Cancer Registry of Norway, Norwegian Institute of Public Health, NO-0304, Oslo, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, N-5020, Bergen, Norway
| | - Christopher Cardwell
- Centre for Public Health, Queen's University Belfast, Belfast, BT12 6BA, Northern Ireland
| | - Anders Engeland
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
- Department of Chronic Diseases, Norwegian Institute of Public Health, N-0213, Oslo, Norway
| | - Julia Eriksson
- Centre for Pharmacoepidemiology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Laurel Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94588, USA
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
- Department of Health and Caring Sciences, Western Norway University of Applied Sciences, 5020, Bergen, Norway
| | - Kari Klungsøyr
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
- Division of Mental and Physical Health, Norwegian Institute of Public Health, N-0213, Oslo, Norway
| | - Astrid Lunde
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, N-5020, Bergen, Norway
| | - Morten Olesen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5230, Odense, Denmark
| | - Anton Pottegård
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5230, Odense, Denmark
| | - Johan Reutfors
- Centre for Pharmacoepidemiology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Mohammad Jalil Sharifian
- Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
| | - Marie Linder
- Centre for Pharmacoepidemiology, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Blánaid Hicks
- Centre for Public Health, Queen's University Belfast, Belfast, BT12 6BA, Northern Ireland.
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5230, Odense, Denmark.
| |
Collapse
|
2
|
Knabbe J, Kowalski T, Seliger C. Pharmacological treatment of depression in patients with brain tumors. Int J Cancer 2024; 155:1533-1543. [PMID: 38943227 DOI: 10.1002/ijc.35058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 07/01/2024]
Abstract
Patients with brain tumors suffer from intense psychosocial distress. Although the prevalence of depressive symptoms in patients with brain tumors is high, the pharmacological antidepressant treatment of those patients is not well defined and results from clinical trials are largely missing. In this review, we describe the current standard of evidence and clinical guidelines for the pharmacological treatment of depression in brain tumor patients. We present specific side effects and interactions that should guide treatment decisions. Furthermore, we provide evidence for the diagnosis, screening and risk factors for depression in brain tumor patients and we elaborate on potential antineoplastic effects of antidepressant drugs and ongoing clinical trials. Antidepressant drugs should not be withheld from patients with brain tumors. Future clinical trials should explore the effectiveness and side effects of antidepressants in this specific patient population.
Collapse
Affiliation(s)
- Johannes Knabbe
- Department of Psychiatry and Psychotherapy, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Kowalski
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Corinna Seliger
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| |
Collapse
|
3
|
Tsuboi N, Otani Y, Uneda A, Ishida J, Suruga Y, Matsumoto Y, Fujimura A, Fujii K, Matsui H, Kurozumi K, Date I, Michiue H. New Anti-Angiogenic Therapy for Glioblastoma With the Anti-Depressant Sertraline. Cancer Med 2024; 13:e70288. [PMID: 39440923 PMCID: PMC11497491 DOI: 10.1002/cam4.70288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND AIMS Anti-angiogenic therapies prolong patient survival in some malignancies but not glioblastoma. We focused on the relationship between the differentiation of glioma stem like cells (GSCs) into tumor derived endothelial cells (TDECs) and, anti-angiogenic therapy resistance. Especially we aimed to elucidate the mechanisms of drug resistance of TDECs to anti-angiogenic inhibitors and identify novel anti-angiogenic drugs with clinical applications. RESULTS The mouse GSCs, 005, were differentiated into TDECs under hypoxic conditions, and TDECs had endothelial cell characteristics independent of the vascular endothelial growth factor (VEGF) pathway. In vivo, inhibition of the VEGF pathway had no anti-tumor effect and increased the percentage of TDECs in the 005 mouse model. Novel anti-angiogenic drugs for glioblastoma were evaluated using a tube formation assay and a drug repositioning strategy with existing blood-brain barrier permeable drugs. Drug screening revealed that the antidepressant sertraline inhibited tube formation of TDECs. Sertraline was administered to differentiated TDECs in vitro and 005 mouse models in vivo to evaluate genetic changes by RNA-Seq and tumor regression effects by immunohistochemistry and MRI. Sertraline reduced Lama4 and Ang2 expressions of TDEC, which play an important role in non-VEGF-mediated angiogenesis in tumors. The combination of a VEGF receptor inhibitor axitinib, and sertraline improved survival and reduced tumor growth in the 005 mouse model. CONCLUSION Collectively, our findings showed the diversity of tumor vascular endothelial cells across VEGF and non-VEGF pathways led to anti-angiogenic resistance. The combination of axitinib and sertraline can represent an effective anti-angiogenic therapy for glioblastoma with safe, low cost, and fast availability.
