1
|
Sun J, Zhang Q, Li Y, Zhu Y, Hu N, Wang J, Mao J, Fan W, Shi Q, Chai G, Xie J. Neural modulation by nicotine aerosols and the role of flavor additives: insights from local field potentials in mice. Neuropharmacology 2025; 264:110237. [PMID: 39586494 DOI: 10.1016/j.neuropharm.2024.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Research on nicotine's neurobiological effects has rarely focused on aerosols, despite their primary role in tobacco product consumption. Here, we utilized in vivo electrophysiology to examine brain activity in mice exposed to nicotine aerosols, both alone and with flavor additives (citric acid and menthol). Local field potential (LFP) recordings from the nucleus accumbens (NAc), basolateral amygdala (BLA), ventral tegmental area (VTA), and ventral posteromedial nucleus (VPM) were analyzed under saline, nicotine, nicotine with citric acid(CA + NIC), and nicotine with menthol(MENT + NIC) conditions. Nicotine exposure significantly reduced power spectral density (PSD) in the NAc-Alpha, NAc-Beta, and BLA-Beta bands, unaffected by flavor additives. Coherence between key brain regions (e.g., VPM-VTA in Beta, VPM-BLA in Alpha) also decreased with nicotine but was restored with citric acid or menthol, suggesting their role in mitigating nicotine's disruptive effects on neural synchronization. Our findings show that LFPs can effectively capture nicotine's neural effects and highlight the modulatory role of flavor additives, offering new insights into nicotine exposure management and tobacco product design.
Collapse
Affiliation(s)
- Jingping Sun
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100083, PR China; Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, PR China; Beijing Life Science Academy, Beijing, 102209, PR China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, PR China
| | - Ying Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, PR China
| | - Yunhe Zhu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, PR China
| | - Nengwei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Ireland; Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, PR China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, PR China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, PR China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, PR China
| | - Qingzhao Shi
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, PR China
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, PR China; Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Jianping Xie
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100083, PR China; Beijing Life Science Academy, Beijing, 102209, PR China.
| |
Collapse
|
2
|
Worden CP, Hicks KB, Hackman TG, Yarbrough WG, Kimple AJ, Farzal Z. The Toxicological Effects of e-Cigarette Use in the Upper Airway: A Scoping Review. Otolaryngol Head Neck Surg 2024; 170:1246-1269. [PMID: 38353408 PMCID: PMC11060921 DOI: 10.1002/ohn.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 05/02/2024]
Abstract
OBJECTIVE While evidence continues to emerge on the negative health effects of electronic cigarettes (e-cigarettes) on the lungs, little is known regarding their deleterious effects on the upper airway. The purpose of this review is to summarize the toxicological effects of e-cigarettes, and their components, on the upper airway. DATA SOURCES PubMed, SCOPUS, EMBASE databases. REVIEW METHODS Systematic searches were performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines from 2003 to 2023. Studies were included if they investigated the toxicological effects of e-cigarette exposure on human or animal upper airway tissue. Two authors independently screened, reviewed, and appraised all included articles. RESULTS A total of 822 unique articles were identified, of which 53 met inclusion criteria and spanned subsites including the oral cavity (22/53 studies), nasal cavity/nasopharynx (13/53), multiple sites (10/53), larynx (5/53), trachea (2/53), and oropharynx (1/53). The most commonly observed consequences of e-cigarette use on the upper airway included: proinflammatory (15/53 studies), histological (13/53), cytotoxicity (11/53), genotoxicity (11/53), and procarcinogenic (6/53). E-cigarette humectants independently induced toxicity at multiple upper airway subsites, however, effects were generally amplified when flavoring(s) and/or nicotine were added. Across almost all studies, exposure to cigarette smoke exhibited increased toxicity in the upper airway compared with exposure to e-cigarette vapor. CONCLUSION Current data suggest that while e-cigarettes are generally less harmful than traditional cigarettes, they possess a distinct toxicological profile that is enhanced upon the addition of flavoring(s) and/or nicotine. Future investigations into underexamined subsites, such as the oropharynx and hypopharynx, are needed to comprehensively understand the effects of e-cigarettes on the upper airway.
