1
|
Chen T, Zou D, Zhou Z, Wang R, Feng Y, Sun H, Zhang X. Ultra-sensitivity in reconstructed exceptional systems. Natl Sci Rev 2024; 11:nwae278. [PMID: 39554233 PMCID: PMC11562849 DOI: 10.1093/nsr/nwae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 11/19/2024] Open
Abstract
Sensors are of fundamental importance and widely used in modern society, such as in industry and environmental monitoring, biomedical sample ingredient analysis and wireless networks. Although numerous sensors have been developed, there is a continuous demand for sensors with increased sensitivity, to detect signals that were previously undetectable. Recently, non-Hermitian degeneracies, also known as exceptional points (EPs), have attracted attention as a way of improving the responsiveness of sensors. In contrast to previous investigations, here we present a new approach to achieving ultra-sensitivity by reconstructing exceptional systems. In the reconstruction process, some eigenstates near the previous EPs are utilized, and non-reciprocal long-range couplings are introduced. The sensitivities of our reconstructed systems have improved by several orders of magnitude compared to those based on EPs. Furthermore, we design and fabricate corresponding integrated circuit sensors to demonstrate the scheme. Our work paves the way for the development of highly sensitive sensors, which have a wide range of applications in various fields.
Collapse
Affiliation(s)
- Tian Chen
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Deyuan Zou
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Zilong Zhou
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiguo Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Feng
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Houjun Sun
- Beijing Key Laboratory of Millimeter Wave and Terahertz Techniques, and School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangdong Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Lei M, Jin P, Zhou Y, Li Y, Xu L, Huang J. Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal nonreciprocal metamaterials. Proc Natl Acad Sci U S A 2024; 121:e2410041121. [PMID: 39446388 PMCID: PMC11536176 DOI: 10.1073/pnas.2410041121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
Thermal nonreciprocity plays a vital role in chip heat dissipation, energy-saving design, and high-temperature hyperthermia, typically realized through the use of advanced metamaterials with nonlinear, advective, spatiotemporal, or gradient properties. However, challenges such as fixed structural designs with limited adjustability, high energy consumption, and a narrow operational temperature range remain prevalent. Here, a systematic framework is introduced to achieve reconfigurable, zero-energy, and wide-temperature thermal nonreciprocity by transforming wasteful heat loss into a valuable regulatory tool. Vertical slabs composed of natural bulk materials enable asymmetric heat loss through natural convection, disrupting the inversion symmetry of thermal conduction. The reconfigurability of this system stems from the ability to modify heat loss by adjusting thermal conductivity, size, placement, and quantity of the slabs. Moreover, this structure allows for precise control of zero-energy thermal nonreciprocity across a broad temperature spectrum, utilizing solely environmental temperature gradients without additional energy consumption. This research presents a different approach to achieving nonreciprocity, broadening the potential for nonreciprocal devices such as thermal diodes and topological edge states, and inspiring further exploration of nonreciprocity in other loss-based systems.
Collapse
Affiliation(s)
- Min Lei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai200438, China
| | - Peng Jin
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai200438, China
| | - Yuhong Zhou
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai200438, China
| | - Ying Li
- State Key Laboratory of Extreme Photonics and Instrumentation, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, The Electromagnetics Academy of Zhejiang University, Zhejiang University, Haining314400, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing312000, China
| | - Liujun Xu
- Graduate School of China Academy of Engineering Physics, Beijing100193, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai200438, China
| |
Collapse
|
3
|
Jin P, Xu L, Xu G, Li J, Qiu CW, Huang J. Deep Learning-Assisted Active Metamaterials with Heat-Enhanced Thermal Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305791. [PMID: 37869962 DOI: 10.1002/adma.202305791] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Indexed: 10/24/2023]
Abstract
Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working-temperature ranges, and the need for manual intervention, which remain long-term and tricky obstacles for the most advanced self-adaptive metamaterials. To surmount these barriers, heat-enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on-demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.
Collapse
Affiliation(s)
- Peng Jin
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, 200438, China
| | - Liujun Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jiaxin Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, 200438, China
| |
Collapse
|
4
|
Ju R, Cao PC, Wang D, Qi M, Xu L, Yang S, Qiu CW, Chen H, Li Y. Nonreciprocal Heat Circulation Metadevices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309835. [PMID: 38010625 DOI: 10.1002/adma.202309835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Thermal nonreciprocity typically stems from nonlinearity or spatiotemporal variation of parameters. However, constrained by the inherent temperature-dependent properties and the law of mass conservation, previous works have been compelled to treat dynamic and steady-state cases separately. Here, by establishing a unified thermal scattering theory, the creation of a convection-based thermal metadevice which supports both dynamic and steady-state nonreciprocal heat circulation is reported. The nontrivial dependence between the nonreciprocal resonance peaks and the dynamic parameters is observed and the unique nonreciprocal mechanism of multiple scattering is revealed at steady state. This mechanism enables thermal nonreciprocity in the initially quasi-symmetric scattering matrix of the three-port metadevice and has been experimentally validated with a significant isolation ratio of heat fluxes. The findings establish a framework for thermal nonreciprocity that can be smoothly modulated for dynamic and steady-state heat signals, it may also offer insight into other heat-transfer-related problems or even other fields such as acoustics and mechanics.
