1
|
Gelmers F, Timmerman ME, Siebenga FF, van der Weide HL, Rakers SE, Kramer MCA, van der Hoorn A, Enting RH, Bosma I, Groen RJM, Jeltema HR, Wagemakers M, Spikman JM, Buunk AM. Clusters of resilience and vulnerability: executive functioning, coping and mental distress in patients with diffuse low-grade glioma. J Neurooncol 2024; 169:95-104. [PMID: 38896357 PMCID: PMC11269402 DOI: 10.1007/s11060-024-04704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Diffuse low-grade gliomas (dLGG) often have a frontal location, which may negatively affect patients' executive functions (EF). Being diagnosed with dLGG and having to undergo intensive treatment can be emotionally stressful. The ability to cope with this stress in an adaptive, active and flexible way may be hampered by impaired EF. Consequently, patients may suffer from increased mental distress. The aim of the present study was to explore profiles of EF, coping and mental distress and identify characteristics of each profile. METHODS 151 patients with dLGG were included. Latent profile analysis (LPA) was used to explore profiles. Additional demographical, tumor and radiological characteristics were included. RESULTS Four clusters were found: 1) overall good functioning (25% of patients); 2) poor executive functioning, good psychosocial functioning (32%); 3) good executive functioning, poor psychosocial functioning (18%) and; 4) overall poor functioning (25%). Characteristics of the different clusters were lower educational level and more (micro)vascular brain damage (cluster 2), a younger age (cluster 3), and a larger tumor volume (cluster 4). EF was not a distinctive factor for coping, nor was it for mental distress. Maladaptive coping, however, did distinguish clusters with higher mental distress (cluster 3 and 4) from clusters with lower levels of mental distress (cluster 1 and 2). CONCLUSION Four distinctive clusters with different levels of functioning and characteristics were identified. EF impairments did not hinder the use of active coping strategies. Moreover, maladaptive coping, but not EF impairment, was related to increased mental distress in patients with dLGG.
Collapse
Affiliation(s)
- Floor Gelmers
- Department of Clinical Neuropsychology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, Groningen, AB51, 9700RB, The Netherlands.
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Marieke E Timmerman
- Department of Psychometrics and Statistics, University of Groningen, Groningen, The Netherlands
| | - Femke F Siebenga
- Department of Clinical Neuropsychology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, Groningen, AB51, 9700RB, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hiska L van der Weide
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra E Rakers
- Department of Clinical Neuropsychology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, Groningen, AB51, 9700RB, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miranda C A Kramer
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anouk van der Hoorn
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roelien H Enting
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ingeborg Bosma
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rob J M Groen
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurosurgery, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Hanne-Rinck Jeltema
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel Wagemakers
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacoba M Spikman
- Department of Clinical Neuropsychology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, Groningen, AB51, 9700RB, The Netherlands
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne M Buunk
- Department of Clinical Neuropsychology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, Groningen, AB51, 9700RB, The Netherlands
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Boelders SM, De Baene W, Postma E, Gehring K, Ong LL. Predicting Cognitive Functioning for Patients with a High-Grade Glioma: Evaluating Different Representations of Tumor Location in a Common Space. Neuroinformatics 2024; 22:329-352. [PMID: 38900230 PMCID: PMC11329426 DOI: 10.1007/s12021-024-09671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Cognitive functioning is increasingly considered when making treatment decisions for patients with a brain tumor in view of a personalized onco-functional balance. Ideally, one can predict cognitive functioning of individual patients to make treatment decisions considering this balance. To make accurate predictions, an informative representation of tumor location is pivotal, yet comparisons of representations are lacking. Therefore, this study compares brain atlases and principal component analysis (PCA) to represent voxel-wise tumor location. Pre-operative cognitive functioning was predicted for 246 patients with a high-grade glioma across eight cognitive tests while using different representations of voxel-wise tumor location as predictors. Voxel-wise tumor location was represented using 13 different frequently-used population average atlases, 13 randomly generated atlases, and 13 representations based on PCA. ElasticNet predictions were compared between representations and against a model solely using tumor volume. Preoperative cognitive functioning could only partly be predicted from tumor location. Performances of different representations were largely similar. Population average atlases did not result in better predictions compared to random atlases. PCA-based representation did not clearly outperform other representations, although summary metrics indicated that PCA-based representations performed somewhat better in our sample. Representations with more regions or components resulted in less accurate predictions. Population average atlases possibly cannot distinguish between functionally distinct areas when applied to patients with a glioma. This stresses the need to develop and validate methods for individual parcellations in the presence of lesions. Future studies may test if the observed small advantage of PCA-based representations generalizes to other data.
Collapse
Affiliation(s)
- S M Boelders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - W De Baene
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands
| | - E Postma
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - K Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands.
| | - L L Ong
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
3
|
Lee J, Kumar VA, Teo JM, Eldaya RW, Hou P, Noll KR, Ferguson SD, Prabhu SS, Liu H. Comparative analysis of brain language templates with primary language areas detected from presurgical fMRI of brain tumor patients. Brain Behav 2024; 14:e3497. [PMID: 38898620 PMCID: PMC11186848 DOI: 10.1002/brb3.3497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Functional brain templates are often used in the analysis of clinical functional MRI (fMRI) studies. However, these templates are mostly built based on anatomy or fMRI of healthy subjects, which have not been fully vetted in clinical cohorts. Our aim was to evaluate language templates by comparing with primary language areas (PLAs) detected from presurgical fMRI of brain tumor patients. METHODS Four language templates (A-D) based on anatomy, task-based fMRI, resting-state fMRI, and meta-analysis, respectively, were compared with PLAs detected by fMRI with word generation and sentence completion paradigms. For each template, the fraction of PLA activations enclosed by the template (positive inclusion fraction, [PIF]), the fraction of activations within the template but that did not belong to PLAs (false inclusion fraction, [FIF]), and their Dice similarity coefficient (DSC) with PLA activations were calculated. RESULTS For anterior PLAs, Template A had the greatest PIF (median, 0.95), whereas Template D had both the lowest FIF (median, 0.074), and the highest DSC (median, 0.30), which were all significant compared to other templates. For posterior PLAs, Templates B and D had similar PIF (median, 0.91 and 0.90, respectively) and DSC (both medians, 0.059), which were all significantly higher than that of Template C. Templates B and C had significantly lower FIF (median, 0.061 and 0.054, respectively) compared to Template D. CONCLUSION This study demonstrated significant differences between language templates in their inclusiveness of and spatial agreement with the PLAs detected in the presurgical fMRI of the patient cohort. These findings may help guide the selection of language templates tailored to their applications in clinical fMRI studies.
Collapse
Affiliation(s)
- Jina Lee
- Department of NeuroradiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vinodh A. Kumar
- Department of NeuroradiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jian Ming Teo
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTexasUSA
| | - Rami W. Eldaya
- Department of NeuroradiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ping Hou
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Kyle R. Noll
- Department of Neuro‐OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sherise D. Ferguson
- Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sujit S. Prabhu
- Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ho‐Ling Liu
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
4
|
Gasa-Roqué A, Rofes A, Simó M, Juncadella M, Rico Pons I, Camins A, Gabarrós A, Rodríguez-Fornells A, Sierpowska J. Understanding language and cognition after brain surgery - Tumour grade, fine-grained assessment tools and, most of all, individualized approach. J Neuropsychol 2024; 18 Suppl 1:158-182. [PMID: 37822293 DOI: 10.1111/jnp.12343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 10/13/2023]
Abstract
Cognitive performance influences the quality of life and survival of people with glioma. Thus, a detailed neuropsychological and language evaluation is essential. In this work, we tested if an analysis of errors in naming can indicate semantic and/or phonological impairments in 87 awake brain surgery patients. Secondly, we explored how language and cognition change after brain tumour resection. Finally, we checked if low-tumour grade had a protective effect on cognition. Our results indicated that naming errors can be useful to monitor semantic and phonological processing, as their number correlated with scores on tasks developed by our team for testing these domains. Secondly, we showed that - although an analysis at a whole group level indicates a decline in language functions - significantly more individual patients improve or remain stable when compared to the ones who declined. Finally, we observed that having LGG, when compared with HGG, favours patients' outcome after surgery, most probably due to brain plasticity mechanisms. We provide new evidence of the importance of applying a broader neuropsychological assessment and an analysis of naming errors in patients with glioma. Our approach may potentially ensure better detection of cognitive deficits and contribute to better postoperative outcomes. Our study also shows that an individualized approach in post-surgical follow-ups can reveal reassuring results showing that significantly more patients remain stable or improve and can be a promising avenue for similar reports. Finally, the study captures that plasticity mechanisms may act as protective in LGG versus HGG after surgery.