Collapse
Affiliation(s)
- Cameron P Worden
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kayla B Hicks
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Trevor G Hackman
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wendell G Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Division of Virology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adam J Kimple
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, Division of Virology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Cystic Fibrosis Center, Marsico Lung Institute, Department of Medicine, Division of Pulmonary, Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zainab Farzal
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Kucera C, Ramalingam A, Srivastava S, Bhatnagar A, Carll AP. Nicotine Formulation Influences the Autonomic and Arrhythmogenic Effects of Electronic Cigarettes. Nicotine Tob Res 2024; 26:536-544. [PMID: 38011908 PMCID: PMC11033561 DOI: 10.1093/ntr/ntad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Evidence is mounting that electronic cigarette (e-cig) use induces cardiac sympathetic dominance and electrical dysfunction conducive to arrhythmias and dependent upon nicotine. A variety of nicotine types and concentrations are available in e-cigs, but their relative cardiovascular effects remain unclear. Here we examine how different nicotine forms (racemic, free base, and salt) and concentrations influence e-cig-evoked cardiac dysfunction and arrhythmogenesis and provide a mechanism for nicotine-salt-induced autonomic imbalance. METHODS ECG-telemetered C57BL/6J mice were exposed to filtered air (FA) or e-cig aerosols from propylene glycol and vegetable glycerin solvents either without nicotine (vehicle) or with increasing nicotine concentrations (1%, 2.5%, and 5%) for three 9-minute puff sessions per concentration. Spontaneous ventricular premature beat (VPB) incidence rates, heart rate, and heart rate variability (HRV) were compared between treatments. Subsequently, to test the role of β1-adrenergic activation in e-cig-induced cardiac effects, mice were pretreated with atenolol and exposed to either FA or 2.5% nicotine salt. RESULTS During puffing and washout phases, ≥2.5% racemic nicotine reduced heart rate and increased HRV relative to FA and vehicle controls, indicating parasympathetic dominance. Relative to both controls, 5% nicotine salt elevated heart rate and decreased HRV during washout, suggesting sympathetic dominance, and also increased VPB frequency. Atenolol abolished e-cig-induced elevations in heart rate and declines in HRV during washout, indicating e-cig-evoked sympathetic dominance is mediated by β1-adrenergic stimulation. CONCLUSIONS Our findings suggest that inhalation of e-cig aerosols from nicotine-salt-containing e-liquids could increase the cardiovascular risks of vaping by inducing sympathetic dominance and cardiac arrhythmias. IMPLICATIONS Exposure to e-cig aerosols containing commercially relevant concentrations of nicotine salts may increase nicotine delivery and impair cardiac function by eliciting β1-adrenoceptor-mediated sympathoexcitation and provoking ventricular arrhythmias. If confirmed in humans, our work suggests that regulatory targeting of nicotine salts through minimum pH standards or limits on acid additives in e-liquids may mitigate the public health risks of vaping.
Collapse
Affiliation(s)
- Cory Kucera
- Department of Physiology, University of Louisville School of Medicine (ULSOM), Louisville, KY, USA
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Anand Ramalingam
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Shweta Srivastava
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
- Division of Environmental Medicine, ULSOM, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, ULSOM, Louisville, KY, USA
| | - Alex P Carll
- Department of Physiology, University of Louisville School of Medicine (ULSOM), Louisville, KY, USA
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
- Division of Environmental Medicine, ULSOM, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, ULSOM, Louisville, KY, USA
| |
Collapse
|
4
|
Frinculescu A, Coombes G, Shine T, Ramsey J, Johnston A, Couchman L. Analysis of illicit drugs in purchased and seized electronic cigarette liquids from the United Kingdom 2014-2021. Drug Test Anal 2023; 15:1058-1066. [PMID: 35466538 DOI: 10.1002/dta.3277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022]
Abstract
Increasing popularity and known shortfalls in the regulation of electronic cigarettes (ECs) emphasises the urgent need for closer content monitoring and for comprehensible information on their possible health effects. This study investigated components of EC liquids in samples submitted from 2014 to 2021 and discussed the trends driven by legislation changes. Samples originating from prisoners, teenagers and 'test purchases' of commercially available ECs were analysed by gas chromatography-mass spectrometry (GC-MS). For those containing delta-9-tetrahydrocannabinol (THC) and/or cannabidiol (CBD), the content of these components was quantified by liquid chromatography with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to show variation of these compounds in EC liquids; 112 EC liquids were included in this study. Nicotine was detected in 87 (78%) of the EC liquids analysed. Twenty-two, including samples from before and after introduction of the UK Psychoactive Substances Act (2016), contained one or more synthetic cannabinoid receptor agonist (SCRA). THC was detected in only 11 samples, whereas a single sample was found to contain CBD only. Six samples contained a mixture of THC and CBD. In all cases where information was available, the THC/CBD content was less than that stated on the product label. The data collected showed great variation in EC liquid content. Therefore, it is important that users are educated regarding risks associated with EC use. Additionally, substances now controlled under both the UK Misuse of Drugs Act and Psychoactive Substances Act were present. These substances each carry a potential risk to health, which is possibly exacerbated if multiple compounds are inhaled concomitantly.
