1
|
Dold M, Pereira J, Sajonz B, Coenen VA, Thielen J, Janssen MLF, Tangermann M. Dareplane: a modular open-source software platform for BCI research with application in closed-loop deep brain stimulation. J Neural Eng 2025; 22:026029. [PMID: 40014925 DOI: 10.1088/1741-2552/adbb20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Objective.This work introduces Dareplane, a modular and broad technology-agnostic open source software platform for brain-computer interface (BCI) research with an application focus on adaptive deep brain stimulation (aDBS). One difficulty for investigating control approaches for aDBS resides with the complex setups required for aDBS experiments, a challenge Dareplane tries to address.Approach.The key features of the platform are presented and the composition of modules into a full experimental setup is discussed in the context of a Python-based orchestration module. The performance of a typical experimental setup on Dareplane for aDBS is evaluated in three benchtop experiments, covering (a) an easy-to-replicate setup using an Arduino microcontroller, (b) a setup with hardware of an implantable pulse generator, and (c) a setup using an established and CE certified external neurostimulator. The full technical feasibility of the platform in the aDBS context is demonstrated in a first closed-loop session with externalized leads on a patient with Parkinson's disease receiving DBS treatment and further in a non-invasive BCI speller application using code-modulated visual evoked potential (c-VEP).Main results.The platform is implemented and open-source accessible onhttps://github.com/bsdlab/Dareplane. Benchtop results show that performance of the platform is sufficient for current aDBS latencies, and the platform could successfully be used in the aDBS experiment. The timing-critical c-VEP speller could be successfully implemented on the platform achieving expected information transfer rates.Significance.The Dareplane platform supports aDBS setups, and more generally the research on neurotechnological systems such as BCIs. It provides a modular, technology-agnostic, and easy-to-implement software platform to make experimental setups more resilient and replicable.
Collapse
Affiliation(s)
- Matthias Dold
- Data-Driven Neurotechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joana Pereira
- Data-Driven Neurotechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jordy Thielen
- Data-Driven Neurotechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marcus L F Janssen
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Michael Tangermann
- Data-Driven Neurotechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Wu Y, Li Y, Li H, Wang T, Huang P, Wu Y, Sun B, Pan Y, Li D. Prediction of subthalamic stimulation efficacy on isolated dystonia via support vector regression. Heliyon 2024; 10:e31475. [PMID: 38818146 PMCID: PMC11137530 DOI: 10.1016/j.heliyon.2024.e31475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Deep brain stimulation (DBS) of subthalamic nucleus (STN) has been well-established and increasingly applied in patients with isolated dystonia. Nevertheless, the surgical efficacy varies among patients. This study aims to explore the factors affecting clinical outcomes of STN-DBS on isolated dystonia and establish a well-performed prediction model. Methods In this prospective study, thirty-two dystonia patients were recruited and received bilateral STN-DBS at our center. Their baseline characteristics and up to one-year follow-up outcomes were assessed. Implanted electrodes of each subject were reconstructed with their contact coordinates and activated volumes calculated. We explored correlations between distinct clinical characteristics and surgical efficacy. Those features were then trained for the model in outcome prediction via support vector regression (SVR) algorithm and testified through cross-validation. Results Patients demonstrated an average clinical improvement of 56 ± 25 % after STN-DBS, significantly affected by distinct symptom forms and activated volumes. The optimal targets and activated volumes were concentratedly located at the dorsal posterior region to STN. Most patients had a rapid response to STN-DBS, and their motor score improvement within one week was highly associated with long-term outcomes. The trained SVR model, contributed by distinct weights of features, could reach a maximum prediction accuracy with mean errors of 11 ± 7 %. Conclusion STN-DBS demonstrated significant and rapid therapeutic effects in patients with isolated dystonia, by possibly affecting the pallidofugal fibers. Early improvement highly indicates the ultimate outcomes. SVR proves valid in outcome prediction. Patients with predominant phasic and generalized symptoms, shorter disease duration, and younger onset age may be more favorable to STN-DBS in the long run.