Collapse
Affiliation(s)
- Nobushige Tsuboi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
| | - Yoshihiro Otani
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Atsuhito Uneda
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Joji Ishida
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yasuki Suruga
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yuji Matsumoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Atsushi Fujimura
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
- Department of PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kentaro Fujii
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Hideki Matsui
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
- Department of PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kazuhiko Kurozumi
- Department of NeurosurgeryHamamatsu University School of MedicineShizuokaJapan
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | | |
Collapse
|
4
|
Zhang Y, Chang L, Huang P, Cao M, Hong R, Zhao X, He X, Xu L. Loss of PTPRS elicits potent metastatic capability and resistance to temozolomide in glioblastoma. Mol Carcinog 2024; 63:1235-1247. [PMID: 38517048 DOI: 10.1002/mc.23720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor type with worse clinical outcome due to the hallmarks of strong invasiveness, high rate of recurrence, and therapeutic resistance to temozolomide (TMZ), the first-line drug for GBM, representing a major challenge for successful GBM therapeutics. Understanding the underlying mechanisms that drive GBM progression will shed novel insight into therapeutic strategies. Receptor-type tyrosine-protein phosphatase S (PTPRS) is a frequently mutated gene in human cancers, including GBM. Its role in GBM has not yet been clarified. Here, inactivating PTPRS mutation or deficiency was frequently found in GBM, and deficiency in PTPRS significantly induced defects in the G2M checkpoint and limited GBM cells proliferation, leading to potent resistance to TMZ treatment in vitro and in vivo. Surprisingly, loss of PTPRS triggered an unexpected mesenchymal phenotype that markedly enhances the migratory capabilities of GBM cells through upregulating numerous matrix metalloproteinases via MAPK-MEK-ERK signaling. Therefore, this work provides a therapeutic window for precisely excluding PTPRS-mutated patients who do not respond to TMZ.
Collapse
Affiliation(s)
- Yihua Zhang
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Liugang Chang
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Ping Huang
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Min Cao
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Rujun Hong
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Xinhu Zhao
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Xuzhi He
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Knabbe J, Kowalski T, Seliger C. [Rational treatment of depressive syndromes in brain tumor patients]. DER NERVENARZT 2024; 95:125-132. [PMID: 37861698 DOI: 10.1007/s00115-023-01558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Brain tumors represent a disease that causes both physical and psychological distress for those affected. The pharmacological treatment of depressive symptoms in particular has not been sufficiently researched in these patients. Depression can severely affect the quality of life and has an impact on the course of the disease. OBJECTIVE The aim of this work is to describe the diagnosis and treatment of depressive symptoms in brain tumor patients. MATERIAL AND METHODS For this work a comprehensive literature search was conducted to identify relevant studies addressing the topic of depressive symptoms in brain tumors. The included studies were critically appraised to ensure their quality and relevance. RESULTS The review of the literature revealed that depressive symptoms are a common complication in brain tumor patients. It was found that there are no studies to date on the efficacy of antidepressant medications in brain tumor patients. DISCUSSION The results of this work highlight the need to pay increased attention to mental health in brain tumor patients. It is important that healthcare professionals identify depression in these patients at an early stage and provide appropriate interventions to improve their quality of life. Future research should focus on further exploring the mechanisms behind the association between brain tumors and depression in order to develop targeted and effective intervention options.
Collapse
Affiliation(s)
- Johannes Knabbe
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Thomas Kowalski
- Klinik für Neurologie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - Corinna Seliger
- Klinik für Neurologie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland.