Collapse
Affiliation(s)
- Anna Gasa-Roqué
- Neurology Section, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, L'Hospitalet de Llobregat, University of Barcelona - IDIBELL, Barcelona, Spain
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain
| | - Adrià Rofes
- Center for Language and Cognition, University of Groningen (CLCG), Groningen, The Netherlands
| | - Marta Simó
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO, IDIBELL, L'Hospitalet, Barcelona, Spain
| | | | - Imma Rico Pons
- Neurology Section, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, L'Hospitalet de Llobregat, University of Barcelona - IDIBELL, Barcelona, Spain
| | - Angels Camins
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, L'Hospitalet de Llobregat, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Andreu Gabarrós
- Neurosurgery Section, Hospital Universitari de Bellvitge (HUB), Campus Bellvitge, L'Hospitalet de Llobregat, University of Barcelona - IDIBELL, Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| | - Joanna Sierpowska
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Zigiotto L, Amorosino G, Saviola F, Jovicich J, Annicchiarico L, Rozzanigo U, Olivetti E, Avesani P, Sarubbo S. Spontaneous unilateral spatial neglect recovery after brain tumour resection: A multimodal diffusion and rs-fMRI case report. J Neuropsychol 2024; 18 Suppl 1:91-114. [PMID: 37431064 DOI: 10.1111/jnp.12339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023]
Abstract
Patients with unilateral spatial neglect (USN) are unable to explore or to report stimuli presented in the left personal and extra-personal space. USN is usually caused by lesion of the right parietal lobe: nowadays, it is also clear the key role of structural connections (the second and the third branch of the right Superior Longitudinal Fasciculus, respectively, SLF II and III) and functional networks (Dorsal and Ventral Attention Network, respectively, DAN and VAN) in USN. In this multimodal case report, we have merged those structural and functional information derived from a patient with a right parietal lobe tumour and USN before surgery. Functional, structural and neuropsychological data were also collected 6 months after surgery, when the USN was spontaneously recovered. Diffusion metrics and Functional Connectivity (FC) of the right SLF and DAN, before and after surgery, were compared with the same data of a patient with a tumour in a similar location, but without USN, and with a control sample. Results indicate an impairment in the right SLF III and a reduction of FC of the right DAN in patients with USN before surgery compared to controls; after surgery, when USN was recovered, patient's diffusion metrics and FC showed no differences compared to the controls. This single case and its multimodal approach reinforce the crucial role of the right SLF III and DAN in the development and recovery of egocentric and allocentric extra-personal USN, highlighting the need to preserve these structural and functional areas during brain surgery.
Collapse
Affiliation(s)
- Luca Zigiotto
- Department of Neurosurgery, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Structural and Functional Connectivity Lab Project, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Department of Psychology, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Gabriele Amorosino
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Francesca Saviola
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Luciano Annicchiarico
- Department of Neurosurgery, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Structural and Functional Connectivity Lab Project, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Umberto Rozzanigo
- Department of Neuroradiology, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Emanuele Olivetti
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Paolo Avesani
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- Structural and Functional Connectivity Lab Project, 'S. Chiara' Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| |
Collapse
|
6
|
Friedrich M, Filss CP, Lohmann P, Mottaghy FM, Stoffels G, Weiss Lucas C, Ruge MI, Shah NJ, Caspers S, Langen KJ, Fink GR, Galldiks N, Kocher M. Structural connectome-based predictive modeling of cognitive deficits in treated glioma patients. Neurooncol Adv 2024; 6:vdad151. [PMID: 38196739 PMCID: PMC10776208 DOI: 10.1093/noajnl/vdad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Background In glioma patients, tumor growth and subsequent treatments are associated with various types of brain lesions. We hypothesized that cognitive functioning in these patients critically depends on the maintained structural connectivity of multiple brain networks. Methods The study included 121 glioma patients (median age, 52 years; median Eastern Cooperative Oncology Group performance score 1; CNS-WHO Grade 3 or 4) after multimodal therapy. Cognitive performance was assessed by 10 tests in 5 cognitive domains at a median of 14 months after treatment initiation. Hybrid amino acid PET/MRI using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine, a network-based cortical parcellation, and advanced tractography were used to generate whole-brain fiber count-weighted connectivity matrices. The matrices were applied to a cross-validated machine-learning model to identify predictive fiber connections (edges), critical cortical regions (nodes), and the networks underlying cognitive performance. Results Compared to healthy controls (n = 121), patients' cognitive scores were significantly lower in 9 cognitive tests. The models predicted the scores of 7/10 tests (median correlation coefficient, 0.47; range, 0.39-0.57) from 0.6% to 5.4% of the matrix entries; 84% of the predictive edges were between nodes of different networks. Critically involved cortical regions (≥10 adjacent edges) included predominantly left-sided nodes of the visual, somatomotor, dorsal/ventral attention, and default mode networks. Highly critical nodes (≥15 edges) included the default mode network's left temporal and bilateral posterior cingulate cortex. Conclusions These results suggest that the cognitive performance of pretreated glioma patients is strongly related to structural connectivity between multiple brain networks and depends on the integrity of known network hubs also involved in other neurological disorders.
Collapse
Affiliation(s)
- Michel Friedrich
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
| | - Christian P Filss
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH University Hospital Aachen, RWTH University Aachen, Aachen, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
| | - Carolin Weiss Lucas
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Maximilian I Ruge
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA), Section JARA-Brain, Juelich, Germany
- Department of Neurology, RWTH University Hospital Aachen, RWTH University Aachen, Aachen, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
- Department of Nuclear Medicine, RWTH University Hospital Aachen, RWTH University Aachen, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, INM-3, INM-4, INM-11), Forschungszentrum Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
7
|
Schei S, Sagberg LM, Bø LE, Reinertsen I, Solheim O. Association between patient-reported cognitive function and location of glioblastoma. Neurosurg Rev 2023; 46:282. [PMID: 37880432 PMCID: PMC10600049 DOI: 10.1007/s10143-023-02177-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Objective cognitive function in patients with glioblastoma may depend on tumor location. Less is known about the potential impact of tumor location on cognitive function from the patients' perspective. This study aimed to investigate the association between patient-reported cognitive function and the location of glioblastoma using voxel-based lesion-symptom mapping. Patient-reported cognitive function was assessed with the European Organisation for Research and Treatment (EORTC) QLQ-C30 cognitive function subscale preoperatively and 1 month postoperatively. Semi-automatic tumor segmentations from preoperative MRI images with the corresponding EORTC QLQ-C30 cognitive function score were registered to a standardized brain template. Student's pooled-variance t-test was used to compare mean patient-reported cognitive function scores between those with and without tumors in each voxel. Both preoperative brain maps (n = 162) and postoperative maps of changes (n = 99) were developed. Glioblastomas around the superior part of the left lateral ventricle, the left lateral part of the thalamus, the left caudate nucleus, and a portion of the left internal capsule were significantly associated with reduced preoperative patient-reported cognitive function. However, no voxels were significantly associated with postoperative change in patient-reported cognitive function assessed 1 month postoperatively. There seems to be an anatomical relation between tumor location and patient-reported cognitive function before surgery, with the left hemisphere being the dominant from the patients' perspective.
Collapse
Affiliation(s)
- Stine Schei
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Mauritz Hansens Gate 2, 7030, Trondheim, Norway.
- Department of Neurology, St. Olavs hospital, Trondheim, Norway.
| | - Lisa Millgård Sagberg
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Mauritz Hansens Gate 2, 7030, Trondheim, Norway
- Department of Neurosurgery, St. Olavs hospital, Trondheim, Norway
| | - Lars Eirik Bø
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Moiyadi A, Jain K, Shetty P, kumar Singh V, Radhakrishnan K, Rane P, Velayutham P. Baseline neurocognitive dysfunction is ubiquitous in intrinsic brain tumors- results from a large Indian cohort of patients and analysis of factors associated with domain-specific dysfunction. World Neurosurg X 2023; 19:100210. [PMID: 37251242 PMCID: PMC10209697 DOI: 10.1016/j.wnsx.2023.100210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Background Neurocognitive function (NCF) before surgery is an important marker of baseline performance in patients with brain tumors. Increasingly, neurocognitive deficits (NCD) have been demonstrated in a high proportion of patients. Selection bias (patient, tumor, and surgical procedure related) may influence the prevalence and type of domains involved in patients with gliomas. Methods We evaluated baseline NCF in a consecutive cohort of intra-axial tumors in Indian patients (n = 142). A comprehensive battery evaluating five domains - attention & executive function (EF), memory, language, visuospatial function and visuomotor abilities was used. Deficits were categorized as severe and mild-moderate. Factors associated with severe NCD were evaluated. Results Severe NCD was present in 90% of the patients, 70% of them having affection of at least 2 domains. Attention-EF, memory and visuomotor speed were most affected. 132 underwent surgery (69 awake, 63 under general anesthesia - GA). The awake cohort had younger patients with lower grade gliomas and more left sided tumors. Multi-domain dysfunction was seen almost equally in awake/GA groups as well as left/right sided tumors. On multivariate analysis, older age, lower educational status and larger tumor volume adversely affected NCF in many of the domains. Only language dysfunction was location specific (temporal lobe tumors) though not laterality (left/right) specific. Conclusions NCD were seen in a large majority of cases before surgery, including those undergoing awake surgery. Language may be affected even in tumors in the non-dominant hemisphere. Attention-EF and memory are most affected and need to be factored in while assessing patient performance intraoperatively during awake surgery as well as tailoring rehabilitative measures subsequently.