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Runge J, Nagel JM, Blahak C, Kinfe TM, Heissler HE, Schrader C, Wolf ME, Saryyeva A, Krauss JK. Does Temporary Externalization of Electrodes After Deep Brain Stimulation Surgery Result in a Higher Risk of Infection? Neuromodulation 2024; 27:565-571. [PMID: 37804281 DOI: 10.1016/j.neurom.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES Deep brain stimulation (DBS) is a well-established surgical therapy for movement disorders that comprises implantation of stimulation electrodes and a pacemaker. These procedures can be performed separately, leaving the possibility of externalizing the electrodes for local field potential recording or testing multiple targets for therapeutic efficacy. It is still debated whether the temporary externalization of DBS electrodes leads to an increased risk of infection. We therefore aimed to assess the risk of infection during and after lead externalization in DBS surgery. MATERIALS AND METHODS In this retrospective study, we analyzed a consecutive series of 624 DBS surgeries, including 266 instances with temporary externalization of DBS electrodes for a mean of 6.1 days. Patients were available for follow-up of at least one year, except in 15 instances. In 14 patients with negative test stimulation, electrodes were removed. All kinds of infections related to implantation of the neurostimulation system were accounted for. RESULTS Overall, infections occurred in 22 of 624 surgeries (3.5%). Without externalization of electrodes, infections were noted after 7 of 358 surgeries (2.0%), whereas with externalization, 15 of 252 infections were found (6.0%). This difference was significant (p = 0.01), but it did not reach statistical significance when comparing groups within different diagnoses. The rate of infection with externalized electrodes was highest in psychiatric disorders (9.1%), followed by Parkinson's disease (7.3%), pain (5.7%), and dystonia (5.5%). The duration of the externalization of the DBS electrodes was comparable in patients who developed an infection (6.1 ± 3.1 days) with duration in those who did not (6.0 ± 3.5 days). CONCLUSIONS Although infection rates were relatively low in our study, there was a slightly higher infection rate when DBS electrodes were externalized. On the basis of our results, the indication for electrode externalization should be carefully considered, and patients should be informed about the possibility of a higher infection risk when externalization of DBS electrodes is planned.
Collapse
Affiliation(s)
- Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| | - Johanna M Nagel
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Thomas M Kinfe
- Division of Functional Neurosurgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Hans E Heissler
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Marc E Wolf
- Department of Neurology, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Fortmann T, Zawy Alsofy S, Lewitz M, Santacroce A, Welzel Saravia H, Sakellaropoulou I, Wilbers E, Grabowski S, Stroop R, Cinibulak Z, Nakamura M, Lehrke R. Rescuing Infected Deep Brain Stimulation Therapies in Severely Affected Patients. Brain Sci 2023; 13:1650. [PMID: 38137098 PMCID: PMC10742038 DOI: 10.3390/brainsci13121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Infections in deep brain stimulation (DBS) hardware, while an undesired complication of DBS surgeries, can be effectively addressed. Minor infections are typically treated with wound revision and IV antibiotics. However, when visible hardware infection occurs, most centers opt for complete removal, leaving the patient in a preoperative state and necessitating post-removal care. To avoid the need for such care, a novel technique was developed. (2) Methods: The electrodes are placed at the exact same spot and then led to the contralateral side. new extensions and a new generator contralateral to the infection as well. Subsequently, the infected system is removed. This case series includes six patients. (3) Results: The average duration of DBS system implantation before the second surgery was 272 days. Only one system had to be removed after 18 months due to reoccurring infection; the others remained unaffected. Laboratory alterations and pathogens were identified in only half of the patients. (4) Conclusions: The described surgical technique proves to be safe, well tolerated, and serves as a viable alternative to complete system removal. Importantly, it effectively prevents the need of post-removal care for patients.
Collapse
Affiliation(s)
- Thomas Fortmann
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany; (S.Z.A.); (M.L.); (A.S.); (E.W.); (R.S.); (Z.C.); (M.N.)
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany; (H.W.S.); (I.S.); (S.G.)
