1
|
Ocloo R, Newton-Foot M, Chabuka L, Ziebuhr W, Whitelaw AC. Epidemiology and antibiotic resistance of staphylococci on commercial pig farms in Cape Town, South Africa. Sci Rep 2024; 14:19747. [PMID: 39187540 PMCID: PMC11347665 DOI: 10.1038/s41598-024-70183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Staphylococci are responsible for a wide range of infections in animals. The most common species infecting animals include Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus intermedius. Recent increases in antibiotic use and antibiotic resistance in animals highlight the need to understand the potential role of commercial livestock as a reservoir of staphylococci and antibiotic resistance genes. Nasal swabs were collected from 143 apparently healthy pigs and 21 pig farm workers, and 45 environmental swabs of feed and water troughs, from two commercial pig farms in the Western Cape, South Africa. Staphylococci were isolated, identified using mass-spectrometry, and antimicrobial susceptibility testing and Illumina whole genome sequencing were performed. One hundred and eighty-five (185) Staphylococcus spp. isolates were obtained, with Mammalicoccus sciuri (n = 57; 31%) being the most common, followed by S. hyicus (n = 40; 22%) and S. aureus (n = 29; 16%). S. epidermidis was predominantly identified in the farm workers (n = 18; 86%). Tetracycline resistance was observed across all species, with rates ranging from 67 to 100%. Majority of M. sciuri isolates (n = 40; 70%) were methicillin resistant, with 78% (n = 31) harbouring mecA. M. sciuri isolates had genes/elements which were associated with SCCmec_type_III (3A) and SCCmec_type_VIII(4A) and were mostly observed in ST61 strains. ST239 strains were associated with SCCmec_type_III(3A). High rates of tetracycline resistance were identified among staphylococci in the pig farms in Western Cape, South Africa. This highlights the need for policy makers to regulate the use of this antibiotic in pig farming.
Collapse
Affiliation(s)
- Remous Ocloo
- Department of Pathology, Division of Medical Microbiology, Stellenbosch University, Stellenbosch, South Africa.
- TASK, Cape Town, South Africa.
| | - Mae Newton-Foot
- Department of Pathology, Division of Medical Microbiology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service (NHLS), Tygerberg Hospital, (TBH), Cape Town, South Africa
| | - Lucious Chabuka
- Centre for Epidemic Control and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Public Health Institute of Malawi, Ministry of Health, Lilongwe, Malawi
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
| | - Andrew Christopher Whitelaw
- Department of Pathology, Division of Medical Microbiology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service (NHLS), Tygerberg Hospital, (TBH), Cape Town, South Africa
| |
Collapse
|
2
|
Koumaki D, Maraki S, Evangelou G, Rovithi E, Petrou D, Apokidou ES, Gregoriou S, Koumaki V, Ioannou P, Zografaki K, Doxastaki A, Papadopoulou K, Stafylaki D, Mavromanolaki VE, Krasagakis K. Clinical Significance and Microbiological Characteristics of Staphylococcus lugdunensis in Cutaneous Infections. J Clin Med 2024; 13:4327. [PMID: 39124594 PMCID: PMC11312498 DOI: 10.3390/jcm13154327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives:Staphylococcus lugdunensis is a coagulase-negative staphylococcus (CoNS) commonly found on human skin. Unlike other CoNS, S. lugdunensis has a notable potential to cause severe infections comparable to Staphylococcus aureus. This study aimed to characterize the clinical and microbiological profile of patients with S. lugdunensis skin infections at a single center. Methods: We conducted a retrospective analysis of patient records from the Dermatology Department of the University Hospital of Heraklion, Greece, covering the period from January 2014 to January 2024. Patients' clinical presentations, demographics, infection sites, comorbidities, prior infections, antimicrobial treatments, and therapeutic responses were examined. Specimens were collected, transported, and processed according to standardized microbiological protocols. Bacterial identification and antibiotic susceptibility testing were performed using the Vitek 2 automated system and MALDI-TOF MS, with results interpreted according to Clinical and Laboratory Standards Institute (CLSI) criteria. Results: A total of 123 skin specimens positive for S. lugdunensis were analyzed. The cohort comprised 62 males (50.4%) and 61 females (49.6%), with a mean age of 40.24 ± 20.14 years. Most specimens were collected from pus (84%), primarily from below the waist (66.7%). Hidradenitis suppurativa (26%) was the most common condition associated with S. lugdunensis, followed by folliculitis, abscesses, ulcers, cellulitis, and acne. Co-infections with other bacteria were noted in 49.6% of cases, and 25.2% of infections were nosocomially acquired. The majority of patients (65%) received systemic antibiotics, predominantly amoxicillin/clavulanic acid, cefuroxime axetil, and doxycycline, with a cure rate of 100%. All isolates were susceptible to several antibiotics, though resistance to penicillin (28.5%) and clindamycin (36%) was observed. Conclusions:S. lugdunensis is a significant pathogen in skin infections, capable of causing severe disease. The high cure rate demonstrates the effectiveness of appropriate antibiotic therapy. Continued monitoring and antimicrobial stewardship are essential to manage resistance and ensure effective treatment.