Collapse
Affiliation(s)
- Aliasgar Moiyadi
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Kanchi Jain
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Prakash Shetty
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Vikas kumar Singh
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Keerthi Radhakrishnan
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Pallavi Rane
- Clinical Research Secretariat, ACTREC, Tata Memorial Centre, Mumbai, 400012, India
| | - Parthiban Velayutham
- Neurosurgical Oncology Services, Dept of Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
- Department of Health Sciences, Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
9
|
Chang WH, Wei KC, Chen PY, Chen YC, Wu YY, Tsai HC, Chen MH, Chao YP, Chen KT. The impact of patient factors and tumor characteristics on language neuroplasticity in left hemispheric diffuse gliomas prior to surgical resection. J Neurooncol 2023; 163:95-104. [PMID: 37093525 DOI: 10.1007/s11060-023-04311-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE Language networks are reorganized during glioma growth, leading to varying language performance in patients with gliomas located in or around language-eloquent areas. Therefore, pre-treated language performance reflects the neuroplasticity potential. Different domains of language processing, such as speech expression, repetition, and comprehension, involving different neural networks. We analyzed the effects of patient factors and tumor characteristics on the pre-treated performance to investigate neuroplastic potential of different language domains. METHODS Patient age, sex, education level, tumor grade, language pathway involvement, T1 contrast enhanced (C+), and FLAIR (T2) volume were selected as variables. The correlation with abnormal language performance was verified using univariate and multivariate logistic regression. RESULTS In total, 104 left hemispheric glioma patients were enrolled in this study. 44% of patients had repetitive abnormalities, 34.9% had comprehensive abnormalities, and 32.1% had expressive abnormalities. The proportion of normal language performance was 60% in grade 2 and 3 gliomas and 16% in grade 4 gliomas. Tumor grade (p = 0.006) and T2 volume (p = 0.008) were associated with abnormal performance in the expressive domain, education level (p = 0.004) and T1 C+ volume (p = 0.049) in the repetitive domain, and education level (p = 0.013), T2 volume (p = 0.011), and tumor grade (p = 0.089) in the comprehensive domain. CONCLUSION Different clinical and radiological factors affected the abnormal performance of the three language domains, indicating their functional connectivity and neuroplastic potential are inherently varied. The dynamic interactions between patient factors, tumor characteristics, and language processing should be considered when resecting left hemispheric gliomas.
Collapse
Affiliation(s)
- Wei-Han Chang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Keelung, New Taipei, Taiwan
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Keelung, New Taipei, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Dementia Center, Taoyuan Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yah-Yuan Wu
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Dementia Center, Taoyuan Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hong-Chieh Tsai
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing Street, Guishan Dist., Taoyuan, 33305, Taiwan
| | - Mei-Hui Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ko-Ting Chen
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, No. 5, Fuxing Street, Guishan Dist., Taoyuan, 33305, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Tariq R, Hussain N, Baqai MWS. Factors affecting cognitive functions of patients with high-grade gliomas: a systematic review. Neurol Sci 2023; 44:1917-1929. [PMID: 36773209 DOI: 10.1007/s10072-023-06673-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Gliomas make up approximately 26.5% of all primary CNS tumors and 80.7% of malignant tumors. They are classified according to histology, location, and genetics. Grade III and IV gliomas are considered high-grade gliomas (HGGs). The cognitive signs and symptoms are attributed to mass defects depending on location, growth rapidity, and edema. Our purpose is to review the cognitive status of patients diagnosed with HGGs; the effect of treatments including surgical resection, radiotherapy, and chemotherapy; and the predictors of the cognitive status. METHODS We utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as a template for the methodology. A comprehensive literature search was performed from three databases (PubMed, ScienceDirect, and Cochrane Library) for clinical trials and longitudinal studies on patients diagnosed with HGGs assessing their cognitive status. RESULTS Thirteen studies were selected among which 9 assessed cognitive function before and after treatment. One assessed the consistency of cognitive complaints and objective cognitive functioning. Three reported factors affecting disease progression and cognitive status. Most HGG patients have impairment in at least one cognitive domain. Treatments including surgical resection or radio-chemotherapy did not impair cognitive status. DISCUSSION The cognitive status could be used to assess sub-clinical tumor progression. Factors correlated to cognitive status were tumor location, edema, and grade. Patient characteristics correlated were pre-operative epilepsy, corticosteroid use, and age at the time of diagnosis. CONCLUSION Assessment of the cognitive status of HGG patients indicates sub-clinical tumor progression and may be used to assess treatment outcomes.
Collapse
Affiliation(s)
- Rabeet Tariq
- Liaquat National Hospital and Medical College, Karachi, Pakistan.
| | - Nowal Hussain
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
11
|
Abd Elmaogod EA, Daoud SA, Mostafa ZM, Mahmoud EMM. Prognostic significance of HIF1-α immunohistochemical expression in gliomas and it's relation to IDH1 mutation status. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Abstract
Background
Gliomas are the commonest primary adults’ brain tumors. Hypoxia performs an essential role in gliomas’ initiation as well as progression through hypoxia inducible factor (HIF-1α) activation, which could serve as a promising target in treatment of gliomas. Our study aimed to evaluate types and grades of glioma cases and detect isocitrate dehydrogenase 1 (IDH1) mutation status and expression of HIF-1α in all included cases and its correlation with clinical data and pathological parameters.
Results
Samples from 71 patients who were diagnosed with glioma were studied immunohistochemically for IDH1-R132H (if indicated) and HIF-1α expression. Expression of HIF-1α was detected in 73.2% of the included 71 gliomas. HIF-1α expression significantly increased in older patients, in high-grade gliomas and in tumors positive for necrosis. We studied IDH1 mutation in the histologically diagnosed grade 2, 3and 4 astrocytic and oligodendroglial tumors (51 cases out of the included 71 gliomas). IDH1-R132H immunohistochemical expression was positive in 62.7% of cases. IDH1 mutation was significantly higher with younger age. IDH1 mutation was noted also with lower tumor grade. A statistically significant relation was detected between negative IDH1-R132H expression and high level of HIF-1α immunohistochemical expression.
Conclusion
Absence of IDH1 mutation with increased HIF-1α expression among high-grade gliomas suggesting both as predicting indicators for poor prognosis.
Collapse
|
12
|
Saviola F, Zigiotto L, Novello L, Zacà D, Annicchiarico L, Corsini F, Rozzanigo U, Papagno C, Jovicich J, Sarubbo S. The role of the default mode network in longitudinal functional brain reorganization of brain gliomas. Brain Struct Funct 2022; 227:2923-2937. [PMID: 35460446 PMCID: PMC9653323 DOI: 10.1007/s00429-022-02490-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The study of patients after glioma resection offers a unique opportunity to investigate brain reorganization. It is currently unknown how the whole-brain connectomic profile evolves longitudinally after surgical resection of a glioma and how this may be associated with tumor characteristics and cognitive outcome. In this longitudinal study, we investigate the impact of tumor lateralization and grade on functional connectivity (FC) in highly connected networks, or hubs, and cognitive performance. Twenty-eight patients (17 high-grade, 11 low-grade gliomas) underwent longitudinal pre/post-surgery resting-state fMRI scans and neuropsychological assessments (73 total measures). FC matrices were constructed considering as functional hubs the default mode (DMN) and fronto-parietal networks. No-hubs included primary sensory functional networks and any other no-hubs nodes. Both tumor hemisphere and grade affected brain reorganization post-resection. In right-hemisphere tumor patients, regardless of grade and relative to left-hemisphere gliomas, FC increased longitudinally after the intervention, both in terms of FC within hubs (phubs = 0.0004) and FC between hubs and no-hubs (phubs-no-hubs = 0.005). Regardless of tumor side, only lower-grade gliomas showed longitudinal FC increases relative to high-grade tumors within a precise hub network, the DMN. The neurocognitive profile was longitudinally associated with spatial features of the connectome, mainly within the DMN. We provide evidence that clinical glioma features, such as lateralization and grade, affect post-surgical longitudinal functional reorganization and cognitive recovery. The data suggest a possible role of the DMN in supporting cognition, providing useful information for prognostic prediction and surgical planning.
