1
|
Fu L, Li S, Mei J, Li Z, Yang X, Zheng C, Li N, Lin Y, Cao C, Liu L, Huang L, Shen X, Huang Y, Yun J. BIRC2 blockade facilitates immunotherapy of hepatocellular carcinoma. Mol Cancer 2025; 24:113. [PMID: 40223121 PMCID: PMC11995630 DOI: 10.1186/s12943-025-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The effectiveness of immunotherapy in hepatocellular carcinoma (HCC) is limited, however, the molecular mechanism remains unclear. In this study, we identified baculoviral IAP repeat-containing protein 2 (BIRC2) as a key regulator involved in immune evasion of HCC. METHODS Genome-wide CRISPR/Cas9 screening was conducted to identify tumor-intrinsic genes pivotal for immune escape. In vitro and in vivo models demonstrated the role of BIRC2 in protecting HCC cells from immune killing. Then the function and relevant signaling pathways of BIRC2 were explored. The therapeutic efficacy of BIRC2 inhibitor was examined in different in situ and xenograft HCC models. RESULTS Elevated expression of BIRC2 correlated with adverse prognosis and resistance to immunotherapy in HCC patients. Mechanistically, BIRC2 interacted with and promoted the ubiquitination-dependent degradation of NFκB-inducing kinase (NIK), leading to the inactivation of the non-canonical NFκB signaling pathway. This resulted in the decrease of major histocompatibility complex class I (MHC-I) expression, thereby protecting HCC cells from T cell-mediated cytotoxicity. Silencing BIRC2 using shRNA or inhibiting it with small molecules increased the sensitivity of HCC cells to immune killing. Meanwhile, BIRC2 blockade improved the function of T cells both in vitro and in vivo. Targeting BIRC2 significantly inhibited tumor growth, and enhanced the efficacy of anti-programmed death protein 1 (PD-1) therapy. CONCLUSIONS Our findings suggested that BIRC2 blockade facilitated immunotherapy of HCC by simultaneously sensitizing tumor cells to immune attack and boosting the anti-tumor immune response of T cells.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jie Mei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ziteng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Chengyou Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Nai Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yansong Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Chao Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lixuan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Liyun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xiujiao Shen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Benítez-García C, Martínez-García D, Kotev M, Pérez-Hernández M, Westermaier Y, Díaz L, Korrodi-Gregório L, Fontova P, Torres AA, Pérez-Tomás R, García-Valverde M, Quesada R, Soliva R, Soto-Cerrato V. Identification of the atypical antipsychotic Asenapine as a direct survivin inhibitor with anticancer properties and sensitizing effects to conventional therapies. Biomed Pharmacother 2025; 182:117756. [PMID: 39693907 DOI: 10.1016/j.biopha.2024.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Therapy resistance in human cancers is a major limitation in Clinical Oncology. In this regard, overexpression of anti-apoptotic proteins, such as survivin, has been described in several tumors, contributing to this clinical issue. Survivin has a dual role in key cellular functions, inducing cell cycle progression and inhibiting apoptosis; thus, survivin is an attractive target for cancer therapy. Therefore, we focused on identifying and validating a novel specific, directly binding survivin inhibitor for cancer treatment and tumor sensitization to conventional proapoptotic therapies. In this work, we conducted a structure-based high-throughput virtual screening at the survivin homodimerization domain. Asenapine Maleate (AM), an approved drug for central nervous system diseases, was identified as a direct binder of the survivin homodimerization domain and it significantly affected cell viability of lung, colon, and brain cancer cell lines. Direct interaction of AM to survivin protein was corroborated by surface plasmon resonance and a specific survivin protein decrease was observed in cancer cells, compared to other inhibitors of apoptosis proteins. Therapeutic in vivo studies showed an impairment of tumor growth in AM-treated mice. Finally, a synergistic anticancer effect was detected in vitro when combined with different conventional chemotherapies, and in vivo studies showed higher antitumor effects when combined with cisplatin. Altogether, our results identify AM as a specific direct binding inhibitor of survivin, showing anticancer properties in vitro and in vivo and sensitizing effects when combined with cisplatin, opening the possibility of repositioning this approved drug for cancer treatment.
