1
|
Zhou T, Pu SY, Zhang SJ, Zhou QJ, Zeng M, Lu JS, Lu X, Wang YN, Wang GD. Dog10K: an integrated Dog10K database summarizing canine multi-omics. Nucleic Acids Res 2025; 53:D939-D947. [PMID: 39436034 PMCID: PMC11701641 DOI: 10.1093/nar/gkae928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
The diversity observed in canine breed phenotypes, together with their risk for heritabily disorders of relevance to dogs and humans, makes the species an ideal subject for studies aimed at understanding the genetic basis of complex traits and human biomedical models. Dog10K is an ongoing international collaboration that aims to uncover the genetic basis of phenotypic diversity, disease, behavior, and domestication history of dogs. To best present and make the extensive data accessible and user friendly, we have established the Dog10K (http://dog10k.kiz.ac.cn/) database, a comprehensive-omics resource summarizing multiple types of data. This database integrates single nucleotide variants (SNVs) from 1987 canine genomes, de-novo mutations (DNMs) from 43 dog breeds with >40× sequence, RNA-seq data of 105057 single nuclei from hippocampus, 74067 single cells from leukocytes and 30 blood samples from published canid studies. We provide clear visualization, statistics, browse, searching, and downloading functions for all data. We have integrated three analysis tools, Selscan, LiftOver and AgeConversion, to aid researchers in custom exploration of the comprehensive-omics data. The Dog10K database will serve as a foundational platform for analyzing, presenting and utilizing canine multi-omics data.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shao-Yan Pu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Biodiversity Data Center of Kunming Institute of Zoology, Chinese Academy of sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Shao-Jie Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qi-Jun Zhou
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Min Zeng
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Sheng Lu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Biodiversity Data Center of Kunming Institute of Zoology, Chinese Academy of sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
| | - Xuemei Lu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Biodiversity Data Center of Kunming Institute of Zoology, Chinese Academy of sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ya-Nan Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Biodiversity Data Center of Kunming Institute of Zoology, Chinese Academy of sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guo-Dong Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
2
|
Baker LA, Minor KM, Tate N, Furrow E. Whole blood gene expression analysis of spontaneous hypertriglyceridemia in dogs suggests an underlying pro-thrombotic process. PLoS One 2024; 19:e0313343. [PMID: 39531449 PMCID: PMC11556679 DOI: 10.1371/journal.pone.0313343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertriglyceridemia (HTG) is influenced by multiple genetic and environmental factors. Spontaneous, idiopathic HTG is common in the Miniature Schnauzer dog and presumed to have a strong genetic influence in this breed. To define genes that are differentially expressed in dogs with HTG, we performed RNA sequencing on peripheral blood of 13 Miniature Schnauzers with HTG and 18 controls. We identified 110 differentially expressed genes (DEGs). Pathway analysis suggests an ongoing pro-thrombotic, endothelial activation process in dogs with HTG. The gene with the largest fold change (5.4 ± 1.4, Padj = 4.4E-04), SERPINE1, encodes plasminogen activator inhibitor 1 (PAI-1), a known risk factor for atherosclerosis and thrombosis. Other top DEGs, including SHANK3, MMRN1, and FZD7, are involved in endothelial activation. Two of the top DEGs, ARHGAP29 and ARHGAP21, inhibit pro-thrombotic pathways and are potentially protective of disease sequelae. Top DEGs, including SERPINE1 and ARHGAP21, have also been linked to metabolic syndrome or its features (e.g. insulin resistance) in humans and animal models. Our findings indicate that HTG in the Miniature Schnauzer dog has similar features to HTG and metabolic syndrome in humans, highlighting the potential use of the dog as a spontaneous model for further research into the etiology and effects of HTG.