Collapse
Affiliation(s)
- Francesca Saviola
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy.
| | - Luca Zigiotto
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Lisa Novello
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Domenico Zacà
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Luciano Annicchiarico
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Francesco Corsini
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Umberto Rozzanigo
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
- Department of Psychology, Milano-Bicocca University, Milano, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Silvio Sarubbo
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| |
Collapse
|
13
|
Segregated circuits for phonemic and semantic fluency: A novel patient-tailored disconnection study. Neuroimage Clin 2022; 36:103149. [PMID: 35970113 PMCID: PMC9400120 DOI: 10.1016/j.nicl.2022.103149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Phonemic and semantic fluency are neuropsychological tests widely used to assess patients' language and executive abilities and are highly sensitive tests in detecting language deficits in glioma patients. However, the networks that are involved in these tasks could be distinct and suggesting either a frontal (phonemic) or temporal (semantic) involvement. 42 right-handed patients (26 male, mean age = 52.5 years, SD=±13.3) were included in this retrospective study. Patients underwent awake (54.8%) or asleep (45.2%) surgery for low-grade (16.7%) or high-grade-glioma (83.3%) in the frontal (64.3%) or temporal lobe (35.7%) of the left (50%) or right (50%) hemisphere. Pre-operative tractography was reconstructed for each patient, with segmentation of the inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), third branch of the superior longitudinal fasciculus (SLF-III), frontal aslant tract (FAT), and cortico-spinal tract (CST). Post-operative percentage of damage and disconnection of each tract, based on the patients' surgical cavities, were correlated with verbal fluencies scores at one week and one month after surgery. Analyses of differences between fluency scores at these timepoints (before surgery, one week and one month after surgery) were performed; lesion-symptom mapping was used to identify the correlation between cortical areas and post-operative scores. Immediately after surgery, a transient impairment of verbal fluency was observed, that improved within a month. Left hemisphere lesions were related to a worse verbal fluency performance, being a damage to the left superior frontal or temporal gyri associated with phonemic or semantic fluency deficit, respectively. At a subcortical level, disconnection analyses revealed that fluency scores were associated to the involvement of the left FAT and the left frontal part of the IFOF for phonemic fluency, and the association was still present one month after surgery. For semantic fluency, the correlation between post-surgery performance emerged for the left AF, UF, ILF and the temporal part of the IFOF, but disappeared at the follow-up. This approach based on the patients' pre-operative tractography, allowed to trace for the first time a dissociation between white matter pathways integrity and verbal fluency after surgery for glioma resection. Our results confirm the involvement of a frontal anterior pathway for phonemic fluency and a ventral temporal pathway for semantic fluency. Finally, our longitudinal results suggest that the frontal executive pathway requires a longer interval to recover compared to the semantic one.
Collapse
|
14
|
Konrath E, Marhold F, Kindler W, Scheichel F, Popadic B, Blauensteiner K, Calabek B, Freydl E, Weber M, Ristl R, Hainz K, Sherif C, Oberndorfer S. Perioperative levetiracetam for seizure prophylaxis in seizure-naive brain tumor patients with focus on neurocognitive functioning. BMC Neurol 2022; 22:250. [PMID: 35804291 PMCID: PMC9264633 DOI: 10.1186/s12883-022-02762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION In seizure-naive brain tumor patients, the efficacy of perioperative prophylactic antiepileptic drug treatment remains controversial. In case of administration, the common preferred drug is levetiracetam (LEV) because of its favorable pharmacological profile. Research to date has not sufficiently determined how LEV affects cognition in the short term, as is the case in the perioperative period. The objective of this prospective study was to examine the neurocognitive functioning of seizure-naive brain tumor patients after receiving LEV perioperatively. METHODS Fortythree patients with supratentorial brain tumor scheduled for surgery received LEV three days before until six days after surgery as seizure prophylaxis. Cognitive functioning (NeuroCogFX), LEV plasma-levels, hematotoxicity, side-effects, as well as health-related quality of life (HRQoL, Qolie31), were recorded preoperatively before (Baseline) and after onset of LEV (Pre-Op), 4-6 days postoperatively (Post-Op) and 21 days postoperatively (Follow-Up). RESULTS No significant changes in cognitive functioning and HRQoL were seen after onset of preoperative LEV. There was a significant improvement of NeuroCogFX total-score at Follow-Up (p = 0.004) compared to Baseline. The overall-score Qolie31 showed simultaneous improvement patterns as cognitive functioning (p < 0.001). The most frequent side effect related to study drug was somnolence (in 28.6% of patients). CONCLUSIONS A significant improvement of cognitive functioning, as well as an improvement in HRQoL, were detected postoperatively. This is presumably due to the debulking effect of the surgery. Nevertheless, LEV has no detrimental effect on cognitive functioning in the perioperative phase in seizure-naive brain tumor patients. TRIAL REGISTRATION This study was registered prospectively (Date: 25/11/2015; EudraCT: 2015-003,916-19).
Collapse
Affiliation(s)
- Elias Konrath
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria.
- Department of Neurology, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria.
| | - Franz Marhold
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Neurosurgery, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
| | - Wolfgang Kindler
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Neurology, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
| | - Florian Scheichel
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Neurosurgery, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
| | - Branko Popadic
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Neurosurgery, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
| | - Katrin Blauensteiner
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Neurology, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
| | - Bernadette Calabek
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Neurology, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
| | - Elisabeth Freydl
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Neurology, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
| | - Michael Weber
- Department of General Health Studies, Division Biostatistics and Data Science, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
| | - Robin Ristl
- Section for Medical Statistics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Katharina Hainz
- Department of Neurology, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
| | - Camillo Sherif
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Neurosurgery, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
| | - Stefan Oberndorfer
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500, Krems, Austria
- Department of Neurology, University Hospital St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Austria
- Karl Landsteiner Institute for Clinical Neurology and Neuropsychology, c/o Department Neurology, 3100, St. Pölten, Austria
| |
Collapse
|
15
|
Dureux A, Zigiotto L, Sarubbo S, Desoche C, Farnè A, Bolognini N, Hadj-Bouziane F. Personal space regulation is affected by unilateral temporal lesions beyond the amygdala. Cereb Cortex Commun 2022; 3:tgac031. [PMID: 36072709 PMCID: PMC9441012 DOI: 10.1093/texcom/tgac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
We constantly face situations involving interactions with others that require us to automatically adjust our physical distances to avoid discomfort or anxiety. A previous case study has demonstrated that the integrity of both amygdalae is essential to regulate interpersonal distances. Despite unilateral lesion to the amygdala, as to other sectors of the medial temporal cortex, are known to also affect social behavior, their role in the regulation of interpersonal distances has never been investigated. Here, we sought to fill this gap by testing three patients with unilateral temporal lesions following surgical resections, including one patient with a lesion mainly centered on the amygdala and two with lesions to adjacent medial temporal cortex, on two versions of the stop distance paradigm (i.e. in a virtual reality environment and in a real setting). Our results showed that all three patients set shorter interpersonal distances compared to neurotypical controls. In addition, compared to controls, none of the patients adjusted such physical distances depending on facial emotional expressions, despite they preserved ability to categorize them. Finally, patients' heart rate responses differed from controls when viewing approaching faces. Our findings bring compelling evidence that unilateral lesions within the medial temporal cortex, not necessarily restricted to the amygdala, are sufficient to alter interpersonal distance, thus shedding new light on the neural circuitry regulating distance in social interactions.
Collapse
Affiliation(s)
- Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team - ImpAct , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- Neuroscience Research Center (CRNL) , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
| | - Luca Zigiotto
- Department of Neurosurgery, Azienda Provinciale per i Servizi Sanitari (APSS), “Santa Chiara Hospital” , 38122 Trento , Italy
- Department of Psychology, Azienda Provinciale per i Servizi Sanitari (APSS), “Santa Chiara Hospital” , 38122 Trento , Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Azienda Provinciale per i Servizi Sanitari (APSS), “Santa Chiara Hospital” , 38122 Trento , Italy
| | - Clément Desoche
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
- Hospices Civils de Lyon, Neuro-Immersion & Mouvement et Handicap , 69677 Lyon , France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team - ImpAct , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- Neuroscience Research Center (CRNL) , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
- Hospices Civils de Lyon, Neuro-Immersion & Mouvement et Handicap , 69677 Lyon , France
- Center for Mind/Brain Sciences (CIMeC), University of Trento , Trento , Italy
| | - Nadia Bolognini
- Department of Psychology, University of Milano Bicocca , 20126 Milano , Italy
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano , 20122 Milano , Italy
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team - ImpAct , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- Neuroscience Research Center (CRNL) , INSERM U1028, CNRS UMR5292, , 69500 Lyon , France
- University UCBL Lyon 1, University of Lyon , 69622 Lyon , France
| |
Collapse
|
16
|
Ismail M, Prasanna P, Bera K, Statsevych V, Hill V, Singh G, Partovi S, Beig N, McGarry S, Laviolette P, Ahluwalia M, Madabhushi A, Tiwari P. Radiomic Deformation and Textural Heterogeneity (R-DepTH) Descriptor to Characterize Tumor Field Effect: Application to Survival Prediction in Glioblastoma. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1764-1777. [PMID: 35108202 PMCID: PMC9575333 DOI: 10.1109/tmi.2022.3148780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The concept of tumor field effect implies that cancer is a systemic disease with its impact way beyond the visible tumor confines. For instance, in Glioblastoma (GBM), an aggressive brain tumor, the increase in intracranial pressure due to tumor burden often leads to brain herniation and poor outcomes. Our work is based on the rationale that highly aggressive tumors tend to grow uncontrollably, leading to pronounced biomechanical tissue deformations in the normal parenchyma, which when combined with local morphological differences in the tumor confines on MRI scans, will comprehensively capture tumor field effect. Specifically, we present an integrated MRI-based descriptor, radiomic-Deformation and Textural Heterogeneity (r-DepTH). This descriptor comprises measurements of the subtle perturbations in tissue deformations throughout the surrounding normal parenchyma due to mass effect. This involves non-rigidly aligning the patients' MRI scans to a healthy atlas via diffeomorphic registration. The resulting inverse mapping is used to obtain the deformation field magnitudes in the normal parenchyma. These measurements are then combined with a 3D texture descriptor, Co-occurrence of Local Anisotropic Gradient Orientations (COLLAGE), which captures the morphological heterogeneity and infiltration within the tumor confines, on MRI scans. In this work, we extensively evaluated r-DepTH for survival risk-stratification on a total of 207 GBM cases from 3 different cohorts (Cohort 1 ( n1 = 53 ), Cohort 2 ( n2 = 75 ), and Cohort 3 ( n3 = 79 )), where each of these three cohorts was used as a training set for our model separately, and the other two cohorts were used for testing, independently, for each training experiment. When employing Cohort 1 for training, r-DepTH yielded Concordance indices (C-indices) of 0.7 and 0.65, hazard ratios (HR) and Confidence Intervals (CI) of 10 (6 - 19) and 5 (3 - 8) on Cohorts 2 and 3, respectively. Similarly, training on Cohort 2 yielded C-indices of 0.6 and 0.7, HR and CI of 1 (0.7 - 2) and 3 (2 - 5) on Cohorts 1 and 3, respectively. Finally, training on Cohort 3 yielded C-indices of 0.75 and 0.63, HR and CI of 24 (10 - 57) and 12 (6 - 21) on Cohorts 1 and 2, respectively. Our results show that r-DepTH descriptor may serve as a comprehensive and a robust MRI-based prognostic marker of disease aggressiveness and survival in solid tumors.