- Department of Stereotactic Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany;
| | - Samer Zawy Alsofy
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany; (S.Z.A.); (M.L.); (A.S.); (E.W.); (R.S.); (Z.C.); (M.N.)
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany; (H.W.S.); (I.S.); (S.G.)
| | - Marc Lewitz
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany; (S.Z.A.); (M.L.); (A.S.); (E.W.); (R.S.); (Z.C.); (M.N.)
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany; (H.W.S.); (I.S.); (S.G.)
| | - Antonio Santacroce
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany; (S.Z.A.); (M.L.); (A.S.); (E.W.); (R.S.); (Z.C.); (M.N.)
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany; (H.W.S.); (I.S.); (S.G.)
- European Radiosurgery Center Munich, 81377 Munich, Germany
| | - Heinz Welzel Saravia
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany; (H.W.S.); (I.S.); (S.G.)
| | - Ioanna Sakellaropoulou
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany; (H.W.S.); (I.S.); (S.G.)
| | - Eike Wilbers
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany; (S.Z.A.); (M.L.); (A.S.); (E.W.); (R.S.); (Z.C.); (M.N.)
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany; (H.W.S.); (I.S.); (S.G.)
| | - Steffen Grabowski
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany; (H.W.S.); (I.S.); (S.G.)
| | - Ralf Stroop
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany; (S.Z.A.); (M.L.); (A.S.); (E.W.); (R.S.); (Z.C.); (M.N.)
| | - Zafer Cinibulak
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany; (S.Z.A.); (M.L.); (A.S.); (E.W.); (R.S.); (Z.C.); (M.N.)
- Department of Neurosurgery, Academic Hospital Koeln-Merheim, Witten/Herdecke University, 51109 Koeln, Germany
| | - Makoto Nakamura
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany; (S.Z.A.); (M.L.); (A.S.); (E.W.); (R.S.); (Z.C.); (M.N.)
- Department of Neurosurgery, Academic Hospital Koeln-Merheim, Witten/Herdecke University, 51109 Koeln, Germany
| | - Ralph Lehrke
- Department of Stereotactic Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfaelische Wilhelms-University Muenster, 59073 Hamm, Germany;
| |
Collapse
|
5
|
Spindler P, Braun F, Truckenmüller P, Wasilewski D, Faust K, Schneider GH, Trampuz A, Conen A, Kühn AA, Vajkoczy P, Prinz V. Surgical Site Infections Associated With Implanted Pulse Generators for Deep Brain Stimulation: Meta-Analysis and Systematic Review. Neuromodulation 2023; 26:280-291. [PMID: 35970765 DOI: 10.1016/j.neurom.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to identify and systematically analyze relevant literature on surgical site infections (SSIs) associated with implantable pulse generator (IPG) procedures for deep brain stimulation (DBS). MATERIALS AND METHODS In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we conducted a systematic review and meta-analyses of 58 studies that reported SSI rates of 11,289 patients and 15,956 IPG procedures. A meta-analysis of proportions was performed to estimate the pooled proportion of SSIs across DBS procedures in general and to estimate the proportion of SSIs that occur at the IPG pocket. Moreover, a meta-analysis of odds ratio (OR) was conducted on those studies that reported their results of applying topical vancomycin powder during closure of the IPG wound. Results are presented as rates and OR with 95% CIs. RESULTS The pooled proportion of SSIs was 4.9% (95% CI, 4.1%-6.1%) among all DBS procedures. The dominant SSI localization was the IPG pocket in 61.2% (95% CI, 53.4%-68.5%). A trend toward a beneficial effect of vancomycin powder over standard wound closure was found with an OR of 0.46 (95% CI, 0.21-1.02). Most studies (79.1%) that reported their treatment strategy in case of SSI had a strict protocol of removal of the IPG, followed by antimicrobial treatment and reimplantation of the IPG once the SSI had been eradicated. CONCLUSIONS The IPG pocket was identified as the main site of SSI after DBS procedures. Most studies recommend complete IPG removal, antimicrobial treatment, and reimplantation of an IPG once the SSI has been eradicated. Future studies are needed to clarify the role of alternative approaches (eg, topical vancomycin powder) in the prevention of SSI associated with IPG.
