1
|
Zhu Y, Zou KL, Qi DX, He J, Peng R, Wang M. Tailoring Valley Polarization of Interlayer Excitons in van der Waals Heterostructure toward Optical Communication. NANO LETTERS 2025; 25:8680-8688. [PMID: 40365932 DOI: 10.1021/acs.nanolett.5c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Controlling the valley polarization of interlayer excitons in van der Waals heterostructures is essential for developing valleytronic devices. Here, we demonstrate the manipulation of valley polarization of interlayer excitons in a monolayer WSe2/WS2 heterostructure using a dual-handedness metasurface. This metasurface, composed of left- and right-handed gold nanoantenna arrays, exhibits distinct chiral optical responses. Introducing the metasurface into heterostructures significantly enhances the degree of interlayer exciton valley polarization, which quantitatively corresponds to the circular dichroism (CD) of interlayer excitons, via chiral Purcell effects. A negative CD of -16% is yielded via the left-handed metasurface, and a positive CD of +25% is harvested via the right-handed metasurface under σ+ excitation of 532 nm at 77 K. Moreover, the CD is tunable with excitation wavelength, reaching a maximum of 38% at 620 nm under σ- excitation, the highest value from interlayer excitons reported so far without applying external fields. Further, we demonstrate that this platform enables direct and byte-invert arithmetic operations for information transmission. This capability highlights its potential for error detection in valleytronics-based optical communication systems.
Collapse
Affiliation(s)
- Yi Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Kong-Liang Zou
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Dong-Xiang Qi
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Jie He
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Ruwen Peng
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Mu Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Chen Y, Xia M, Zhou J, Wang Y, Huang D, Zhang X. Directional sorting of exciton emissions from twisted WS 2/WSe 2 hetero-bilayers using self-coupled photonic crystal resonances. SCIENCE ADVANCES 2025; 11:eadu4968. [PMID: 40279416 PMCID: PMC12024640 DOI: 10.1126/sciadv.adu4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
Recent advances in two-dimensional semiconductor hetero-bilayers have revealed that the stacking angle between adjacent layers provides an additional degree of freedom to tune exciton states, enabling fascinating twist-angle-dependent photoluminescence. To control exciton emission properties, hetero-bilayers are usually integrated with photonic nanostructures, however, in which the contact interfaces can result in substantial luminescence suppression. To overcome this fundamental issue, we herein directly pattern photonic crystal (PhC) nanostructures in free-standing WS2/WSe2 hetero-bilayers to avoid the involvement of contact interfaces. Such PhC nanostructured WS2/WSe2 hetero-bilayers not only provide new exciton states but also offer guided mode resonances that can self-couple to excitons to enable light manipulation at the atomic thickness scale. Moreover, leveraging the unique momentum dispersion of guided mode resonances, exciton emissions are selectively excited and separated in the energy-momentum space. Our results may provide an important direction to unfold the prospects of emerging exciton states in the moiré heterostructures.
Collapse
Affiliation(s)
- Yuhua Chen
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People’s Republic of China
| | - Meng Xia
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People’s Republic of China
| | - Jiaxin Zhou
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People’s Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Yuefeng Wang
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People’s Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Di Huang
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People’s Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Xingwang Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People’s Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
3
|
Bao X, Shi J, Han X, Wu K, Zeng X, Xia Y, Zhao J, Zhang Z, Du W, Yue S, Wu X, Wu B, Huang Y, Zhang W, Liu X. Exciton Emission Enhancement in Two-Dimensional Monolayer Tungsten Disulfide on a Silicon Substrate via a Fabry-Pérot Microcavity. NANO LETTERS 2025; 25:2639-2646. [PMID: 39825839 DOI: 10.1021/acs.nanolett.4c05219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS2 and a micron-scale hole on the SiO2/Si substrate. The overall enhancement results from the increased exciton-photon interaction due to the effective exciton-cavity mode coupling and decreased trion formation from the weakened substrate effect confirmed by transient spectroscopy. Moreover, the effective coupling improves the directivity of excitons' spontaneous radiation (fwhm ∼ 5°). This research reveals a practical platform for simultaneously enhancing exciton emission and attenuating the substrate effect, and it provides a blueprint for the development of two-dimensional monolayer TMDs-based emitters in integrated optoelectronic devices.