Collapse
|
17
|
Patient-reported cognitive function before and after glioma surgery. Acta Neurochir (Wien) 2022; 164:2009-2019. [PMID: 35668303 PMCID: PMC9338128 DOI: 10.1007/s00701-022-05261-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/21/2022] [Indexed: 12/03/2022]
Abstract
Background Little is known about the extent to which glioma patients experience subjective changes in cognitive function following surgery. We sought to assess patient-reported cognitive function before and after glioma surgery and explore potential factors associated with cognitive change. Methods In a prospective population-based study, patient-reported cognitive function was measured in 182 patients undergoing primary surgery for diffuse glioma (141 high-grade gliomas (HGG) and 41 low-grade gliomas (LGG)) by using the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 cognitive function subscale preoperatively and at 1 and 6 months postoperatively. Binomial logistic regression models were used to assess factors possibly associated with patient-reported cognitive changes. Results In the HGG group, the mean cognitive function score increased from 70.9 (95% 66.6, 75.2) preoperatively to 85.1 (95% CI 81.2, 89.0) (p < 0.001) and 83.3 (95% CI 79.1, 87.6) (p < 0.001) at 1 and 6 months postoperatively, respectively. In the LGG group, the mean score was 80.9 (95% CI 74.4, 87.4) preoperatively and remained stable at postoperative follow-ups. Females reported lower scores than males. At an individual level, both improvement and deterioration in cognitive scores were frequently seen in LGG and HGG patients after surgery. Preoperative use of corticosteroids and large tumor volume were predictors for cognitive improvement at 1 month postoperatively. No predictors were identified for cognitive improvement at 6 months and worsening at 1 and 6 months. Conclusion Many glioma patients experience perioperative subjective changes in cognitive function after surgery. At group level, HGG patients reported improved cognitive function after surgery, while LGG patients reported stable cognitive function. Preoperative use of corticosteroids and large tumor volume were independently associated with postoperative improvement.
Collapse
|
18
|
Primary CNS lymphoma of the corpus callosum: presentation and neurocognitive outcomes. J Neurooncol 2022; 158:99-109. [PMID: 35445956 DOI: 10.1007/s11060-022-04014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The corpus callosum (CC) is frequently involved in primary central nervous system lymphomas (PCNSLs). In this cohort study, we described the neurocognition of patients with PCNSL-CC and its posttherapeutic evolution. METHODS Immunocompetent patients with PCNSL-CC were identified retrospectively at the Pitié-Salpêtrière Hospital. We described their clinical presentation. Neuropsychological test scores (MMSE; digit spans; Free and Cued Selective Reminding Test; Image Oral Naming Test; Frontal Assessment Battery; Trail Making Test; Stroop and verbal fluency tests; Rey's Complex Figure test) and factors impacting them were analyzed. RESULTS Twenty-seven patients were included (median age: 67 years, median Karnofsky Performance Status: 70); cognitive impairment and balance disorders were present in 74% and 59%, respectively. At diagnosis, neuropsychological test results were abnormal for global cognitive efficiency (63% of patients), memory (33-80% depending on the test) and executive functions (44-100%). Results for visuospatial and language tests were normal. All patients received high-dose methotrexate-based polychemotherapy, followed in one patient by whole-brain radiotherapy; 67% of patients achieved complete response (CR). With a median follow-up of 48 months (range 6-156), patients in CR had persistent abnormal test results for global cognitive efficiency in 17%, executive function in 18-60%, depending on the test, and memory in 40-60%. Splenium location and age ≥ 60 years were significantly associated with worse episodic memory scores throughout the follow-up. CONCLUSIONS PCNSL-CC is associated with frequent cognitive dysfunctions, especially memory impairment, which may recover only partially despite CR and warrant specific rehabilitation. Older age (≥ 60) and splenium location are associated with worse neurocognitive outcomes.
Collapse
|
19
|
Oort Q, Dirven L, Sikkes SAM, Aaronson N, Boele F, Brannan C, Egeter J, Grant R, Klein M, Lips IM, Narita Y, Sato H, Sztankay M, Stockhammer G, Talacchi A, Uitdehaag BMJ, Reijneveld JC, Taphoorn MJB. Do neurocognitive impairments explain the differences between brain tumour patients and their proxies when assessing the patient’s IADL? Neurooncol Pract 2022; 9:271-283. [PMID: 35855454 PMCID: PMC9290871 DOI: 10.1093/nop/npac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Neurocognitive impairments are common among brain tumour patients, and may impact patient’s awareness of performance in instrumental activities in daily life (IADL). We examined differences between patient- and proxy-reported assessments of the patient’s IADL, and whether the level of (dis)agreement is associated with neurocognitive impairments.
Methods
Brain tumour patients and their proxies completed the phase 3 version of the EORTC IADL-BN32 questionnaire measuring IADL, and patients completed six neurocognitive measures. Patient-proxy difference scores in IADL were compared between patients who were defined as neurocognitively impaired (≥2 neurocognitive measures ≥2.0 standard deviations below healthy controls) and non-neurocognitively impaired. With multinomial logistic regression analyses we examined if neurocognitive variables were independently associated with patient-proxy disagreement in IADL ratings.
Results
Patients (n=81) did not systematically (p<0.01) rate IADL outcomes different than their proxies. Proxies did report more problems on 19/32 individual items and all five scales. This effect was more apparent in dyads with a neurocognitively impaired patient (n=37), compared to dyads with non-neurocognitively impaired patients (n=44). Multinomial logistic regression analyses showed that several neurocognitive variables (e.g., cognitive flexibility and verbal fluency) were independently associated with disagreement between patients and proxies on different scales.
Conclusion
Neurocognitive deficits seem to play a role in the discrepancies between brain tumour patients and their proxies assessment of patient’s level of IADL . Although replication of our results is needed, our findings suggests that caution is warranted in interpreting self-reported IADL by patients with neurocognitive impairment, and that such self-reports should be supplemented with proxy ratings.
Collapse
Affiliation(s)
- Quirien Oort
- Department of Neurology and Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Sietske A M Sikkes
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Faculty of Behavioural and Movement Sciences (FGB), Department of Clinical Developmental & Clinical Neuropsychology, Amsterdam, The Netherlands
| | - Neil Aaronson
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Florien Boele
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, LS9 7TF, United Kingdom
- Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Christine Brannan
- East & North Hertfordshire NHS Trust incorporating Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Jonas Egeter
- Department for Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Robin Grant
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, United Kingdom
| | - Martin Klein
- Department of Medical Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Irene M Lips
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center, Tokyo, Japan
| | - Hitomi Sato
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center, Tokyo, Japan
- Department of Nursing, Teikyo Heisei University, Tokyo, Japan
| | - Monika Sztankay
- Department for Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Andrea Talacchi
- Department of Neurosurgery, Azienda Ospedaliera San Giovanni Addolorata, Roma, Italy
| | - Bernard M J Uitdehaag
- Department of Neurology and Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jaap C Reijneveld
- Department of Neurology and Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
20
|
Sarubbo S, Duffau H. Connectomic evidences driving a functional approach in neuro-oncological surgery. J Neurosurg Sci 2022; 65:545-547. [PMID: 35128917 DOI: 10.23736/s0390-5616.21.05517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Silvio Sarubbo
- Department of Neurosurgery, "Santa Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy -
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Institut of Functional Genomics, University of Montpellier, Montpellier, France
| |
Collapse
|
21
|
Kocher M, Jockwitz C, Lohmann P, Stoffels G, Filss C, Mottaghy FM, Ruge MI, Weiss Lucas C, Goldbrunner R, Shah NJ, Fink GR, Galldiks N, Langen KJ, Caspers S. Lesion-Function Analysis from Multimodal Imaging and Normative Brain Atlases for Prediction of Cognitive Deficits in Glioma Patients. Cancers (Basel) 2021; 13:cancers13102373. [PMID: 34069074 PMCID: PMC8156090 DOI: 10.3390/cancers13102373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This prospective cross-sectional study utilized standard structural MR imaging and amino acid PET in conjunction with brain atlases of gray matter functional regions and white matter tracts, and elastic registration techniques to estimate the influence of the type and location of treatment-related brain damage or recurrent tumors on cognitive functioning in a group of well-doing WHO Grade III/IV glioma patients at follow-up after treatment. The negative impact of T2/FLAIR hyperintensities, supposed to be mainly caused by radiotherapy, on cognitive performance far exceeded that of surgical brain defects or recurrent tumors. The affection of functional nodes and fiber tracts of the left hemisphere and especially of the left temporal lobe by T2/FLAIR hyperintensities was highly correlated with verbal episodic memory dysfunction. These observations imply that radiotherapy for gliomas of the left hemisphere should be individually tailored by means of publicly available brain atlases and registration techniques. Abstract Cognitive deficits are common in glioma patients following multimodality therapy, but the relative impact of different types and locations of treatment-related brain damage and recurrent tumors on cognition is not well understood. In 121 WHO Grade III/IV glioma patients, structural MRI, O-(2-[18F]fluoroethyl)-L-tyrosine FET-PET, and neuropsychological testing were performed at a median interval of 14 months (range, 1–214 months) after therapy initiation. Resection cavities, T1-enhancing lesions, T2/FLAIR hyperintensities, and FET-PET positive tumor sites were semi-automatically segmented and elastically registered to a normative, resting state (RS) fMRI-based functional cortical network atlas and to the JHU atlas of white matter (WM) tracts, and their influence on cognitive test scores relative to a cohort of matched healthy subjects was assessed. T2/FLAIR hyperintensities presumably caused by radiation therapy covered more extensive brain areas than the other lesion types and significantly impaired cognitive performance in many domains when affecting left-hemispheric RS-nodes and WM-tracts as opposed to brain tissue damage caused by resection or recurrent tumors. Verbal episodic memory proved to be especially vulnerable to T2/FLAIR abnormalities affecting the nodes and tracts of the left temporal lobe. In order to improve radiotherapy planning, publicly available brain atlases, in conjunction with elastic registration techniques, should be used, similar to neuronavigation in neurosurgery.