Collapse
Affiliation(s)
- Philipp Spindler
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Braun
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Truckenmüller
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Wasilewski
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Conen
- Clinic for Infectious Diseases and Infection Prevention, Department of Infectious Diseases and Hospital Hygiene, Kantonsspital Aarau, Aarau, Switzerland
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder Section, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vincent Prinz
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Sheth SA, Bijanki KR, Metzger B, Allawala A, Pirtle V, Adkinson JA, Myers J, Mathura RK, Oswalt D, Tsolaki E, Xiao J, Noecker A, Strutt AM, Cohn JF, McIntyre CC, Mathew SJ, Borton D, Goodman W, Pouratian N. Deep Brain Stimulation for Depression Informed by Intracranial Recordings. Biol Psychiatry 2022; 92:246-251. [PMID: 35063186 PMCID: PMC9124238 DOI: 10.1016/j.biopsych.2021.11.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/02/2022]
Abstract
The success of deep brain stimulation (DBS) for treating Parkinson's disease has led to its application to several other disorders, including treatment-resistant depression. Results with DBS for treatment-resistant depression have been heterogeneous, with inconsistencies largely driven by incomplete understanding of the brain networks regulating mood, especially on an individual basis. We report results from the first subject treated with DBS for treatment-resistant depression using an approach that incorporates intracranial recordings to personalize understanding of network behavior and its response to stimulation. These recordings enabled calculation of individually optimized DBS stimulation parameters using a novel inverse solution approach. In the ensuing double-blind, randomized phase incorporating these bespoke parameter sets, DBS led to remission of symptoms and dramatic improvement in quality of life. Results from this initial case demonstrate the feasibility of this personalized platform, which may be used to improve surgical neuromodulation for a vast array of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston TX, 77030 USA,Corresponding Author: Sameer A. Sheth, MD, PhD, 7200 Cambridge Street, Suite 9B, Houston, TX 77030, 310-922-2596,
| | - Kelly R. Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston TX, 77030 USA
| | - Brian Metzger
- Department of Neurosurgery, Baylor College of Medicine, Houston TX, 77030 USA
| | - Anusha Allawala
- Department of Engineering, Brown University, Providence, RI, 02912 USA
| | - Victoria Pirtle
- Department of Neurosurgery, Baylor College of Medicine, Houston TX, 77030 USA
| | - Josh A. Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston TX, 77030 USA
| | - John Myers
- Department of Neurosurgery, Baylor College of Medicine, Houston TX, 77030 USA
| | - Raissa K. Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston TX, 77030 USA
| | - Denise Oswalt
- Department of Neurosurgery, Baylor College of Medicine, Houston TX, 77030 USA
| | - Evangelia Tsolaki
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Jiayang Xiao
- Department of Neurosurgery, Baylor College of Medicine, Houston TX, 77030 USA
| | - Angela Noecker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106 USA
| | - Adriana M. Strutt
- Department of Neurology, Baylor College of Medicine, Houston TX, 77030 USA
| | - Jeffrey F. Cohn
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 19104 USA
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106 USA
| | - Sanjay J. Mathew
- Department of Psychiatry, Baylor College of Medicine, Houston TX, 77030 USA
| | - David Borton
- Department of Engineering, Brown University, Providence, RI, 02912 USA
| | - Wayne Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston TX, 77030 USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
7
|
Gadot R, Shofty B, Najera RA, Anand A, Banks G, Khan AB, LoPresti MA, Vanegas Arroyave N, Sheth SA. Case Report: Dual Target Deep Brain Stimulation With Externalized Programming for Post-traumatic Complex Movement Disorder. Front Neurosci 2021; 15:774073. [PMID: 34819837 PMCID: PMC8606815 DOI: 10.3389/fnins.2021.774073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Movement disorders can be common, persistent, and debilitating sequelae of severe traumatic brain injury. Post-traumatic movement disorders are usually complex in nature, involving multiple phenomenological manifestations, and can be difficult to control with medical management alone. Deep brain stimulation (DBS) has been used to treat these challenging cases, but distorted brain anatomy secondary to trauma can complicate effective