Collapse
Affiliation(s)
- Ran Ju
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Pei-Chao Cao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Dong Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Minghong Qi
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Liujun Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, China
| | - Shuihua Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| |
Collapse
|
5
|
Jin P, Liu J, Yang F, Marchesoni F, Jiang JH, Huang J. In situ Simulation of Thermal Reality. RESEARCH (WASHINGTON, D.C.) 2023; 6:0222. [PMID: 37746656 PMCID: PMC10516180 DOI: 10.34133/research.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Simulated reality encompasses virtual, augmented, and mixed realities-each characterized by different degrees of truthfulness in the visual perception: "all false," "coexistence of true and false," and "difficult distinction between true and false," respectively. In all these technologies, however, the temperature rendering of virtual objects is still an unsolved problem. Undoubtedly, the lack of thermal tactile functions substantially reduces the quality of the user's real-experience perception. To address this challenge, we propose theoretically and realize experimentally a technological platform for the in situ simulation of thermal reality. To this purpose, we design a thermal metadevice consisting of a reconfigurable array of radiating units, capable of generating the thermal image of any virtual object, and thus rendering it in situ together with its thermal signature. This is a substantial technological advance, which opens up new possibilities for simulated reality and its applications to human activities.
Collapse
Affiliation(s)
- Peng Jin
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Jinrong Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Fubao Yang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Fabio Marchesoni
- Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Physics, University of Camerino, Camerino 62032, Italy
| | - Jian-Hua Jiang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Ju R, Xu G, Xu L, Qi M, Wang D, Cao PC, Xi R, Shou Y, Chen H, Qiu CW, Li Y. Convective Thermal Metamaterials: Exploring High-Efficiency, Directional, and Wave-Like Heat Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209123. [PMID: 36621882 DOI: 10.1002/adma.202209123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Indexed: 06/09/2023]
Abstract
Convective thermal metamaterials are artificial structures where convection dominates in the thermal process. Due to the field coupling between velocity and temperature, convection provides a new knob for controlling heat transfer beyond pure conduction, thus allowing active and robust thermal modulations. With the introduced convective effects, the original parabolic Fourier heat equation for pure conduction can be transformed to hyperbolic. Therefore, the hybrid diffusive system can be interpreted in a wave-like fashion, reviving many wave phenomena in dissipative diffusion. Here, recent advancements in convective thermal metamaterials are reviewed and the state-of-the-art discoveries are classified into the following four aspects, enhancing heat transfer, porous-media-based thermal effects, nonreciprocal heat transfer, and non-Hermitian phenomena. Finally, a prospect is cast on convective thermal metamaterials from two aspects. One is to utilize the convective parameter space to explore topological thermal effects. The other is to further broaden the convective parameter space with spatiotemporal modulation and multi-physical effects.
Collapse
Affiliation(s)
- Ran Ju
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Liujun Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, China
| | - Minghong Qi
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Dong Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Pei-Chao Cao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Rui Xi
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Yifan Shou
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| |
Collapse
|
7
|
Zhou Y, Ding T, Guo J, Xu G, Cheng M, Zhang C, Wang XQ, Lu W, Ong WL, Li J, He J, Qiu CW, Ho GW. Giant polarization ripple in transverse pyroelectricity. Nat Commun 2023; 14:426. [PMID: 36702841 PMCID: PMC9879950 DOI: 10.1038/s41467-023-35900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Pyroelectricity originates from spontaneous polarization variation, promising in omnipresent non-static thermodynamic energy harvesting. Particularly, changing spontaneous polarization via out-of-plane uniform heat perturbations has been shown in solar pyroelectrics. However, these approaches present unequivocal inefficiency due to spatially coupled low temperature change and duration along the longitudinal direction. Here we demonstrate unconventional giant polarization ripples in transverse pyroelectrics, without increasing the total energy input, into electricity with an efficiency of 5-fold of conventional longitudinal counterparts. The non-uniform graded temperature variation arises from decoupled heat localization and propagation, leading to anomalous in-plane heat perturbation (29-fold) and enhanced thermal disequilibrium effects. This in turn triggers an augmented polarization ripple, fundamentally enabling unprecedented electricity generation performance. Notably, the device generates a power density of 38 mW m-2 at 1 sun illumination, which is competitive with solar thermoelectrics and ferrophotovoltaics. Our findings provide a viable paradigm, not only for universal practical pyroelectric heat harvesting but for flexible manipulation of transverse heat transfer towards sustainable energy harvesting and management.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, Southern University of Science and Technology, Shenzhen, China
| | - Tianpeng Ding
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Guo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Mingqiang Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Xiao-Qiao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Wanheng Lu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiaqing He
- Department of Physics, Southern University of Science and Technology, Shenzhen, China.
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.
| |
Collapse
|