Collapse
Affiliation(s)
- Martin Kocher
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Correspondence:
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52428 Juelich, Germany; (C.J.); (S.C.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
| | - Christian Filss
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Maximilian I. Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
| | - Carolin Weiss Lucas
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Roland Goldbrunner
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Neurology, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Juelich-Aachen Research Alliance (JARA)–Section JARA-Brain, 52428 Juelich, Germany
| | - Gereon R. Fink
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, 52428 Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Norbert Galldiks
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, 52428 Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany;
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52428 Juelich, Germany; (C.J.); (S.C.)
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
22
|
Daniel AGS, Park KY, Roland JL, Dierker D, Gross J, Humphries JB, Hacker CD, Snyder AZ, Shimony JS, Leuthardt EC. Functional connectivity within glioblastoma impacts overall survival. Neuro Oncol 2021; 23:412-421. [PMID: 32789494 PMCID: PMC7992880 DOI: 10.1093/neuonc/noaa189] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Glioblastoma (GBM; World Health Organization grade IV) assumes a variable appearance on MRI owing to heterogeneous proliferation and infiltration of its cells. As a result, the neurovascular units responsible for functional connectivity (FC) may exist within gross tumor boundaries, albeit with altered magnitude. Therefore, we hypothesize that the strength of FC within GBMs is predictive of overall survival. Methods We used predefined FC regions of interest (ROIs) in de novo GBM patients to characterize the presence of within-tumor FC observable via resting-state functional MRI and its relationship to survival outcomes. Results Fifty-seven GBM patients (mean age, 57.8 ± 13.9 y) were analyzed. Functionally connected voxels, not identifiable on conventional structural images, can be routinely found within the tumor mass and was not significantly correlated to tumor size. In patients with known survival times (n = 31), higher intranetwork FC strength within GBM tumors was associated with better overall survival even after accounting for clinical and demographic covariates. Conclusions These findings suggest the possibility that functionally intact regions may persist within GBMs and that the extent to which FC is maintained may carry prognostic value and inform treatment planning.
Collapse
Affiliation(s)
- Andy G S Daniel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri
| | - Ki Yun Park
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jarod L Roland
- Washington University School of Medicine, St Louis, Missouri.,Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Joseph B Humphries
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri
| | - Carl D Hacker
- Department of Neurological Surgery, St Louis, Missouri
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Eric C Leuthardt
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, Missouri.,Washington University School of Medicine, St Louis, Missouri.,Department of Neurological Surgery, St Louis, Missouri.,Department of Neuroscience, St Louis, Missouri.,Department of Mechanical Engineering and Materials Science, St Louis, Missouri.,Center for Innovation in Neuroscience and Technology, St Louis, Missouri.,Brain Laser Center, St Louis, Missouri
| |
Collapse
|
23
|
Sarubbo S, Annicchiarico L, Corsini F, Zigiotto L, Herbet G, Moritz-Gasser S, Dalpiaz C, Vitali L, Tate M, De Benedictis A, Amorosino G, Olivetti E, Rozzanigo U, Petralia B, Duffau H, Avesani P. Planning Brain Tumor Resection Using a Probabilistic Atlas of Cortical and Subcortical Structures Critical for Functional Processing: A Proof of Concept. Oper Neurosurg (Hagerstown) 2021; 20:E175-E183. [PMID: 33372966 DOI: 10.1093/ons/opaa396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Functional preoperative planning for resection of intrinsic brain tumors in eloquent areas is still a challenge. Predicting subcortical functional framework is especially difficult. Direct electrical stimulation (DES) is the recommended technique for resection of these lesions. A reliable probabilistic atlas of the critical cortical epicenters and subcortical framework based on DES data was recently published. OBJECTIVE To propose a pipeline for the automated alignment of the corticosubcortical maps of this atlas with T1-weighted MRI. METHODS To test the alignment, we selected 10 patients who underwent resection of brain lesions by using DES. We aligned different cortical and subcortical functional maps to preoperative volumetric T1 MRIs (with/without gadolinium). For each patient we quantified the quality of the alignment, and we calculated the match between the location of the functional sites found at DES and the functional maps of the atlas. RESULTS We found an accurate brain extraction and alignment of the functional maps with both the T1 MRIs of each patient. The matching analysis between functional maps and functional responses collected during surgeries was 88% at cortical and, importantly, 100% at subcortical level, providing a further proof of the correct alignment. CONCLUSION We demonstrated quantitatively and qualitatively the reliability of this tool that may be used for presurgical planning, providing further functional information at the cortical level and a unique probabilistic prevision of distribution of the critical subcortical structures. Finally, this tool offers the chance for multimodal planning through integrating this functional information with other neuroradiological and neurophysiological techniques.
Collapse
Affiliation(s)
- Silvio Sarubbo
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Luciano Annicchiarico
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Francesco Corsini
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Luca Zigiotto
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy.,Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,National Institute for Health and Medical Research (INSERM), NSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,National Institute for Health and Medical Research (INSERM), NSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Chiara Dalpiaz
- Department of Anesthesiology and Intensive Care, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Luca Vitali
- Department of Anesthesiology and Intensive Care, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Matthew Tate
- Departments of Neurosurgery and Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Gabriele Amorosino
- Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), Trento, Italy.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Emanuele Olivetti
- Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), Trento, Italy.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Umberto Rozzanigo
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Benedetto Petralia
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,National Institute for Health and Medical Research (INSERM), NSERM U1191, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Paolo Avesani
- Neuroinformatics Laboratory (NiLab), Bruno Kessler Foundation (FBK), Trento, Italy.,Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
24
|
Della Pepa GM, Ius T, Menna G, La Rocca G, Battistella C, Rapisarda A, Mazzucchi E, Pignotti F, Alexandre A, Marchese E, Olivi A, Sabatino G. "Dark corridors" in 5-ALA resection of high-grade gliomas: combining fluorescence-guided surgery and contrast-enhanced ultrasonography to better explore the surgical field. J Neurosurg Sci 2020; 63:688-696. [PMID: 31961118 DOI: 10.23736/s0390-5616.19.04862-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Increasing the extent of resection (EOR) is considered a main goal in high grade glioma (HGG) surgery. Significant advancements have been recently made to assist surgery: namely the use of 5-aminolevulinic acid (5ALA) and the application of contrast-enhanced ultrasound (CEUS) embody two of the most recently introduced tools in the neuro-oncology field. A combined approach including the two techniques has been suggested in literature. Our primary aim is to identify in which conditions CEUS final survey has a real impact in a 5-ALA guided context and assess which preoperative tumor characteristics, with specific attention to working corridors can predict strains of the fluorescence guided procedure and hence recommend the use of the combined technique. METHODS Forty-nine HGG glioma surgeries were performed at our institution with the abovementioned protocol between January 2016 and June 2016. Based on preoperative MRI, we stratified glioma characteristics according to three determinants: localization (deep versus superficial), size (<3.5 versus >3.5 cm) and shape (regular versus irregular). RESULTS CEUS modified 5-ALA guided resection in 11 cases (22.45%): this appeared to be associated with statistically significance to deep tumor localization (P=0.04) and irregular/multi-lobulated margins (P=0.003). On the other hand, tumor size alone did not appear as a statistically significant determinant. CONCLUSIONS When dark corridors are presents or when overlying brain parenchyma hinders illumination, drawbacks to the 5-ALA assistance can be expected, hence CEUS final survey has a crucial role of 'refinement'. In those selected cases, an integrated 5ALA+CEUS protocol was shown as advisable in EOR improvement.