Collapse
Affiliation(s)
- Cristina Benítez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Martin Kotev
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Yvonne Westermaier
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Luis Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Ana Aurora Torres
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | | | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, Burgos, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, Barcelona E-08029, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Molecular Signaling, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
3
|
Wang Y, Liu Z, Si Q, Lu W, Song Y, Jin W, Yang X, Li Z, Hu X, Ding L, Jing Y, Weng P, Yu Q, O'Reilly LA, Silke J, Zhang X, Hu Q, Ni Y. Complex IIa formation and ABC transporters determine sensitivity of OSCC to Smac mimetics. Cell Death Dis 2024; 15:855. [PMID: 39578442 PMCID: PMC11584628 DOI: 10.1038/s41419-024-07253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Small molecule inhibitors of apoptosis proteins (IAPs) antagonists, known as Smac mimetics (SMs), activate non-canonical NF-κB and sensitize cancer cells to TNF-induced cell death. SMs are currently in phase III clinical trials for head and neck squamous cell carcinoma (HNSCC) after promising phase II trials. To explore the utility of SMs in oral squamous cell carcinoma (OSCC), we tested nine human OSCC cell lines and correlated SM sensitivity with both IAP mutation and expression levels. cIAP1 protein expression was shown to be higher in OSCC and a predictor of poor prognosis. However, our in vitro and in vivo testing demonstrated differential sensitivity to SMs, which did not correlate with cIAP1 and cIAP2 expression in these OSCC cell lines. Exogenous TNF failed to effectively increase the sensitivity of SM-resistant OSCC cells to SM-induced cell death. SM resistance was associated with a deficiency in Complex IIa formation, but activation of non-canonical NF-κB was not a determinant of SM efficacy. Finally, metabolic analysis revealed that the ABC transporter pathway was activated in SM-resistant OSSC cells, and SMs combined with ABC transporter inhibitors improved cell death sensitivity to overcome SM resistance. These studies highlight the therapeutic potential of SMs in OSCC and support patient stratification to improve efficacy with the addition of adjuvant therapy.
Collapse
Affiliation(s)
- Yuhan Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zijian Liu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Si
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wanqiu Lu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wanyong Jin
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zihui Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyang Hu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Pei Weng
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qiuya Yu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Zhang W, Sun S, Zhu W, Meng D, Hu W, Yang S, Gao M, Yao P, Wang Y, Wang Q, Ji J. Birinapant Reshapes the Tumor Immunopeptidome and Enhances Antigen Presentation. Int J Mol Sci 2024; 25:3660. [PMID: 38612472 PMCID: PMC11011986 DOI: 10.3390/ijms25073660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Birinapant, an antagonist of the inhibitor of apoptosis proteins, upregulates MHCs in tumor cells and displays a better tumoricidal effect when used in combination with immune checkpoint inhibitors, indicating that Birinapant may affect the antigen presentation pathway; however, the mechanism remains elusive. Based on high-resolution mass spectrometry and in vitro and in vivo models, we adopted integrated genomics, proteomics, and immunopeptidomics strategies to study the mechanism underlying the regulation of tumor immunity by Birinapant from the perspective of antigen presentation. Firstly, in HT29 and MCF7 cells, Birinapant increased the number and abundance of immunopeptides and source proteins. Secondly, a greater number of cancer/testis antigen peptides with increased abundance and more neoantigens were identified following Birinapant treatment. Moreover, we demonstrate the existence and immunogenicity of a neoantigen derived from insertion/deletion mutation. Thirdly, in HT29 cell-derived xenograft models, Birinapant administration also reshaped the immunopeptidome, and the tumor exhibited better immunogenicity. These data suggest that Birinapant can reshape the tumor immunopeptidome with respect to quality and quantity, which improves the presentation of CTA peptides and neoantigens, thus enhancing the immunogenicity of tumor cells. Such changes may be vital to the effectiveness of combination therapy, which can be further transferred to the clinic or aid in the development of new immunotherapeutic strategies to improve the anti-tumor immune response.
