1
|
Palmer JD, Perlow HK, Lehrer EJ, Wardak Z, Soliman H. Novel radiotherapeutic strategies in the management of brain metastases: Challenging the dogma. Neuro Oncol 2024; 26:S46-S55. [PMID: 38437668 PMCID: PMC10911796 DOI: 10.1093/neuonc/noad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
The role of radiation therapy in the management of brain metastasis is evolving. Advancements in machine learning techniques have improved our ability to both detect brain metastasis and our ability to contour substructures of the brain as critical organs at risk. Advanced imaging with PET tracers and magnetic resonance imaging-based artificial intelligence models can now predict tumor control and differentiate tumor progression from radiation necrosis. These advancements will help to optimize dose and fractionation for each patient's lesion based on tumor size, histology, systemic therapy, medical comorbidities/patient genetics, and tumor molecular features. This review will discuss the current state of brain directed radiation for brain metastasis. We will also discuss future directions to improve the precision of stereotactic radiosurgery and optimize whole brain radiation techniques to improve local tumor control and prevent cognitive decline without forming necrosis.
Collapse
Affiliation(s)
- Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Haley K Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Makranz C, Lubotzky A, Zemmour H, Shemer R, Glaser B, Cohen J, Maoz M, Sapir E, Wygoda M, Peretz T, Weizman N, Feldman J, Abrams RA, Lossos A, Dor Y, Zick A. Short report: Plasma based biomarkers detect radiation induced brain injury in cancer patients treated for brain metastasis: A pilot study. PLoS One 2023; 18:e0285646. [PMID: 38015964 PMCID: PMC10684068 DOI: 10.1371/journal.pone.0285646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/15/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Radiotherapy has an important role in the treatment of brain metastases but carries risk of short and/or long-term toxicity, termed radiation-induced brain injury (RBI). As the diagnosis of RBI is crucial for correct patient management, there is an unmet need for reliable biomarkers for RBI. The aim of this proof-of concept study is to determine the utility of brain-derived circulating free DNA (BncfDNA), identified by specific methylation patterns for neurons, astrocytes, and oligodendrocytes, as biomarkers brain injury induced by radiotherapy. METHODS Twenty-four patients with brain metastases were monitored clinically and radiologically before, during and after brain radiotherapy, and blood for BncfDNA analysis (98 samples) was concurrently collected. Sixteen patients were treated with whole brain radiotherapy and eight patients with stereotactic radiosurgery. RESULTS During follow-up nine RBI events were detected, and all correlated with significant increase in BncfDNA levels compared to baseline. Additionally, resolution of RBI correlated with a decrease in BncfDNA. Changes in BncfDNA were independent of tumor response. CONCLUSIONS Elevated BncfDNA levels reflects brain cell injury incurred by radiotherapy. further research is needed to establish BncfDNA as a novel plasma-based biomarker for brain injury induced by radiotherapy.