Collapse
Affiliation(s)
- Giuseppe M Della Pepa
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy -
| | - Tamara Ius
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Grazia Menna
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | | | - Alessandro Rapisarda
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Edoardo Mazzucchi
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | | | - Andrea Alexandre
- Institute of Neuroradiology, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Enrico Marchese
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Alessandro Olivi
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, A. Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| |
Collapse
|
25
|
Pertz M, Popkirov S, Schlegel U, Thoma P. Research on cognitive and sociocognitive functions in patients with brain tumours: a bibliometric analysis and visualization of the scientific landscape. Neurol Sci 2020; 41:1437-1449. [PMID: 32052308 PMCID: PMC8266703 DOI: 10.1007/s10072-020-04276-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/02/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Many patients with brain tumours exhibit mild to severe (neuro)cognitive impairments at some point during the course of the disease. Social cognition, as an instance of higher-order cognitive functioning, specifically enables initiation and maintenance of appropriate social interactions. For individuals being confronted with the diagnosis of a brain tumour, impairment of social function represents an additional burden, since those patients deeply depend on support and empathy provided by family, friends and caregivers. METHODS The present study explores the scientific landscape on (socio)cognitive functioning in brain tumour patients by conducting a comprehensive bibliometric analysis using VOSviewer. The Web of Science Core Collection database was examined to identify relevant documents published between 1945 and 2019. RESULTS A total of 664 English titles on (socio)cognitive functions in patients with brain tumours was retrieved. Automated textual analysis revealed that the data available so far focus on three major topics in brain tumour patients: cognitive functions in general and in paediatric cases, as well as psychological factors and their influence on quality of life. The focus of research has gradually moved from clinical studies with cognitive functions as one of the outcome measures to investigations of interactions between cognitive functions and psychological constructs such as anxiety, depression or fatigue. Medical, neurological and neuropsychological journals, in particular neuro-oncological journals published most of the relevant articles authored by a relatively small network of well interconnected researchers in the field. CONCLUSION The bibliometric analysis highlights the necessity of more research on social cognition in brain tumour patients.
Collapse
Affiliation(s)
- Milena Pertz
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, D-44892, Bochum, Germany.
| | - Stoyan Popkirov
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, D-44892, Bochum, Germany
| | - Uwe Schlegel
- Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, D-44892, Bochum, Germany
| | - Patrizia Thoma
- Neuropsychological Therapy Centre (NTC)/Clinical Neuropsychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| |
Collapse
|
26
|
Rijnen SJM, Butterbrod E, Rutten GJM, Sitskoorn MM, Gehring K. Presurgical Identification of Patients With Glioblastoma at Risk for Cognitive Impairment at 3-Month Follow-up. Neurosurgery 2020; 87:1119-1129. [PMID: 32470985 PMCID: PMC7666888 DOI: 10.1093/neuros/nyaa190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/18/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pre- and postoperative cognitive deficits have repeatedly been demonstrated in patients with glioblastoma (GBM). OBJECTIVE To identify presurgical risk factors that facilitate the identification of GBM patients at risk for postoperative cognitive impairment. METHODS Patients underwent neuropsychological assessment using Central Nervous System Vital Signs 1 d before (T0) and 3 mo after surgery (T3). Patients’ standardized scores on 7 cognitive domains were compared to a normative sample using one-sample z tests. Reliable change indices with correction for practice effects were calculated to assess cognitive changes in individual patients over time. Logistic regression models were performed to assess presurgical sociodemographic, clinical, psychological, and cognitive risk factors for postoperative cognitive impairments. RESULTS At T0, 208 patients were assessed, and 136 patients were retested at T3. Patients showed significantly lower performance both prior to and 3 mo after surgery on all cognitive domains compared to healthy controls. Improvements and declines over time occurred respectively in 11% to 32% and 6% to 26% of the GBM patients over the domains. The regression models showed that low preoperative cognitive performance posits a significant risk factor for postoperative cognitive impairment on all domains, and female sex was a risk factor for postoperative impairments in Visual Memory. CONCLUSION We demonstrated preoperative cognitive risk factors that enable the identification of GBM patients who are at risk for cognitive impairment 3 mo after surgery. This information can help to inform patients and clinicians at an early stage, and emphasizes the importance of recognizing, assessing, and actively dealing with cognitive functioning in the clinical management of GBM patients.
Collapse
Affiliation(s)
- Sophie J M Rijnen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Noord-Brabant, The Netherlands.,Department of Neurosurgery, Elisabeth-TweeSteden hospital, Tilburg, Noord-Brabant, The Netherlands
| | - Elke Butterbrod
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Noord-Brabant, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden hospital, Tilburg, Noord-Brabant, The Netherlands
| | - Margriet M Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Noord-Brabant, The Netherlands
| | - Karin Gehring
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, Noord-Brabant, The Netherlands.,Department of Neurosurgery, Elisabeth-TweeSteden hospital, Tilburg, Noord-Brabant, The Netherlands
| |
Collapse
|
27
|
Kocher M, Jockwitz C, Caspers S, Schreiber J, Farrher E, Stoffels G, Filss C, Lohmann P, Tscherpel C, Ruge MI, Fink GR, Shah NJ, Galldiks N, Langen KJ. Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment. Neuroimage Clin 2020; 27:102287. [PMID: 32540630 PMCID: PMC7298724 DOI: 10.1016/j.nicl.2020.102287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Progressive cognitive decline following multimodal neurooncological treatment is a common observation in patients suffering from malignant glioma. Alterations of the default-mode network (DMN) represent a possible source of impaired neurocognitive functioning and were analyzed in these patients. METHODS Eighty patients (median age, 51 years) with glioma (WHO grade IV glioblastoma, n = 57; WHO grade III anaplastic astrocytoma, n = 13; WHO grade III anaplastic oligodendroglioma, n = 10) and ECOG performance score 0-1 underwent resting-state functional MRI (rs-fMRI) and neuropsychological testing at a median interval of 13 months (range, 1-114 months) after initiation of therapy. For evaluation of structural and metabolic changes after treatment, anatomical MRI and amino acid PET using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) were simultaneously acquired to rs-fMRI on a hybrid MR/PET scanner. A cohort of 80 healthy subjects matched for gender, age, and educational status served as controls. RESULTS The connectivity pattern within the DMN (12 nodes) of the glioma patients differed significantly from that of the healthy subjects but did not depend on age, tumor grade, time since treatment initiation, presence of residual/recurrent tumor, number of chemotherapy cycles received, or anticonvulsive medication. Small changes in the connectivity pattern were observed in patients who had more than one series of radiotherapy. In contrast, structural tissue changes located at or near the tumor site (including resection cavities, white matter lesions, edema, and tumor tissue) had a strong negative impact on the functional connectivity of the adjacent DMN nodes, resulting in a marked dependence of the connectivity pattern on tumor location. In the majority of neurocognitive domains, glioma patients performed significantly worse than healthy subjects. Correlation analysis revealed that reduced connectivity in the left temporal and parietal DMN nodes was associated with low performance in language processing and verbal working memory. Furthermore, connectivity of the left parietal DMN node also correlated with processing speed, executive function, and verbal as well as visual working memory. Overall DMN connectivity loss and cognitive decline were less pronounced in patients with higher education. CONCLUSION Personalized treatment strategies for malignant glioma patients should consider the left parietal and temporal DMN nodes as vulnerable regions concerning neurocognitive outcome.