Collapse
Affiliation(s)
- Lauren A. Baker
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katie M. Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicole Tate
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
3
|
Nguyen AK, Blacksmith MS, Kidd JM. Duplications and Retrogenes Are Numerous and Widespread in Modern Canine Genomic Assemblies. Genome Biol Evol 2024; 16:evae142. [PMID: 38946312 PMCID: PMC11259980 DOI: 10.1093/gbe/evae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
Recent years have seen a dramatic increase in the number of canine genome assemblies available. Duplications are an important source of evolutionary novelty and are also prone to misassembly. We explored the duplication content of nine canine genome assemblies using both genome self-alignment and read-depth approaches. We find that 8.58% of the genome is duplicated in the canFam4 assembly, derived from the German Shepherd Dog Mischka, including 90.15% of unplaced contigs. Highlighting the continued difficulty in properly assembling duplications, less than half of read-depth and assembly alignment duplications overlap, but the mCanLor1.2 Greenland wolf assembly shows greater concordance. Further study shows the presence of multiple segments that have alignments to four or more duplicate copies. These high-recurrence duplications correspond to gene retrocopies. We identified 3,892 candidate retrocopies from 1,316 parental genes in the canFam4 assembly and find that ∼8.82% of duplicated base pairs involve a retrocopy, confirming this mechanism as a major driver of gene duplication in canines. Similar patterns are found across eight other recent canine genome assemblies, with metrics supporting a greater quality of the PacBio HiFi mCanLor1.2 assembly. Comparison between the wolf and other canine assemblies found that 92% of retrocopy insertions are shared between assemblies. By calculating the number of generations since genome divergence, we estimate that new retrocopy insertions appear, on average, in 1 out of 3,514 births. Our analyses illustrate the impact of retrogene formation on canine genomes and highlight the variable representation of duplicated sequences among recently completed canine assemblies.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Blacksmith
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Zhou QJ, Liu X, Zhang L, Wang R, Yin T, Li X, Li G, He Y, Ding Z, Ma P, Wang SZ, Mao B, Zhang S, Wang GD. A single-nucleus transcriptomic atlas of the dog hippocampus reveals the potential relationship between specific cell types and domestication. Natl Sci Rev 2022; 9:nwac147. [PMID: 36569494 PMCID: PMC9772819 DOI: 10.1093/nsr/nwac147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Accepted: 07/09/2022] [Indexed: 12/27/2022] Open
Abstract
The process of domestication has led to dramatic differences in behavioral traits between domestic dogs and gray wolves. Whole-genome research found that a class of putative positively selected genes were related to various aspects of learning and memory, such as long-term potentiation and long-term depression. In this study, we constructed a single-nucleus transcriptomic atlas of the dog hippocampus to illustrate its cell types, cell lineage and molecular features. Using the transcriptomes of 105 057 nuclei from the hippocampus of a Beagle dog, we identified 26 cell clusters and a putative trajectory of oligodendrocyte development. Comparative analysis revealed a significant convergence between dog differentially expressed genes (DEGs) and putative positively selected genes (PSGs). Forty putative PSGs were DEGs in glutamatergic neurons, especially in Cluster 14, which is related to the regulation of nervous system development. In summary, this study provides a blueprint to understand the cellular mechanism of dog domestication.
Collapse
Affiliation(s)
- Qi-Jun Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xingyan Liu
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longlong Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Rong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Tingting Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiaolu Li
- Genomic Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Guimei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuqi He
- Genomic Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhaoli Ding
- Genomic Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shi-Zhi Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
5
|
Dog-human translational genomics: state of the art and genomic resources. J Appl Genet 2022; 63:703-716. [PMID: 36074326 DOI: 10.1007/s13353-022-00721-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Innovative models for medical research are strongly required nowadays. Convincing evidence supports dog as the most suitable spontaneous model for several human genetic diseases. Decades of studies on dog genome allowed the identification of hundreds of mutations causing genetic disorders, many of which are proposed as counterparts responsible for human diseases. Traditionally, the murine model is the most extensively used in human translational research. However, this species shows large physiological differences from humans, and it is kept under a controlled artificial environment. Conversely, canine genetic disorders often show pathophysiological and clinical features highly resembling the human counterpart. In addition, dogs share the same environment with humans; therefore, they are naturally exposed to many risk factors. Thus, different branches of translational medicine aim to study spontaneously occurring diseases in dogs to provide a more reliable model for human disorders. This review offers a comprehensive overview of the knowledge and resources available today for all the researchers involved in the field of dog-human translational medicine. Some of the main successful examples from dog-human translational genomics are reported, such as the canine association studies which helped to identify the causal mutation in the human counterpart. We also illustrated the ongoing projects aiming to create public canine big datasets. Finally, specific online databases are discussed along with several information resources that can speed up clinical translational research.
Collapse
|
6
|
Fine human genetic map based on UK10K data set. Hum Genet 2022; 141:273-281. [DOI: 10.1007/s00439-021-02415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/03/2021] [Indexed: 11/04/2022]
|
7
|
Liu YH, Wang L, Zhang Z, Otecko NO, Khederzadeh S, Dai Y, Liang B, Wang GD, Zhang YP. Whole-Genome Sequencing Reveals Lactase Persistence Adaptation in European Dogs. Mol Biol Evol 2021; 38:4884-4890. [PMID: 34289055 PMCID: PMC8557436 DOI: 10.1093/molbev/msab214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coexistence and cooperation between dogs and humans over thousands of years have supported convergent evolutionary processes in the two species. Previous studies found that Eurasian dogs evolved into a distinct geographic cluster. In this study, we used the genomes of 242 European dogs, 38 Southeast Asian indigenous (SEAI) dogs, and 41 gray wolves to identify adaptation of European dogs . We report 86 unique positively selected genes in European dogs, among which is LCT (lactase). LCT encodes lactase, which is fundamental for the digestion of lactose. We found that an A-to-G mutation (chr19:38,609,592) is almost fixed in Middle Eastern and European dogs. The results of two-dimensional site frequency spectrum (2D SFS) support that the mutation is under soft sweep . We inferred that the onset of positive selection of the mutation is shorter than 6,535 years and behind the well-developed dairy economy in central Europe. It increases the expression of LCT by reducing its binding with ZEB1, which would enhance dog's ability to digest milk-based diets. Our study uncovers the genetic basis of convergent evolution between humans and dogs with respect to diet, emphasizing the import of the dog as a biomedical model for studying mechanisms of the digestive system.