Collapse
Affiliation(s)
- Xiaotian Bao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Xu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Keming Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xin Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Yuexing Xia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinghan Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhiyong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yuan Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wenkai Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
4
|
Lu Z, Song D, Lin C, Zhang H, Zhang S, Xu H. Plexciton Photoluminescence in Strongly Coupled 2D Semiconductor-Plasmonic Nanocavity Hybrid. ACS NANO 2025; 19:5637-5648. [PMID: 39889270 DOI: 10.1021/acsnano.4c15637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Strong plasmon-exciton interaction between two-dimensional transition metal dichalcogenides and a plasmonic nanocavity under ambient conditions has been reported extensively. But the suspicion on whether it has reached a true "strong coupling" is always there because the commonly used dark-field scattering spectroscopy shows a larger spectral splitting and the splitting in the photoluminescence spectra is absent. Here, by using a nanobipyramid-over-mirror to enhance the in-plane vacuum field, we achieve spectral Rabi splitting in both scattering and differential reflection spectra and observe a clear photoluminescence emission of the lower plexciton branch. The established nanocavity offers two polarization-dependent gap plasmon resonances to provide excitation and quantum yield enhancement simultaneously, yielding a total photoluminescence enhancement of 2.1 × 104 times. This allows the acquisition of emission spectra from an individual coupled system regardless of the presence of an uncoupled emitting background in the collection area. The sharp tips of the nanobipyramid lead to a large single-exciton coupling strength up to a few meV. Correlated scattering, differential reflection, and photoluminescence spectra reveal the similarity between the scattering and normalized photoluminescence spectra. These correlative measurements on a single coupled system clear up the suspicions of strong plasmon-exciton interactions and will promote the development of light-emitting plexcitonic devices at room temperature.
Collapse
Affiliation(s)
- Zhengyi Lu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Dudu Song
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Cidu Lin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hao Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shunping Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Hongxing Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan China
| |
Collapse
|
5
|
Li W, Qin Q, Li X, Huangfu Y, Shen D, Liu J, Li J, Li B, Wu R, Duan X. Robust Growth of 2D Transition Metal Dichalcogenide Vertical Heterostructures via Ammonium-Assisted CVD Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408367. [PMID: 39300853 DOI: 10.1002/adma.202408367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Two dimension (2D) transition metal dichalcogenides (TMD) heterostructures have opened unparalleled prospects for next-generation electronic and optoelectronic applications due to their atomic-scale thickness and distinct physical properties. The chemical vapor deposition (CVD) method is the most feasible approach to prepare 2D TMD heterostructures. However, the synthesis of 2D vertical heterostructures faces competition between in-plane and out-of-plane growth, which makes it difficult to precisely control the growth of vertical heterostructures. Here, a universal and controllable strategy is reported to grow various 2D TMD vertical heterostructures through an ammonium-assisted CVD process. The ammonium-assisted strategy shows excellent controllability and operational simplicity to prevent interlayer diffusion/alloying and thermal decomposition of the existed TMD templates. Ab initio simulations demonstrate that the reaction between NH4Cl and MoS2 leads to the formation of MoS3 clusters, promoting the nucleation and growth of 2D MoS2 on existed 2D WS2 layer, thereby leading to the growth of vertical heterostructure. The resulting 2D WSe2/WS2 vertical heterostructure photodetectors demonstrate an outstanding optoelectronic performance, which are comparable to the performances of photodetectors fabricated from mechanically exfoliated and stacked vertical heterostructures. The ammonium-assisted strategy for robust growth of high-quality vertical van der Waals heterostructures will facilitate fundamental physics investigations and device applications in electronics and optoelectronics.
Collapse
Affiliation(s)
- Wei Li
- College of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Qiuyin Qin
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xin Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ying Huangfu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dingyi Shen
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| | - Jialing Liu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Ruixia Wu
- College of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
6
|
Fu Q, Liu X, Wang S, Wu Z, Xia W, Zhang Q, Ni Z, Hu Z, Lu J. Room-temperature efficient and tunable interlayer exciton emissions in WS 2/WSe 2 heterobilayers at high generation rates. OPTICS LETTERS 2024; 49:5196-5199. [PMID: 39270262 DOI: 10.1364/ol.534473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Transition metal dichalcogenide (TMDC) heterobilayers (HBs) have been intensively investigated lately because they offer novel platforms for the exploration of interlayer excitons (IXs). However, the potentials of IXs in TMDC HBs have not been fully studied as efficient and tunable emitters for both photoluminescence (PL) and electroluminescence (EL) at room temperature (RT). Also, the efficiencies of the PL and EL of IXs have not been carefully quantified. In this work, we demonstrate that IX in WS2/WSe2 HBs could serve as promising emitters at high generation rates due to its immunity to efficiency roll-off. Furthermore, by applying gate voltages to balance the electron and hole concentrations and to reinforce the built-in electric fields, high PL quantum yield (QY) and EL external quantum efficiency (EQE) of ∼0.48% and ∼0.11% were achieved at RT, respectively, with generation rates exceeding 1021 cm-2·s-1, which confirms the capabilities of IXs as efficient NIR light emitters by surpassing most of the intralayer emissions from TMDCs.