Collapse
Affiliation(s)
- Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Juelich-Aachen Research Alliance (JARA)-Section JARA-Brain, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Jan Schreiber
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Christian Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Caroline Tscherpel
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Maximilian I Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Institute of Neuroscience and Medicine 11, JARA, Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Juelich-Aachen Research Alliance (JARA)-Section JARA-Brain, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|
28
|
Rudà R, Angileri FF, Ius T, Silvani A, Sarubbo S, Solari A, Castellano A, Falini A, Pollo B, Del Basso De Caro M, Papagno C, Minniti G, De Paula U, Navarria P, Nicolato A, Salmaggi A, Pace A, Fabi A, Caffo M, Lombardi G, Carapella CM, Spena G, Iacoangeli M, Fontanella M, Germanò AF, Olivi A, Bello L, Esposito V, Skrap M, Soffietti R. Italian consensus and recommendations on diagnosis and treatment of low-grade gliomas. An intersociety (SINch/AINO/SIN) document. J Neurosurg Sci 2020; 64:313-334. [PMID: 32347684 DOI: 10.23736/s0390-5616.20.04982-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2018, the SINch (Italian Society of Neurosurgery) Neuro-Oncology Section, AINO (Italian Association of Neuro-Oncology) and SIN (Italian Association of Neurology) Neuro-Oncology Section formed a collaborative Task Force to look at the diagnosis and treatment of low-grade gliomas (LGGs). The Task Force included neurologists, neurosurgeons, neuro-oncologists, pathologists, radiologists, radiation oncologists, medical oncologists, a neuropsychologist and a methodologist. For operational purposes, the Task Force was divided into five Working Groups: diagnosis, surgical treatment, adjuvant treatments, supportive therapies, and follow-up. The resulting guidance document is based on the available evidence and provides recommendations on diagnosis and treatment of LGG patients, considering all aspects of patient care along their disease trajectory.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Filippo F Angileri
- Section of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy -
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Antonio Silvani
- Department of Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Trento, Italy
| | - Alessandra Solari
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Bianca Pollo
- Section of Oncologic Neuropathology, Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Costanza Papagno
- Center of Neurocognitive Rehabilitation (CeRiN), Interdepartmental Center of Mind/Brain, University of Trento, Trento, Italy.,Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Ugo De Paula
- Unit of Radiotherapy, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, Humanitas Cancer Center and Research Hospital, Rozzano, Milan, Italy
| | - Antonio Nicolato
- Unit of Stereotaxic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, Verona, Italy
| | - Andrea Salmaggi
- Neurology Unit, Department of Neurosciences, A. Manzoni Hospital, Lecco, Italy
| | - Andrea Pace
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Fabi
- Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Caffo
- Section of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giuseppe Lombardi
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology-IRCCS, Padua, Italy
| | | | - Giannantonio Spena
- Neurosurgery Unit, Department of Neurosciences, A. Manzoni Hospital, Lecco, Italy
| | - Maurizio Iacoangeli
- Department of Neurosurgery, Marche Polytechnic University, Umberto I General University Hospital, Ancona, Italy
| | - Marco Fontanella
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Antonino F Germanò
- Section of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessandro Olivi
- Neurosurgery Unit, Department of Neurosciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico "A. Gemelli", Rome, Italy
| | - Lorenzo Bello
- Unit of Oncologic Neurosurgery, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Vincenzo Esposito
- Sapienza University, Rome, Italy.,Giampaolo Cantore Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | | |
Collapse
|
29
|
Zigiotto L, Annicchiarico L, Corsini F, Vitali L, Falchi R, Dalpiaz C, Rozzanigo U, Barbareschi M, Avesani P, Papagno C, Duffau H, Chioffi F, Sarubbo S. Effects of supra-total resection in neurocognitive and oncological outcome of high-grade gliomas comparing asleep and awake surgery. J Neurooncol 2020; 148:97-108. [PMID: 32303975 DOI: 10.1007/s11060-020-03494-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Awake surgery is an established technique for resection of low-grade gliomas, while its possible benefit for resection of high-grade gliomas (HGGs) needs further confirmations. This retrospective study aims to compare overall survival, extent of resection (EOR) and cognitive outcome in two groups of HGGs patients submitted to asleep or awake surgery. METHODS Thirty-three patients submitted to Gross Total Resection of contrast-enhancing area of HGGs were divided in two homogeneous groups: awake (AWg; N = 16) and asleep surgery (ASg; N = 17). All patients underwent to an extensive neuropsychological assessment before surgery (time_1), 1-week (time_2) and 4-months (time_3) after surgery. We performed analyses to assess differences in cognitive performances between groups, cognitive outcomes in each group and EOR. A comparison of overall survival (OS) between the two groups was conducted. RESULTS Statistical analyses showed no differences between groups at time_2 and time_3 in each cognitive domain, excluding selective attention that resulted higher in the AWg before surgery. Regarding cognitive outcomes, we found a reversible worsening of memory and constructional praxis, and a significant recovery at time_3, similar for both groups. Assessment of time_3 in respect to time_1 never showed differences (all ps > .074). Moreover we found a significant lower level of tumor infiltration after surgery for AWg (p < .05), with an influence on OS (p < .05). Indeed, patients of AWg showed a significant longer OS in comparison to those in the ASg (p < .01). This result was confirmed even considering only wildtype Glioblastoma (p < .05). CONCLUSION These results indicate that awake surgery, and in general a supra-total resection of enhancing area, can improve OS in HGGs patients, preserving neuro-cognitive profile and quality of life.
Collapse
Affiliation(s)
- Luca Zigiotto
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), 9, Largo Medaglie D'Oro, 38122, Trento, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Luciano Annicchiarico
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), 9, Largo Medaglie D'Oro, 38122, Trento, Italy
| | - Francesco Corsini
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), 9, Largo Medaglie D'Oro, 38122, Trento, Italy
| | - Luca Vitali
- Department of Intensive Care I, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Roberta Falchi
- Department of Intensive Care I, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Chiara Dalpiaz
- Department of Intensive Care I, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Umberto Rozzanigo
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Mattia Barbareschi
- Department of Histopathology, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Paolo Avesani
- Neuroinformatics Lab (NiLab), Fondazione Bruno Kessler (FBK), Trento, Italy
| | - Costanza Papagno
- Centro Di Riabilitazione Neurocognitiva (CeRiN), CIMeC, University of Trento, Trento, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Hugues Duffau
- Department of Neurosurgery, Hopital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Franco Chioffi
- Department of Neurosurgery, "Azienda Ospedaliera di Padova", Padua, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), 9, Largo Medaglie D'Oro, 38122, Trento, Italy.
| |
Collapse
|
30
|
A novel systematic approach to diagnose brain tumor using integrated type-II fuzzy logic and ANFIS (adaptive neuro-fuzzy inference system) model. Soft comput 2019. [DOI: 10.1007/s00500-019-04635-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Sinha R, Stephenson JM, Price SJ. A systematic review of cognitive function in patients with glioblastoma undergoing surgery. Neurooncol Pract 2019; 7:131-142. [PMID: 32626582 DOI: 10.1093/nop/npz018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Patients with glioblastoma (GB) are more likely to suffer cognitive deficits with poor quality of life as compared with lower-grade glioma patient groups, for whom cognition research is plentiful. The objective of this systematic review is to evaluate the cognitive function of patients with GB before and after surgery. Methods This review was prospectively registered with PROSPERO. PubMed and EMBASE searches were performed, most recently March 15, 2018. Inclusion criteria were adult patients, histologically confirmed GB, and cognitive tests conducted before and/or after surgery. Screening and data extraction were carried out independently by 2 authors. Results A total of 512 abstracts were screened. Nineteen studies were included with 902 participants, of whom only 423 had histologically confirmed GB. Only 11 studies tested cognitive function both before and after surgery. A total of 114 different cognitive tests were used. The most common test was used in only 9 studies; 82 tests were used only once. Follow-up time ranged from 1 week to 16 months with extremely high dropout rates. Eighteen of 19 studies reported cognitive deficits in their samples, with prevalence ranging from 22% to 100% (median 64%, interquartile range 42%). Only 1/11 longitudinal studies reported normal cognitive function, 3/11 reported initial deficits with improvement after surgery, 3/11 reported static deficits, and 4/11 reported deterioration. Conclusion There is a consistently high risk of cognitive deficit for patients with GB undergoing surgery. The included studies showed marked heterogeneity in study design, case-mix of included diagnoses, and the type and timing of cognitive tests used. We highlight considerations for the design of future studies to avoid such bias.
Collapse
|
32
|
Hendriks EJ, Habets EJJ, Taphoorn MJB, Douw L, Zwinderman AH, Vandertop WP, Barkhof F, Klein M, De Witt Hamer PC. Linking late cognitive outcome with glioma surgery location using resection cavity maps. Hum Brain Mapp 2018; 39:2064-2074. [PMID: 29380489 PMCID: PMC5947547 DOI: 10.1002/hbm.23986] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
Patients with a diffuse glioma may experience cognitive decline or improvement upon resective surgery. To examine the impact of glioma location, cognitive alteration after glioma surgery was quantified and related to voxel-based resection probability maps. A total of 59 consecutive patients (range 18-67 years of age) who had resective surgery between 2006 and 2011 for a supratentorial nonenhancing diffuse glioma (grade I-III, WHO 2007) were included in this observational cohort study. Standardized neuropsychological examination and MRI were obtained before and after surgery. Intraoperative stimulation mapping guided resections towards neurological functions (language, sensorimotor function, and visual fields). Maps of resected regions were constructed in standard space. These resection cavity maps were compared between patients with and without new cognitive deficits (z-score difference >1.5 SD between baseline and one year after resection), using a voxel-wise randomization test and calculation of false discovery rates. Brain regions significantly associated with cognitive decline were classified in standard cortical and subcortical anatomy. Cognitive improvement in any domain occurred in 10 (17%) patients, cognitive decline in any domain in 25 (42%), and decline in more than one domain in 10 (17%). The most frequently affected subdomains were attention in 10 (17%) patients and information processing speed in 9 (15%). Resection regions associated with decline in more than one domain were predominantly located in the right hemisphere. For attention decline, no specific region could be identified. For decline in information speed, several regions were found, including the frontal pole and the corpus callosum. Cognitive decline after resective surgery of diffuse glioma is prevalent, in particular, in patients with a tumor located in the right hemisphere without cognitive function mapping.
Collapse
Affiliation(s)
- Eef J Hendriks
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Esther J J Habets
- Department of Neurology, Medical Center Haaglanden, The Hague, The Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Medical Center Haaglanden, The Hague, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.,Department of Radiology, Athinoula Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
| | - W Peter Vandertop
- Neurosurgical Center Amsterdam, VU University Medical Center and Academic Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Institutes of Neurology & Healthcare Engineering, UCL, London, United Kingdom
| | - Martin Klein
- Medical Neuropsychology Section, Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip C De Witt Hamer
- Neurosurgical Center Amsterdam, VU University Medical Center and Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|