Collapse
Affiliation(s)
- Dimitra Koumaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Sofia Maraki
- Department of Clinical Microbiology, University Hospital of Heraklion, 71110 Heraklion, Greece; (S.M.); (D.S.)
| | - Georgios Evangelou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Evangelia Rovithi
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Danae Petrou
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Erato Solia Apokidou
- Department of Internal Medicine, Agios Nikolaos General Hospital, Knosou 4, 72100 Agios Nikolaos, Greece;
| | - Stamatios Gregoriou
- 1st Department of Dermatology and Venereology, Medical School of Athens, National and Kapodistrian University of Athens, Andreas Sygros Hospital, I. Dragoumi 5, 16121 Athens, Greece;
| | - Vasiliki Koumaki
- Department of Medical Microbiology, Medical School of Athens, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, 11527 Athens, Greece;
| | - Petros Ioannou
- Department of Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
- School of Medicine, University of Crete, 70003 Heraklion, Greece
| | - Kyriaki Zografaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Aikaterini Doxastaki
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| | - Kalliopi Papadopoulou
- 2nd Department of Internal Medicine, General Hospital of Venizeleio, Knossou Avenue 44, 71409 Heraklion, Greece;
| | - Dimitra Stafylaki
- Department of Clinical Microbiology, University Hospital of Heraklion, 71110 Heraklion, Greece; (S.M.); (D.S.)
| | | | - Konstantinos Krasagakis
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece; (G.E.); (E.R.); (D.P.); (K.Z.); (A.D.); (K.K.)
| |
Collapse
|
3
|
Romero LC, Silva LP, Teixeira NB, de Camargo KV, Del Masso Pereira MA, Corrente JE, Pereira VC, Ribeiro de Souza da Cunha MDL. Staphylococcus capitis Bloodstream Isolates: Investigation of Clonal Relationship, Resistance Profile, Virulence and Biofilm Formation. Antibiotics (Basel) 2024; 13:147. [PMID: 38391533 PMCID: PMC10885910 DOI: 10.3390/antibiotics13020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Staphylococcus capitis has been recognized as a relevant opportunistic pathogen, particularly its persistence in neonatal ICUs around the world. Therefore, the aim of this study was to describe the epidemiological profile of clinical isolates of S. capitis and to characterize the factors involved in the persistence and pathogenesis of these strains isolated from blood cultures collected in a hospital in the interior of the state of São Paulo, Brazil. A total of 141 S. capitis strains were submitted to detection of the mecA gene and SCCmec typing by multiplex PCR. Genes involved in biofilm production and genes encoding enterotoxins and hemolysins were detected by conventional PCR. Biofilm formation was evaluated by the polystyrene plate adherence test and phenotypic resistance was investigated by the disk diffusion method. Finally, pulsed-field gel electrophoresis (PFGE) was used to analyze the clonal relationship between isolates. The mecA gene was detected in 99 (70.2%) isolates, with this percentage reaching 100% in the neonatal ICU. SCCmec type III was the most prevalent type, detected in 31 (31.3%) isolates and co-occurrence of SCCmec was also observed. In vitro biofilm formation was detected in 46 (32.6%) isolates but was not correlated with the presence of the ica operon genes. Furthermore, biofilm production in ICU isolates was favored by hyperosmotic conditions, which are common in ICUs because of the frequent parenteral nutrition. Analysis of the clonal relationship between the isolates investigated in the present study confirms a homogeneous profile of S. capitis and the persistence of clones that are prevalent in the neonatal ICU and disseminated across the hospital. This study highlights the adaptation of isolates to specific hospital environments and their high clonality.