Collapse
|
7
|
Brotons-Gisbert M, Gerardot BD, Holleitner AW, Wurstbauer U. Interlayer and Moiré excitons in atomically thin double layers: From individual quantum emitters to degenerate ensembles. MRS BULLETIN 2024; 49:914-931. [PMID: 39247683 PMCID: PMC11379794 DOI: 10.1557/s43577-024-00772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
Abstract Interlayer excitons (IXs), composed of electron and hole states localized in different layers, excel in bilayers composed of atomically thin van der Waals materials such as semiconducting transition-metal dichalcogenides (TMDs) due to drastically enlarged exciton binding energies, exciting spin-valley properties, elongated lifetimes, and large permanent dipoles. The latter allows modification by electric fields and the study of thermalized bosonic quasiparticles, from the single particle level to interacting degenerate dense ensembles. Additionally, the freedom to combine bilayers of different van der Waals materials without lattice or relative twist-angle constraints leads to layer-hybridized and Moiré excitons, which can be widely engineered. This article covers fundamental aspects of IXs, including correlation phenomena as well as the consequence of Moiré superlattices with a strong focus on TMD homo- and heterobilayers. Graphical abstract
Collapse
Affiliation(s)
- Mauro Brotons-Gisbert
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Brian D Gerardot
- Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh, UK
| | - Alexander W Holleitner
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
8
|
Wu K, He W, Zhong H, Wu S, Zhou H, Yuan S, Zhang S, Xu H. Helicity-Resolved Vibrational Coupling in Twist WS 2/WSe 2 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44186-44192. [PMID: 39109859 DOI: 10.1021/acsami.4c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Helicity-resolved Raman spectra can provide an intricate view into lattice structural details. Through the analysis of peak positions, intensities, and circular polarized Raman signals, a wealth of information about chiral structure arrangement within the moiré superlattice, interlayer interaction strength, polarizability change in chemical bond, and beyond can be unveiled. However, the relationship between the circular polarization of high-frequency Raman and twist angle is still not clear. Here, we utilize helicity-resolved Raman spectroscopy to explore the interlayer interactions and the effect of the moiré superlattice in WS2/WSe2 heterostructures. For the out-of-plane Raman mode A1g of WS2 (A1g and 1E2g of WSe2), its intensity is significantly enhanced (suppressed) in WS2/WSe2 heterostructures when θ is less than 10° or greater than 50°. This observation could be attributed to the large polarizability changes in both W-S and W-Se covalent bonds. The circular polarization of 2LA(M) in WSe2 of the WS2/WSe2 heterostructure (θ < 10° or θ > 50°) is significantly enhanced compared to that of 2LA(M) in the monolayer WSe2. We deduce that the circular polarization of the Raman mode correlates with the proportion of high-symmetry area within a supercell of the moiré lattice. Our findings improve the understanding of twist-angle-modulated Raman modes in TMD heterostructures.
Collapse
Affiliation(s)
- Ke Wu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wenyingdi He
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxia Zhong
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Shutong Wu
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongzhi Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Shengjun Yuan
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| |
Collapse
|
9
|
Dai D, Fu B, Yang J, Yang L, Yan S, Chen X, Li H, Zuo Z, Wang C, Jin K, Gong Q, Xu X. Twist angle-dependent valley polarization switching in heterostructures. SCIENCE ADVANCES 2024; 10:eado1281. [PMID: 38748802 PMCID: PMC11095485 DOI: 10.1126/sciadv.ado1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
The twist engineering of moiré superlattice in van der Waals heterostructures of transition metal dichalcogenides can manipulate valley physics of interlayer excitons (IXs), paving the way for next-generation valleytronic devices. However, the twist angle-dependent control of excitonic potential on valley polarization is not investigated so far in electrically controlled heterostructures and the physical mechanism underneath needs to be explored. Here, we demonstrate the dependence of both polarization switching and degree of valley polarization on the moiré period. We also find the mechanisms to reveal the modulation of twist angle on the exciton potential and the electron-hole exchange interaction, which elucidate the experimentally observed twist angle-dependent valley polarization of IXs. Furthermore, we realize the valley-addressable devices based on polarization switch. Our work demonstrates the manipulation of the valley polarization of IXs by tunning twist angle in electrically controlled heterostructures, which opens an avenue for electrically controlling the valley degrees of freedom in twistronic devices.
