1
|
Tao X, Huang Z, Chen F, Wang X, Zheng T, Yuan S, Xu A. The RAG key to vertebrate adaptive immunity descended directly from a bacterial ancestor. Natl Sci Rev 2022; 9:nwac073. [PMID: 36060303 PMCID: PMC9435367 DOI: 10.1093/nsr/nwac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Center for Infection and Immunity, School of Medicine, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinli Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
2
|
Yakovenko I, Agronin J, Smith LC, Oren M. Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Front Immunol 2021; 12:709165. [PMID: 34394111 PMCID: PMC8355894 DOI: 10.3389/fimmu.2021.709165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
The appearance of adaptive immunity in jawed vertebrates is termed the immunological 'Big Bang' because of the short evolutionary time over which it developed. Underlying it is the recombination activating gene (RAG)-based V(D)J recombination system, which initiates the sequence diversification of the immunoglobulins and lymphocyte antigen receptors. It was convincingly argued that the RAG1 and RAG2 genes originated from a single transposon. The current dogma postulates that the V(D)J recombination system was established by the split of a primordial vertebrate immune receptor gene into V and J segments by a RAG1/2 transposon, in parallel with the domestication of the same transposable element in a separate genomic locus as the RAG recombinase. Here, based on a new interpretation of previously published data, we propose an alternative evolutionary hypothesis suggesting that two different elements, a RAG1/2 transposase and a Transib transposon invader with RSS-like terminal inverted repeats, co-evolved to work together, resulting in a functional recombination process. This hypothesis offers an alternative understanding of the acquisition of recombinase function by RAGs and the origin of the V(D)J system.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jacob Agronin
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
3
|
Ran L, Butman DE, Battin TJ, Yang X, Tian M, Duvert C, Hartmann J, Geeraert N, Liu S. Substantial decrease in CO 2 emissions from Chinese inland waters due to global change. Nat Commun 2021; 12:1730. [PMID: 33741930 PMCID: PMC7979821 DOI: 10.1038/s41467-021-21926-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Carbon dioxide (CO2) evasion from inland waters is an important component of the global carbon cycle. However, it remains unknown how global change affects CO2 emissions over longer time scales. Here, we present seasonal and annual fluxes of CO2 emissions from streams, rivers, lakes, and reservoirs throughout China and quantify their changes over the past three decades. We found that the CO2 emissions declined from 138 ± 31 Tg C yr-1 in the 1980s to 98 ± 19 Tg C yr-1 in the 2010s. Our results suggest that this unexpected decrease was driven by a combination of environmental alterations, including massive conversion of free-flowing rivers to reservoirs and widespread implementation of reforestation programs. Meanwhile, we found increasing CO2 emissions from the Tibetan Plateau inland waters, likely attributable to increased terrestrial deliveries of organic carbon and expanded surface area due to climate change. We suggest that the CO2 emissions from Chinese inland waters have greatly offset the terrestrial carbon sink and are therefore a key component of China's carbon budget.
Collapse
Affiliation(s)
- Lishan Ran
- Department of Geography, The University of Hong Kong, Pok Fu Lam Road, Hong Kong.
| | - David E Butman
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiankun Yang
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China.
| | - Mingyang Tian
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, China
| | - Clément Duvert
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Jens Hartmann
- Institute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany
| | - Naomi Geeraert
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong
| | - Shaoda Liu
- State Key Laboratory of Water Environment Simulation and Modelling, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Alamro H, Alzamel M, Iliopoulos CS, Pissis SP, Watts S. IUPACpal: efficient identification of inverted repeats in IUPAC-encoded DNA sequences. BMC Bioinformatics 2021; 22:51. [PMID: 33549041 PMCID: PMC7866733 DOI: 10.1186/s12859-021-03983-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An inverted repeat is a DNA sequence followed downstream by its reverse complement, potentially with a gap in the centre. Inverted repeats are found in both prokaryotic and eukaryotic genomes and they have been linked with countless possible functions. Many international consortia provide a comprehensive description of common genetic variation making alternative sequence representations, such as IUPAC encoding, necessary for leveraging the full potential of such broad variation datasets. RESULTS We present IUPACPAL, an exact tool for efficient identification of inverted repeats in IUPAC-encoded DNA sequences allowing also for potential mismatches and gaps in the inverted repeats. CONCLUSION Within the parameters that were tested, our experimental results show that IUPACPAL compares favourably to a similar application packaged with EMBOSS. We show that IUPACPAL identifies many previously unidentified inverted repeats when compared with EMBOSS, and that this is also performed with orders of magnitude improved speed.
Collapse
Affiliation(s)
- Hayam Alamro
- Department of Informatics, King’s College London, 30 Aldwych, London, UK
- Department of Information Systems, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Mai Alzamel
- Department of Informatics, King’s College London, 30 Aldwych, London, UK
- Computer Science Department, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Solon P. Pissis
- Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Steven Watts
- Department of Informatics, King’s College London, 30 Aldwych, London, UK
| |
Collapse
|
5
|
Liu S, Yuan S, Gao X, Tao X, Yu W, Li X, Chen S, Xu A. Functional regulation of an ancestral RAG transposon ProtoRAG by a trans-acting factor YY1 in lancelet. Nat Commun 2020; 11:4515. [PMID: 32908127 PMCID: PMC7481187 DOI: 10.1038/s41467-020-18261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 08/09/2020] [Indexed: 01/04/2023] Open
Abstract
The discovery of ancestral RAG transposons in early deuterostomia reveals the origin of vertebrate V(D)J recombination. Here, we analyze the functional regulation of a RAG transposon, ProtoRAG, in lancelet. We find that a specific interaction between the cis-acting element within the TIR sequences of ProtoRAG and a trans-acting factor, lancelet YY1-like (bbYY1), is important for the transcriptional regulation of lancelet RAG-like genes (bbRAG1L and bbRAG2L). Mechanistically, bbYY1 suppresses the transposition of ProtoRAG; meanwhile, bbYY1 promotes host DNA rejoins (HDJ) and TIR-TIR joints (TTJ) after TIR-dependent excision by facilitating the binding of bbRAG1L/2 L to TIR-containing DNA, and by interacting with the bbRAG1L/2 L complex. Our data thus suggest that bbYY1 has dual functions in fine-tuning the activity of ProtoRAG and maintaining the genome stability of the host.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, People's Republic of China.
| | - Xiaoman Gao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xu Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, Beijing, People's Republic of China.
| |
Collapse
|