Collapse
Affiliation(s)
- Letícia Calixto Romero
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | - Lucas Porangaba Silva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | - Nathalia Bibiana Teixeira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | - Karen Vilegas de Camargo
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | | | - José Eduardo Corrente
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-900, Brazil
| | - Valéria Cataneli Pereira
- Microbiology Laboratory, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente 18618-970, Brazil
| | | |
Collapse
|
4
|
Ocloo R, Newton-Foot M, Ziebuhr W, Whitelaw AC. Molecular epidemiology and antibiotic resistance of staphylococci other than Staphylococcus aureus in children in Cape Town, South Africa. Front Microbiol 2023; 14:1239666. [PMID: 37601359 PMCID: PMC10437061 DOI: 10.3389/fmicb.2023.1239666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Staphylococci other than Staphylococcus aureus (SOSA) have emerged as significant pathogens in healthcare settings, particularly among patients with indwelling devices and immunocompromised individuals. Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus hominis are the most common commensal SOSA species and are implicated in infections such as endocarditis and bacteremia. SOSA infections in neonates and children have been reported globally. Recent increases in antibiotic resistance and virulence among SOSA strains in clinical settings have highlighted the need to describe the reservoirs of SOSA to enable monitoring of these emerging pathogens. Methods Stool samples were collected from 150 healthy children from Cape Town communities between 2017 and 2020. Staphylococci were isolated, identified using mass-spectrometry, and antimicrobial susceptibility testing and Illumina whole genome sequencing were performed. Results Among the participants, 50 (33.3%) were colonized by SOSA, with S. haemolyticus (n = 38; 25.3%) being the most common, followed by S. hominis (n = 5; 3.3%) and Mammalicoccus sciuri (n = 5; 3.3%). Out of the 77 initially isolated S. haemolyticus strains, 23 were identified as Staphylococcus borealis through whole genome sequencing. All S. haemolyticus isolates (n = 49) were methicillin resistant, with 65.3% (n = 32) harbouring mecA. In S. haemolyticus, SCCmec type VIII(4A) was detected in 42.0% of ST9 isolates while non-mecA methicillin resistant S. haemolyticus isolates were mostly ST49 (41.1%). Additionally, 16 (50.0%) S. haemolyticus strains contained non-typeable SCCmec elements. Discussion High rates of methicillin resistance were identified among colonizing SOSA in Cape Town, increasing the risk of transmission to clinical settings. This study also identified a new species, S. borealis, for the first time in Africa.
Collapse
Affiliation(s)
- Remous Ocloo
- Division of Medical Microbiology and Immunology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology and Immunology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Andrew Christopher Whitelaw
- Division of Medical Microbiology and Immunology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
5
|
Ocloo R, Nyasinga J, Munshi Z, Hamdy A, Marciniak T, Soundararajan M, Newton-Foot M, Ziebuhr W, Shittu A, Revathi G, Abouelfetouh A, Whitelaw A. Epidemiology and antimicrobial resistance of staphylococci other than Staphylococcus aureus from domestic animals and livestock in Africa: a systematic review. Front Vet Sci 2022; 9:1059054. [PMID: 36583033 PMCID: PMC9792789 DOI: 10.3389/fvets.2022.1059054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Staphylococci other than Staphylococcus aureus (SOSA) in animals are becoming more pathogenic and antibiotic resistant and can potentially disseminate to humans. However, there is little synthesized information regarding SOSA from animals in Africa. This systematic review provides a comprehensive overview of the epidemiology and antimicrobial resistance of SOSA in companion animals (pets) and livestock in Africa. Method This systematic review (PROSPERO-CRD42021252303) was conducted according to the PRISMA guidelines, and 75 eligible studies from 13 countries were identified until August 2022. Three electronic databases (Pubmed, Scopus and Web of Science) were employed. Results The frequently isolated SOSA were S. epidermidis, S. intermedius, S. pseudintermedius, S. xylosus, S. chromogenes, S. hyicus, M. sciuri, S. hominis, and S. haemolyticus. Thirty (40%) studies performed antibiotic susceptibility testing (AST). Penicillin (58%) and tetracycline (28%) resistance were most common across all SOSA with high rates of resistance to aminoglycosides, fluoroquinolones, and macrolides in some species. Resistance to last-resort antibiotics such as linezolid and fusidic acid were also reported. Limited data on strain typing and molecular resistance mechanisms precluded analysis of the clonal diversity of SOSA on the continent. Conclusion The findings of this review indicate that research on livestock-associated SOSA in Africa is lacking in some regions such as Central and Western Africa, furthermore, research on companion animals and more advanced methods for identification and strain typing of SOSA need to be encouraged. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42021252303.
Collapse
Affiliation(s)
- Remous Ocloo
- Division of Medical Microbiology and Immunology, Stellenbosch University, Stellenbosch, South Africa
| | - Justin Nyasinga
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
- Institute of Science, Technology and Innovation, Pan African University, Nairobi, Kenya
- Department of Biomedical Sciences and Technology, The Technical University of Kenya, Nairobi, Kenya
| | - Zubair Munshi
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Aisha Hamdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tessa Marciniak
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Mae Newton-Foot
- Division of Medical Microbiology and Immunology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Adebayo Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Gunturu Revathi
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Andrew Whitelaw
- Division of Medical Microbiology and Immunology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|