Collapse
Affiliation(s)
- Danjie Dai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Fu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jingnan Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Longlong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Sai Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiqing Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Hancong Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhanchun Zuo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Xiulai Xu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
10
|
Li M, Gao M, Zhang Q, Yang Y. Valley-dependent vortex emission from exciton-polariton in non-centrosymmetric transition metal dichalcogenide metasurfaces. OPTICS EXPRESS 2023; 31:19622-19631. [PMID: 37381373 DOI: 10.1364/oe.490067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Transition metal dichalcogenides (TMDs) have attracted great attention in valleytronics. Owing to the giant valley coherence at room temperature, valley pseudospin of TMDs open a new degree of freedom to encode and process binary information. The valley pseudospin only exists in non-centrosymmetric TMDs (e.g., monolayer or 3R-stacked multilayer), which is prohibited in conventional centrosymmetric 2H-stacked crystals. Here, we propose a general recipe to generate valley-dependent vortex beams by using a mix-dimensional TMD metasurface composed of nanostructured 2H-stacked TMD crystals and monolayer TMDs. Such an ultrathin TMD metasurface involves a momentum-space polarization vortex around bound states in the continuum (BICs), which can simultaneously achieve strong coupling (i.e., form exciton polaritons) and valley-locked vortex emission. Moreover, we report that a full 3R-stacked TMD metasurface can also reveal the strong-coupling regime with an anti-crossing pattern and a Rabi splitting of 95 meV. The Rabi splitting can be precisely controlled by geometrically shaping the TMD metasurface. Our results provide an ultra-compact TMD platform for controlling and structuring valley exciton polariton, in which the valley information is linked with the topological charge of vortex emission, which may advance valleytronic, polaritonic, and optoelectronic applications.
Collapse
|
11
|
Rodríguez Á, Varillas J, Haider G, Kalbáč M, Frank O. Complex Strain Scapes in Reconstructed Transition-Metal Dichalcogenide Moiré Superlattices. ACS NANO 2023; 17:7787-7796. [PMID: 37022987 PMCID: PMC10134736 DOI: 10.1021/acsnano.3c00609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
We investigate the intrinsic strain associated with the coupling of twisted MoS2/MoSe2 heterobilayers by combining experiments and molecular dynamics simulations. Our study reveals that small twist angles (between 0 and 2°) give rise to considerable atomic reconstructions, large moiré periodicities, and high levels of local strain (with an average value of ∼1%). Moreover, the formation of moiré superlattices is assisted by specific reconstructions of stacking domains. This process leads to a complex strain distribution characterized by a combined deformation state of uniaxial, biaxial, and shear components. Lattice reconstruction is hindered with larger twist angles (>10°) that produce moiré patterns of small periodicity and negligible strains. Polarization-dependent Raman experiments also evidence the presence of an intricate strain distribution in heterobilayers with near-0° twist angles through the splitting of the E2g1 mode of the top (MoS2) layer due to atomic reconstruction. Detailed analyses of moiré patterns measured by AFM unveil varying degrees of anisotropy in the moiré superlattices due to the heterostrain induced during the stacking of monolayers.
Collapse
Affiliation(s)
- Álvaro Rodríguez
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Javier Varillas
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Institute
of Thermomechanics, Czech Academy of Sciences, Dolejškova 1402/5, 182 00 Prague 8, Czech Republic
| | - Golam Haider
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Martin Kalbáč
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Otakar Frank
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| |
Collapse
|
12
|
Pan W, Wu S, Ma C, Shan Y, Liu L. Significantly increased Raman enhancement enabled by hot-electron-injection-induced synergistic resonances on anisotropic ReS 2 films. Phys Chem Chem Phys 2023; 25:6537-6544. [PMID: 36786679 DOI: 10.1039/d2cp04703a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Two-dimensional (2D) materials are an excellent platform for surface-enhanced Raman spectroscopy (SERS). However, a poor detection sensitivity hinders their practical application. Exciton resonance (μex) can improve SERS significantly by lending intensity to nearby charge-transfer resonance. Coincidentally, for ReS2, the enhanced μex can be achieved through the injection of excited-state electrons which can adjust the energy band to the SERS detection range. Moreover, ReS2 has strong anisotropic properties, which adds an additional dimension for SERS. Therefore, ReS2 is an ideal candidate to realize highly sensitive anisotropic SERS. In this paper, the metallic T phase of ReS2 is introduced to the semiconducting Td phase by phase engineering. The photoinduced electron tunneling from the T phase to the Td phase can tune exciton emissions to the visible region, which effectively facilitates the photoinduced charge transfer processes. With RhB as the probe molecule, the synergistic resonance effects improve the limit of detection to 10-9 M with the enhancement factor up to about 108. Meanwhile, the obtained ultrasensitive SERS substrates also show good uniformity, stability as well as unique anisotropy. Our results open a new perspective in the improvement of the SERS performance.
Collapse
Affiliation(s)
- Wen Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Shuyi Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yun Shan
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Lizhe Liu
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
13
|
Huang L, Krasnok A, Alú A, Yu Y, Neshev D, Miroshnichenko AE. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:046401. [PMID: 34939940 DOI: 10.1088/1361-6633/ac45f9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
Collapse
Affiliation(s)
- Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, United States of America
| | - Andrea Alú
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, United States of America
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, United States of America
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| |
Collapse
|