Collapse
Affiliation(s)
- Anca Frinculescu
- TICTAC Communications, St. George's University of London, London, UK
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Gemma Coombes
- Analytical Services International, St. George's University of London, London, UK
| | - Trevor Shine
- TICTAC Communications, St. George's University of London, London, UK
| | - John Ramsey
- TICTAC Communications, St. George's University of London, London, UK
| | - Atholl Johnston
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
- Analytical Services International, St. George's University of London, London, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Lewis Couchman
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
- Analytical Services International, St. George's University of London, London, UK
| |
Collapse
|
5
|
Noël A, Yilmaz S, Farrow T, Schexnayder M, Eickelberg O, Jelesijevic T. Sex-Specific Alterations of the Lung Transcriptome at Birth in Mouse Offspring Prenatally Exposed to Vanilla-Flavored E-Cigarette Aerosols and Enhanced Susceptibility to Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3710. [PMID: 36834405 PMCID: PMC9967225 DOI: 10.3390/ijerph20043710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Currently, approximately 8 million adult Americans use electronic cigarettes (e-cigs) daily, including women of childbearing age. It is known that more than 10% of women smoke during their pregnancy, and recent surveys show that rates of maternal vaping are similar to rates of maternal cigarette smoking. However, the effects of inhaling e-cig aerosol on the health of fetuses remain unknown. The objective of the present study was to increase our understanding of the molecular effects caused by in utero exposures to e-cig aerosols on developing mouse lungs and, later in life, on the offspring's susceptibility to developing asthma. METHODS Pregnant mice were exposed throughout gestation to either filtered air or vanilla-flavored e-cig aerosols containing 18 mg/mL of nicotine. Male and female exposed mouse offspring were sacrificed at birth, and then the lung transcriptome was evaluated. Additionally, once sub-groups of male offspring mice reached 4 weeks of age, they were challenged with house dust mites (HDMs) for 3 weeks to assess asthmatic responses. RESULTS The lung transcriptomic responses of the mouse offspring at birth showed that in utero vanilla-flavored e-cig aerosol exposure significantly regulated 88 genes in males (62 genes were up-regulated and 26 genes were down-regulated), and 65 genes were significantly regulated in females (17 genes were up-regulated and 48 genes were down-regulated). Gene network analyses revealed that in utero e-cig aerosol exposure affected canonical pathways associated with CD28 signaling in T helper cells, the role of NFAT in the regulation of immune responses, and phospholipase C signaling in males, whereas the dysregulated genes in the female offspring were associated with NRF2-mediated oxidative stress responses. Moreover, we found that in utero exposures to vanilla-flavored e-cig aerosol exacerbated HDM-induced asthma in 7-week-old male mouse offspring compared to respective in utero air + HDM controls. CONCLUSIONS Overall, these data demonstrate that in utero e-cig aerosol exposure alters the developing mouse lung transcriptome at birth in a sex-specific manner and provide evidence that the inhalation of e-cig aerosols is detrimental to the respiratory health of offspring by increasing the offspring' susceptibility to developing lung diseases later in life.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sultan Yilmaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tori Farrow
- Department of Environmental Toxicology, Southern University and A & M College, Baton Rouge, LA 70813, USA
| | | | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Eden MJ, Farra YM, Matz J, Bellini C, Oakes JM. Pharmacological and physiological response in Apoe -/- mice exposed to cigarette smoke or e-cigarette aerosols. Inhal Toxicol 2022; 34:260-274. [PMID: 35793285 DOI: 10.1080/08958378.2022.2086948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Electronic cigarettes (e-cigs) are popular nicotine delivery devices, yet the health effects remain unclear. To determine equivalent biomarkers, we characterized the immediate response in Apoe-/- mice exposed to tank/box-mod e-cig (e-cigtank), pod e-cig (e-cigpod), or cig smoke. MATERIALS AND METHODS Reproducible puff profiles were generated for each aerosol and delivered to Apoe-/- mice via a nose-only exposure system. Serum cotinine levels were quantified at various time points through ELISA and utilized to model cotinine pharmacokinetics. In addition, particle size measurements and mouse respiratory function were characterized to calculate particle dosimetry. RESULTS AND DISCUSSION Cig and e-cigtank particles were lognormally distributed with similar count median diameters (cig: 178 ± 2, e-cigtank: 200 ± 34nm), while e-cigpod particles were bimodally distributed and smaller (116 ± 13 and 13.3 ± 0.4 nm). Minute volumes decreased with cig exposure (5.4 ± 2.7 mL/min) compared to baseline (90.8 ± 11.6 mL/min), and less so with e-cigtank (45.2 ± 9.2 mL/min) and e-cigpod exposures (58.6 ± 6.8 mL/min), due to periods of apnea in the cig exposed groups. Cotinine was absorbed and eliminated most rapidly in the e-cigpod group (tmax = 14.5; t1/2' = 51.9 min), whereas cotinine was absorbed (cig: 50.4, e-cigtank: 40.1 min) and eliminated (cig: 104.6, e-cigtank: 94.1 min) similarly in the cig and e-cigtank groups. For exposure times which equate the area under the cotinine-concentration curve, ∼6.4× (e-cigtank) and 4.6× (e-cigpod) more nicotine deposited in e-cig compared to cig exposed mice. CONCLUSIONS This study provides a basis for incorporating cotinine pharmacokinetics into preclinical exposure studies, allowing for longitudinal studies of structural and functional changes due to exposure.
Collapse
Affiliation(s)
- Matthew J Eden
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yasmeen M Farra
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
7
|
AlMatrouk A, Lemons K, Ogura T, Lin W. Modification of the Peripheral Olfactory System by Electronic Cigarettes. Compr Physiol 2021; 11:2621-2644. [PMID: 34661289 DOI: 10.1002/cphy.c210007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electronic cigarettes (e-cigs) are used by millions of adolescents and adults worldwide. Commercial e-liquids typically contain flavorants, propylene glycol, and vegetable glycerin with or without nicotine. These chemical constituents are detected and evaluated by chemosensory systems to guide and modulate vaping behavior and product choices of e-cig users. The flavorants in e-liquids are marketing tools. They evoke sensory percepts of appealing flavors through activation of chemical sensory systems to promote the initiation and sustained use of e-cigs. The vast majority of flavorants in e-liquids are volatile odorants, and as such, the olfactory system plays a dominant role in perceiving these molecules that enter the nasal cavity either orthonasally or retronasally during vaping. In addition to flavorants, e-cig aerosol contains a variety of by-products generated through heating the e-liquids, including odorous irritants, toxicants, and heavy metals. These harmful substances can directly and adversely impact the main olfactory epithelium (MOE). In this article, we first discuss the olfactory contribution to e-cig flavor perception. We then provide information on MOE cell types and their major functions in olfaction and epithelial maintenance. Olfactory detection of flavorants, nicotine, and odorous irritants and toxicants are also discussed. Finally, we discuss the cumulated data on modification of the MOE by flavorant exposure and toxicological impacts of formaldehyde, acrolein, and heavy metals. Together, the information presented in this overview may provide insight into how e-cig exposure may modify the olfactory system and adversely impact human health through the alteration of the chemosensory factor driving e-cig use behavior and product selections. © 2021 American Physiological Society. Compr Physiol 11:2621-2644, 2021.
Collapse
Affiliation(s)
- Abdullah AlMatrouk
- General Department of Criminal Evidence, Forensic Laboratories, Ministry of Interior, Farwaniyah, Kuwait.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Kayla Lemons
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|