Collapse
Affiliation(s)
- Weiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94143, USA;
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Delan Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Weiyi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Siqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Mingjie Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Pengju Yao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Yuhao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.)
| |
Collapse
|
5
|
Bigos KJA, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EGC, West CM, Hoskin P, Choudhury A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol 2024; 14:1331355. [PMID: 38352889 PMCID: PMC10861654 DOI: 10.3389/fonc.2024.1331355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Hypoxia is a common feature of solid tumours affecting their biology and response to therapy. One of the main transcription factors activated by hypoxia is hypoxia-inducible factor (HIF), which regulates the expression of genes involved in various aspects of tumourigenesis including proliferative capacity, angiogenesis, immune evasion, metabolic reprogramming, extracellular matrix (ECM) remodelling, and cell migration. This can negatively impact patient outcomes by inducing therapeutic resistance. The importance of hypoxia is clearly demonstrated by continued research into finding clinically relevant hypoxia biomarkers, and hypoxia-targeting therapies. One of the problems is the lack of clinically applicable methods of hypoxia detection, and lack of standardisation. Additionally, a lot of the methods of detecting hypoxia do not take into consideration the complexity of the hypoxic tumour microenvironment (TME). Therefore, this needs further elucidation as approximately 50% of solid tumours are hypoxic. The ECM is important component of the hypoxic TME, and is developed by both cancer associated fibroblasts (CAFs) and tumour cells. However, it is important to distinguish the different roles to develop both biomarkers and novel compounds. Fibronectin (FN), collagen (COL) and hyaluronic acid (HA) are important components of the ECM that create ECM fibres. These fibres are crosslinked by specific enzymes including lysyl oxidase (LOX) which regulates the stiffness of tumours and induces fibrosis. This is partially regulated by HIFs. The review highlights the importance of understanding the role of matrix stiffness in different solid tumours as current data shows contradictory results on the impact on therapeutic resistance. The review also indicates that further research is needed into identifying different CAF subtypes and their exact roles; with some showing pro-tumorigenic capacity and others having anti-tumorigenic roles. This has made it difficult to fully elucidate the role of CAFs within the TME. However, it is clear that this is an important area of research that requires unravelling as current strategies to target CAFs have resulted in worsened prognosis. The role of immune cells within the tumour microenvironment is also discussed as hypoxia has been associated with modulating immune cells to create an anti-tumorigenic environment. Which has led to the development of immunotherapies including PD-L1. These hypoxia-induced changes can confer resistance to conventional therapies, such as chemotherapy, radiotherapy, and immunotherapy. This review summarizes the current knowledge on the impact of hypoxia on the TME and its implications for therapy resistance. It also discusses the potential of hypoxia biomarkers as prognostic and predictive indictors of treatment response, as well as the challenges and opportunities of targeting hypoxia in clinical trials.
Collapse
Affiliation(s)
- Kamilla JA. Bigos
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Conrado G. Quiles
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Danielle J. Smith
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mechthild Krause
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Esther GC. Troost
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Radiooncology and Clinical Radiotherapy and Image-guided High Precision Radiotherapy, Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- School of Medicine, Technische Universitat Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Radiooncology – OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf, Germany
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Peter Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Christie Hospital NHS Foundation Trust, Manchester, Germany
| |
Collapse
|
6
|
Bourhis J, Sun XS, Tao Y. Letter to the Editor: SMAC mimetics inhibit human T cell proliferation and fail to augment type 1 cytokine responses. Cell Immunol 2024; 395-396:104772. [PMID: 37996259 DOI: 10.1016/j.cellimm.2023.104772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Jean Bourhis
- CHUV, Radiation Oncology Department, Bâtiment Hospitalier, Lausanne, Switzerland.
| | - Xu-Shan Sun
- Department of Radiation Oncology, Nord Franche-Comté de Montbéliard and CHRU de Besançon, Besançon, France
| | - Yungan Tao
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
7
|
Pandey R, Bisht P, Wal P, Murti K, Ravichandiran V, Kumar N. SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects. Mini Rev Med Chem 2024; 24:1334-1352. [PMID: 38275029 DOI: 10.2174/0113895575269644231120104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION SMAC mimetics acts in a restorative way in the prevention of lung cancer.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| |
Collapse
|