targeting. In such cases, use of diffusion tractography imaging and inpatient testing with externalized DBS leads can be beneficial in optimizing outcomes. Case Description: We present the case of a 42-year-old man with severe, disabling post-traumatic tremor who underwent bilateral, dual target DBS to the globus pallidus internus (GPi) and a combined ventral intermediate nucleus of the thalamus (Vim)/dentato-rubro-thalamic tracts (DRTT) target. DRTT fiber tracts were reconstructed preoperatively to assist in surgical targeting given the patient’s distorted anatomy. Externalization and survey of the four leads extra-operatively with inpatient testing allowed for internalization of the leads that demonstrated benefit. Six months after surgery, the patient’s tremor and dystonic burden had decreased by 67% in the performance sub-score of The Essential Tremor Rating Scale (TETRAS). Conclusion: A patient-tailored approach including target selection guided by individualized anatomy and tractography as well as extra-operative externalized lead interrogation was shown to be effective in optimizing clinical outcome in a patient with refractory post-traumatic tremor.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ricardo A Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Garrett Banks
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, United States
| | - Abdul Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Melissa A LoPresti
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Mostofi A, Baig F, Bourlogiannis F, Uberti M, Morgante F, Pereira EAC. Postoperative Externalization of Deep Brain Stimulation Leads Does Not Increase Infection Risk. Neuromodulation 2020; 24:265-271. [PMID: 33301223 DOI: 10.1111/ner.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/25/2020] [Accepted: 11/17/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Externalization of deep brain stimulation (DBS) leads is performed to allow electrophysiological recording from implanted electrodes as well as assessment of clinical response to trial stimulation before implantable pulse generator (IPG) insertion. Hypothetically, lead externalization provides a route for inoculation and subsequent infection of hardware, though this has not been established definitively in the literature. We sought to determine if lead externalization affects the risk of infection in DBS surgery. MATERIALS AND METHODS We present our center's experience of lead externalization and surgical site infection (SSI) in DBS surgery for movement disorders. Patients were divided into two cohorts: one in which leads were not externalized and IPGs were implanted at the time of electrode insertion, and one in which leads were externalized for six days while patients underwent electrophysiological recording from DBS electrodes for research. We compare baseline characteristics of these two cohorts and their SSI rates. RESULTS Infective complications were experienced by 3/82 (3.7%) patients overall with one (1.2%) requiring complete hardware removal. These occurred in 1/36 (2.7%) in the externalized cohort and 2/46 (4.3%) in the nonexternalized cohort. The incidence of infection between the two cohorts was not significantly different (p = 1, two-tailed Fisher's exact test). This lack of significant difference persisted when baseline variation between the cohorts in age, hardware manufacturer, and indication for DBS were corrected by excluding patients implanted for dystonia, none of whom underwent externalization. We present and discuss in detail each of the three cases of infection. CONCLUSIONS Our data suggest that externalization of leads does not increase the risk of infective complications in DBS surgery. Lead externalization is a safe procedure which can provide a substrate for unique neurophysiological studies to advance knowledge and therapy of disorders treated with DBS.
Collapse
Affiliation(s)
- Abteen Mostofi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK.,Department of Neurosurgery, Atkinson Morley Regional Neurosciences Centre, St George's Hospital, London, UK
| | - Fahd Baig
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK.,Medical Research Council Brain Network Dynamics Unit, Oxford, UK
| | - Fotios Bourlogiannis
- Department of Neurosurgery, Atkinson Morley Regional Neurosciences Centre, St George's Hospital, London, UK
| | - Micaela Uberti
- Department of Neurosurgery, Atkinson Morley Regional Neurosciences Centre, St George's Hospital, London, UK
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Erlick A C Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK.,Department of Neurosurgery, Atkinson Morley Regional Neurosciences Centre, St George's Hospital, London, UK
| |
Collapse
|