- Klinik für Neurologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland.
| |
Collapse
|
6
|
Seliger C, Oppong FB, Lefranc F, Chinot O, Stupp R, Nabors B, Gorlia T, Weller M. Association of antidepressant drug use with outcome of patients with glioblastoma. Int J Cancer 2023; 152:1348-1359. [PMID: 36346112 DOI: 10.1002/ijc.34344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022]
Abstract
Depressive symptoms are common among patients with glioblastoma, but patients are often not treated with antidepressants. There is only limited evidence on the association of antidepressant drug use with survival in glioblastoma. We performed a pooled analysis of patients treated within the CENTRIC, CORE, AVAglio and ACT-IV trials to explore the relation of antidepressant drug use with progression-free (PFS) and overall survival (OS) at baseline, at the start of maintenance therapy and at the start of maintenance cycle 4. We further assessed the association of antidepressant drugs with seizure, cognition, fatigue and a diagnosis of depression. Among more than 1700 patients, we found no significant association between the use of antidepressants at baseline or at the start of maintenance therapy and PFS or OS. However, we found OS, but not PFS, to be significantly worse in patients using antidepressants at the start of maintenance cycle 4. After adjustment for antiepileptic drug use and despite showing a trend for increased risk, seizures were not significantly associated with antidepressant drug use, nor was there a change in mini mental state examination (MMSE) scores or fatigue by antidepressant drug use at baseline. However, there was a significant positive association between antidepressant use at the start of maintenance treatment and fatigue during maintenance treatment. The association of antidepressant use at the start of maintenance cycle 4 with inferior OS of glioblastoma patients requires independent confirmation and further study. Further prospective trials should evaluate efficacy, side effects and associations with outcome of antidepressants in glioblastoma.
Collapse
Affiliation(s)
- Corinna Seliger
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Florence Lefranc
- Department of Neurosurgery, Erasmus Hospital, Free University of Brussels, Brussels, Belgium
| | - Olivier Chinot
- Aix-Marseille University, APHM, CNRS, INP, Institute of Neurophysiopathology, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Roger Stupp
- Malnati Brain Tumor Institute of the Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Burt Nabors
- Department of Neurology and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
7
|
Khan H, Nazir S, Farooq RK, Khan IN, Javed A. Fabrication and Assessment of Diosgenin Encapsulated Stearic Acid Solid Lipid Nanoparticles for Its Anticancer and Antidepressant Effects Using in vitro and in vivo Models. Front Neurosci 2022; 15:806713. [PMID: 35221890 PMCID: PMC8866708 DOI: 10.3389/fnins.2021.806713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory cascade plays a pivotal role in the onset and progression of major depressive disorder (MDD) and glioblastoma multiforme (GBM). Therefore, questing natural compounds with anti-inflammatory activity such as diosgenin can act as a double-edged sword targeting cancer and cancer-induced inflammation simultaneously. The blood–brain barrier limits the therapeutic efficiency of the drugs against intracranial pathologies including depression and brain cancers. Encapsulating a drug molecule in lipid nanoparticles can overcome this obstacle. The current study has thus investigated the anticancer and antidepressant effect of Tween 80 (P80) coated stearic acid solid lipid nanoparticles (SLNPs) encapsulating the diosgenin. Physio-chemical characterizations of SLNPs were performed to assess their stability, monodispersity, and entrapment efficiency. In vitro cytotoxic analysis of naked and drug encapsulated SLNPs on U-87 cell line indicated diosgenin IC50 value to be 194.4 μM, while diosgenin encapsulation in nanoparticles slightly decreases the toxicity. Antidepressant effects of encapsulated and non-encapsulated diosgenin were comprehensively evaluated in the concanavalin-A–induced sickness behavior mouse model. Behavior test results indicate that diosgenin and diosgenin encapsulated nanoparticles significantly alleviated anxiety-like and depressive behavior. Diosgenin incorporated SLNPs also improved grooming behavior and social interaction as well as showed normal levels of neutrophils and leukocytes with no toxicity indication. In conclusion, diosgenin and diosgenin encapsulated solid lipid nanoparticles proved successful in decreasing in vitro cancer cell proliferation and improving sickness behavioral phenotype and thus merit further exploration.
Collapse
Affiliation(s)
- Hina Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Nazir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ishaq N. Khan
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- *Correspondence: Aneela Javed,
| |
Collapse
|