Collapse
Affiliation(s)
- Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yongqin Dai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Bin Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
8
|
Leypold NA, Speicher MR. Evolutionary conservation in noncoding genomic regions. Trends Genet 2021; 37:903-918. [PMID: 34238591 DOI: 10.1016/j.tig.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022]
Abstract
Humans may share more genomic commonalities with other species than previously thought. According to current estimates, ~5% of the human genome is functionally constrained, which is a much larger fraction than the ~1.5% occupied by annotated protein-coding genes. Hence, ~3.5% of the human genome comprises likely functional conserved noncoding elements (CNEs) preserved among organisms, whose common ancestors existed throughout hundreds of millions of years of evolution. As whole-genome sequencing emerges as a standard procedure in genetic analyses, interpretation of variations in CNEs, including the elucidation of mechanistic and functional roles, becomes a necessity. Here, we discuss the phenomenon of noncoding conservation via four dimensions (sequence, regulatory conservation, spatiotemporal expression, and structure) and the potential significance of CNEs in phenotype variation and disease.
Collapse
Affiliation(s)
- Nicole A Leypold
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria.
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
9
|
Corbee RJ, Penning LC. COMMD1 Exemplifies the Power of Inbred Dogs to Dissect Genetic Causes of Rare Copper-Related Disorders. Animals (Basel) 2021; 11:ani11030601. [PMID: 33668783 PMCID: PMC7996361 DOI: 10.3390/ani11030601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Wilson's Disease is a rare autosomal recessive disorder in humans, often presenting with hepatic copper overload. Finding the genetic cause of a rare disease, especially if it is related to food constituents like the trace element copper, is a Herculean task. This review describes examples of how the unique population structure of in-bred dog strains led to the discovery of a novel gene and two modifier genes involved in inherited copper toxicosis. COMMD1, after the discovery in 2002, was shown to be a highly promiscuous protein involved in copper transport, protein trafficking/degradation, regulation of virus replication, and inflammation. Mutations in the ATP7A and ATP7B proteins in Labrador retrievers and Dobermann dogs resulted in a wide variation in hepatic copper levels in these breeds. To our knowledge, numerous dog breeds with inherited copper toxicosis of unknown genetic origin exist. Therefore, the possibility that men's best friend will provide new leads in rare copper storage diseases seems realistic.
Collapse
|
10
|
Zhang SJ, Wang GD, Ma P, Zhang LL, Yin TT, Liu YH, Otecko NO, Wang M, Ma YP, Wang L, Mao B, Savolainen P, Zhang YP. Genomic regions under selection in the feralization of the dingoes. Nat Commun 2020; 11:671. [PMID: 32015346 PMCID: PMC6997406 DOI: 10.1038/s41467-020-14515-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Dingoes are wild canids living in Australia, originating from domestic dogs. They have lived isolated from both the wild and the domestic ancestor, making them a unique model for studying feralization. Here, we sequence the genomes of 10 dingoes and 2 New Guinea Singing Dogs. Phylogenetic and demographic analyses show that dingoes originate from dogs in southern East Asia, which migrated via Island Southeast Asia to reach Australia around 8300 years ago, and subsequently diverged into a genetically distinct population. Selection analysis identifies 50 positively selected genes enriched in digestion and metabolism, indicating a diet change during feralization of dingoes. Thirteen of these genes have shifted allele frequencies compared to dogs but not compared to wolves. Functional assays show that an A-to-G mutation in ARHGEF7 decreases the endogenous expression, suggesting behavioral adaptations related to the transitions in environment. Our results indicate that the feralization of the dingo induced positive selection on genomic regions correlated to neurodevelopment, metabolism and reproduction, in adaptation to a wild environment.
Collapse
Affiliation(s)
- Shao-Jie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, 650091, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Liang-Liang Zhang
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, SE-171 65, Solna, Sweden
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Meng Wang
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, 650091, China
| | - Ya-Ping Ma
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, 650091, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, 650091, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Peter Savolainen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, SE-171 65, Solna, Sweden.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|