Collapse
Affiliation(s)
- Chen Makranz
- Department of Neurology and Oncology, The Gaffin Center for Neurooncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asael Lubotzky
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Division of Neurology and Department of Molecular Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Hai Zemmour
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jonathan Cohen
- Department of Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Myriam Maoz
- Department of Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Sapir
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Radiation Oncology Institute, Samson Assuta Ashdod University Hospital, Ben Gurion University, Ashdod, Israel
| | - Marc Wygoda
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Peretz
- Department of Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noam Weizman
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jon Feldman
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ross A. Abrams
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Lossos
- Department of Neurology and Oncology, The Gaffin Center for Neurooncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aviad Zick
- Department of Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Mannam SS, Bray DP, Nwagwu CD, Zhong J, Shu HK, Eaton B, Sudmeier L, Goyal S, Deibert C, Nduom EK, Olson J, Hoang KB. Examining the Effect of ALK and EGFR Mutations on Survival Outcomes in Surgical Lung Brain Metastasis Patients. Cancers (Basel) 2023; 15:4773. [PMID: 37835467 PMCID: PMC10572022 DOI: 10.3390/cancers15194773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
In the context of the post-genomic era, where targeted oncological therapies like monoclonal antibodies (mAbs) and tyrosine-kinase inhibitors (TKIs) are gaining prominence, this study investigates whether these therapies can enhance survival for lung carcinoma patients with specific genetic mutations-EGFR-amplified and ALK-rearranged mutations. Prior to this study, no research series had explored how these mutations influence patient survival in cases of surgical lung brain metastases (BMs). Through a multi-site retrospective analysis, the study examined patients who underwent surgical resection for BM arising from primary lung cancer at Emory University Hospital from January 2012 to May 2022. The mutational statuses were determined from brain tissue biopsies, and survival analyses were conducted. Results from 95 patients (average age: 65.8 ± 10.6) showed that while 6.3% had anaplastic lymphoma kinase (ALK)-rearranged mutations and 20.0% had epidermal growth factor receptor (EGFR)-amplified mutations-with 9.5% receiving second-line therapies-these mutations did not significantly correlate with overall survival. Although the sample size of patients receiving targeted therapies was limited, the study highlighted improved overall survival and progression-free survival rates compared to earlier trials, suggesting advancements in systemic lung metastasis treatment. The study suggests that as more targeted therapies emerge, the prospects for increased overall survival and progression-free survival in lung brain metastasis patients will likely improve.
Collapse
Affiliation(s)
- Sneha Sai Mannam
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David P. Bray
- Department of Neurosurgery, Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Chibueze D. Nwagwu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jim Zhong
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA (H.-K.S.)
| | - Hui-Kuo Shu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA (H.-K.S.)
| | - Bree Eaton
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA (H.-K.S.)
| | - Lisa Sudmeier
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA (H.-K.S.)
| | - Subir Goyal
- Biostatistics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Christopher Deibert
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edjah K. Nduom
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kimberly B. Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Volumetric Response of Limited Brain Metastatic Disease to Focal Hypofractionated Radiation Therapy. Brain Sci 2021; 11:brainsci11111457. [PMID: 34827456 PMCID: PMC8615909 DOI: 10.3390/brainsci11111457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Background: This is a retrospective study aimed at assessing the volumetric response, morbidity and failure rates of hypofractionated radiation therapy (HFRT) for definitive focal management of limited brain metastasis. Methods: Patients managed with HFRT for unresected limited metastatic (≤10 lesions) brain disease were entered into an ethics-approved database. Included patients had been deemed unsuitable for surgical resection, and lesions managed with prior radiation therapy were excluded. HFRT was delivered using IMRT or VMAT with 25 Gy or 30 Gy in five fractions. Individual lesions had volumetric assessment performed at three timepoints. The primary endpoint was the change of volume from baseline (GTV0) to one month post-HFRT (GTV1) and to seven months post-HFRT (GTV7). Secondary endpoints were local failure, survival and rates of radiation necrosis. Results: One hundred and twenty-four patients with 233 lesions were managed with HFRT. Median follow-up was 23.5 months with 32 (25.8%) patients alive at censure. Median overall survival was 7.3 months with 36.3% survival at 12 months. Superior survival was predicted by smaller GTV0 (p = 0.003) and increased percentage of volumetric response (p < 0.001). Systemic therapy was delivered to 81.5% of patients. At one month post-HFRT, 206 metastases (88.4%) were available for assessment and at seven months post-HFRT, 118 metastases (50.6%) were available. Median metastasis volume at GTV0 was 1.6 cm3 (range: 0.1–19.1). At GTV1 and GTV7, this reduced to 0.7 cm3 (p < 0.001) and 0.3 cm3 (p < 0.001), respectively, correlating to percentage reductions of 54.9% and 83.3%. No significant predictors of volumetric response following HFRT were identified. Local failure was identified in 4.3% of lesions and radiation necrosis in 3.9%. Conclusion: HFRT is an effective therapy for limited metastatic disease in the brain to maximise initial volumetric response whilst minimising toxicity.
Collapse
|